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Macro placement is the problem of placing memory blocks on a chip canvas. It can
be formulated as a combinatorial optimization problem over sequence pairs, a representa-
tion which describes the relative positions of macros. Solving this problem is particularly
challenging since the objective function is expensive to evaluate. In this paper, we develop
a novel approach to macro placement using Bayesian optimization (BO) over sequence
pairs. BO is a machine learning technique that uses a probabilistic surrogate model and
an acquisition function that balances exploration and exploitation to efficiently optimize a
black-box objective function. BO is more sample-efficient than reinforcement learning and
therefore can be used with more realistic objectives. Additionally, the ability to learn from
data and adapt the algorithm to the objective function makes BO an appealing alterna-
tive to other black-box optimization methods such as simulated annealing, which relies on
problem-dependent heuristics and parameter-tuning. We benchmark our algorithm on the
fixed-outline macro placement problem with the half-perimeter wire length objective and
demonstrate competitive performance.

Keywords: Bayesian optimization, Permutation, Batch acquisition, Physical design,
Macro Placement, Sequence Pair

1. Introduction

In chip placement two different types of objects are placed on a chip canvas: macros,
which are large memory blocks, and standard cells, which are small gates performing logical
operations. Compared to macros, standard cells are typically thousands of times smaller
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but tens or hundreds of thousands of times more numerous. While standard cell placement
can be efficiently solved using continuous optimization, e.g. (Cheng et al., 2019), macro
placement is typically framed as a combinatorial optimization problem due to their larger
physical size. This involves searching over the discrete set of relative positions between pairs
of macros, e.g. whether macro i is to the left or right of macro j, which act as constraints
against overlapping macros. The most popular combinatorial representation of relative
positions is called the sequence pair which is composed of a pair of permutations, one per
spatial dimension (Murata et al., 1996).

The goal of macro placement is to place macros in such a way that the power, perfor-
mance and area metrics are jointly optimized. The combinatorial nature and varying sizes
of macros and standard cells, together with the cost of evaluating the objective function
(several days for complex designs), make macro placement a notoriously challenging step
in physical design. Macro placement is also related to floorplanning, where standard cells
are clustered in soft rectangles that are jointly placed with hard rectangles that represent
macros (Kahng et al., 2011). In practice, designers manually place macros based on their
intuition which is likely sub-optimal.

Machine learning algorithms offer an advantage over traditional optimization algorithms
for macro placement since they can learn from past designs and improve over time in an
automated fashion, adapting the algorithms to specific use cases. Applying machine learning
to physical design has therefore recently emerged as a main research effort in electronic
design automation (Kahng, 2018). In particular, reinforcement learning (RL) provides a
natural framework for automating design decisions, where an agent plays the role of a
designer in carefully selecting parameter configurations to evaluate next while searching for
optimal solutions. However, in practice applying RL is very costly because of the large
number of samples required for learning a good policy, due in part to the very large design
space and costly evaluation as remarked above. For this reason, to the best of our knowledge,
applications of RL in the literature are either limited to a handful of parameters (Agnesina
et al., 2020) or require the use of cheap proxies instead of the real objective (Mirhoseini
et al., 2020), which changes the focus towards designing good proxies.

Bayesian optimization (BO) is a technique that is well-known for its sample-efficiency,
whereby it carefully explores the optimization landscape through selecting a candidate based
on previous evaluations (Shahriari et al., 2015). Compared with other black-box function
optimization methods such as RL, genetic algorithms, or simulated annealing (SA), the
sample efficiency of BO allows flexibility for the macro placement. Especially when it
is desirable to perform optimization close to the real objective, not a proxy, inevitable
evaluation cost leaves only BO as a viable option. For the application to macro placement,
more relevant is BO on combinatorial structures (Baptista and Poloczek, 2018; Oh et al.,
2019; Deshwal et al., 2021; Deshwal and Doppa, 2021; Oh et al., 2021; Deshwal et al., 2022).
For the details on BO on combinatorial structures, please refer to the references.

Contributions In this paper we introduce BO on sequence pairs for macro placement
as a replacement for other black-box optimization methods such as SA which are routinely
applied in the literature (Adya and Markov, 2002, 2005). We use batch BO for parallel
evaluation of a batch of data points to accelerate the optimization. Fig. 1 summarizes our
workflow. Our main contributions are:
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Figure 1: The Bayesian optimization for macro placement workflow for N = 3 macros and
batch size B = 2. First we fit a surrogate model (Gaussian process) to the data, updat-
ing the mean µ and standard deviation σ of the cost function estimate for each sequence
pair, here represented as a pair of N dimensional arrays where permutations correspond to
different colors patterns. Then we optimize an acquisition function a conditioned on the
data observed so far to find new sequence pairs x1, . . . , xB. Next we evaluate x1, . . . , xB
by placing macros to minimize HPWL while respecting the sequence pair constraints, and
compute the corresponding objective values y1, . . . , yB. Here Pi is the perimeter of the i-th
bounding box of the net between macros and I/O pads. Finally we add these new points
to the dataset and repeat the procedure until the computational budget is exhausted.

• We extend batch BO on permutations (Oh et al., 2021) to batch BO on sequence pairs
and devise an efficient algorithm for parallel batch acquisition function optimisation.

• We benchmark our algorithm on the MCNC dataset and obtain superior performance
in terms of wire length metric as compared to SA.

2. Methodology

In contrast to the traditional macro placement approaches, we consider an expensive-to-
evaluate objective with which we perform macro placement. We also consider the fixed-
outline constraint addressed in many existing works (Adya and Markov, 2001).

In order to efficiently tackle macro placement, we employ batch BO on the space of
sequence pairs (SPs) – a pair of two permutations – a compact representation for the rel-
ative positions of macros. Sequence pairs describe non-overlapping placements of macros.
Intuitively, if we imagine the macros to be placed on a line, the space of non-overlapping
placements can be indexed by permutations of the macros, and a macro optimization prob-
lem with non-overlapping constraints can be solved by searching over the space of permu-
tations. In the two-dimensional setting of this paper we need a pair of permutation to
describe non-overlapping macro placements. See Appx. Subsec. B.1 and (Murata et al.,
1996) for detailed explanation. To this end, we introduce 1) a kernel on the space of SPs,
2) an efficient heuristic to optimize the batch acquisition function 3) an efficient vectorized
Python implementation of the least common subsequence (LCS) algorithm of O(N logN)
run-time complexity where N is the number of macros.

For our Gaussian process surrogate model in BO, the proposed kernel is based on the
position kernel on permutation due to its superior performance in (batch) BO on permuta-
tion spaces(Zaefferer et al., 2014; Oh et al., 2021). Denoted π1, π2, π

′
1, π

′
2 four permutations

of N elements, our kernel is:
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Ksp((π1, π′
1), (π2, π′

2)∣W,W
′) = Kperm(π1, π2∣W) ⋅Kperm(π′

1, π
′
2∣W′) (1)

where W = [w1,⋯, wN], W′
= [w′

1,⋯, w
′
N], and

Kperm(π1, π2∣w1,⋯, wN) = exp (
N

∑
n=1

wn ⋅ ∣π−1
1 (n) − π

−1
2 (n)∣)

Kperm(π1, π2∣1,⋯, 1) is the position kernel (Zaefferer et al., 2014; Oh et al., 2021). In

addition to the mentioned works, in our position kernel we introduce parameters W,W
′

that account for widths and heights of different macros. We optimize those parameters by
maximizing the marginal likelihood of the training data by gradient descent.

In the batch acquisition function of BO, we adopt the method in (Oh et al., 2021) which
uses determinantal point processes (DPPs) with a weighted kernel to obtain a batch of
diverse points each of which is likely to speed up BO progress. DPPs quantify the diversity
of points using determinant of the gram matrix. Since the determinant of a matrix is the
volume of hyper-parallelepiped whose vertices are columns of the matrix, the more diverse
the points are, the larger the determinant is (Kulesza and Taskar, 2011, 2012). The batch
acquisition function is defined as

a
(t)
batch(x1,⋯, xB) = det [ρ(a(t)(xb))K(t)(xb, xc) ρ(a(t)(xc))]b,c=1,⋯,B (2)

where K
(t)

the covariance function conditioned on the evaluation dataset X
(t)

as in Eq. (3),

a
(t)

is the acquisition function for a single point as in Eq. (4) (e.g. EI, UCB, EST(Wang
et al., 2016)), and ρ(⋅) is a positive and strictly increasing function. This batch acqui-
sition function balances the quality of each point (i.e. the likelihood of improving the

objective) through the acquisition weight ρ(a(t)(⋅)), and the diversity among points (i.e.

avoiding information redundancy in parallel evaluations) through K
(t)
. This function has

been demonstrated to perform well for BO on permutation spaces(Oh et al., 2021).

While a
(t)
batch effectively fulfills the quality and diversity requirements, its optimization

is computationally demanding. In (Oh et al., 2021), a greedy approach was employed with

certain optimality guarantees. However, that method optimizes a
(t)
batch sequentially over the

batch index and limits the scalability of batch BO. Therefore, we propose a new heuristic
for parallel optimization of the batch acquisition function (See Alg. 1 in Appx. Sec. C)

The main idea is to perform small local updates in parallel for each element of the
batch. Specifically, we first compute xopt,1, the optimum of the single point acquisition
function (See line no. 1 of Alg. 1 in Appx. Sec. C). Then we optimize the function as,b
defined by fixing all but the b-th element of the batch, for b = 2, . . . , B (See line no. 6
of Alg. 1 in Appx. Sec. C Alg. 1). This step can be parallelized over the batch. Here s
denotes the iteration time over which this procedure is repeated. When a single point is
updated (line no. 1 of Alg. 1 in Appx. Sec. C), we apply a small local update instead of
running until convergence to minimize the deviation of our individual updates from the
simultaneous update method. Intuitively, if any single point is significantly altered while
the rest is fixed, the end result of the individual updates will drastically differ from that of
the simultaneous update.

The parallel heuristic (Alg. 1 in Appx. Sec. C) takes as input a local update function.
The local update function (Alg. 2 in Appx. Sec. C ) checks the constraint of fixed outline
of the placement region. We call feasible SPs those SPs that fit into the placement region.
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By using Alg. 2 (Appx. Sec. C) as the local update function for the parallel heuris-
tic (Alg. 1 in Appx. Sec. C), the latter collects feasible points by accumulating the feasible
sets generated by the former. When the local update function (Alg. 2 in Appx. Sec. C) is
invoked in the parallel heuristic (Alg. 1 in Appx. Sec. C), cfeasible(⋅) is the function which
asserts the fixed-outline constraint using the LCS algorithm, and N (x) is the set of neigh-
bors of the sequence pair x obtained by swapping adjacent elements in each permutation.

Given the kernel Ksp, the batch acquisition function, and the parallel heuristic for its
optimization, we present the complete Bayesian optimization for macro placement workflow
in Alg. 3 in Appx. Sec. C. See also Fig. 1 for a graphical illustration.

3. Experiments
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Figure 2: BO vs. SA on MCNC (hp, ami33, ami49 ) across temperatures (1K, 5K, 10K)
and schedules (linear, exponential, stepdown)

As a demonstration of the potential of BO, we test it on the MCNC benchmark (Kozmin-
ski, 1991)

∗
and present the results in Tab. 1. The optimization objective is to minimize

HPWL which connects macros pins to I/O pads under the fixed-outline constraint. Note
that I/O pads are fixed on the boundary of the placement region. Under the relative location
constraints specified by a sequence pair, we perform the linear constrained programming to
minimize HPWL. Note that this objective is simpler and cheaper-to-evaluate than the ones
where BO can possibly show its full strengths. Nonetheless, this experiment does indicate
the potential of BO in macro placement.

In Tab. 1, we compare the black-box function optimizers (BO, SA) with other meth-
ods in the literature on all 5 MCNC problems. In Fig 2, we compare BO and SA with
different temperature scheduling for 3 largest problems. For all problems, BO has superior
performance for the same number of evaluations, with the gap growing larger for larger
number of macros. In comparison with the other methods of Tab. 1, we can see that BO
performs competitively with only 520 evaluations of the objective on apte which is the
smallest problem. We acknowledge that on the designs with a larger number of macros,
ami33 and ami49, there is a non-negligible gap between BO and eWL (Funke et al., 2016).
However, we expect that this gap does not translate to the real world applications that we
envision since eWL cannot optimize macro placements with standard cells, while BO and
SA can. This is because eWL relies on efficient HPWL evaluation and uses a far higher

∗
http://vlsicad.eecs.umich.edu/BK/MCNCbench/

5

http://vlsicad.eecs.umich.edu/BK/MCNCbench/


Table 1: HPWL results on the MCNC benchmark. (The number of macros in parentheses)

apte (9) xerox (10) hp (11) ami33 (33) ami49 (49)

eWL(Funke et al., 2016) 513,061 370,993 153,328 58,627 640,509

ELS (Liu and Nannarelli, 2008) 614,602 404,278 253,366 96,205 1,070,010

FD
a
(Samaranayake et al., 2009) 545,136 755,410 155,463 63,125 871,128

SA
b,d

515,570 431,108 179,826 97,691 1,517,051

±525 ±15,312 ±6,550 ±1,592 ±5,095

1e3, Exp 1e3, Lin 1e4, Exp 1e4, Exp 1e4, Lin

BO
c,d 514,138 388,936 161,620 78,359 1,174,972

±264 ±3,700 ±2,113 ±1,271 ±21,396
a
Packings for hp, ami33, and ami49 have overlaps.

b
Among different temperature scheduling, the result with the lowest mean is reported.

c
BO uses the batch size B = 10

d
Mean and standard error of 5 runs are reported.

number of evaluations. Moreover, for apte, xerox, hp, eWL performed an exhaustive search.
On the other hand, due to super-exponential size of the space of sequence pairs on ami33
and ami49, evaluations are not performed exhaustively but nevertheless are many orders of
magnitude larger than the number of BO evaluations. In comparison with ELS (Liu and
Nannarelli, 2008), BO outperforms in all but ami49. However, ELS is a SA tuned for a
specific proxy cost function and we expect it not to be transferable to optimize more general
and expensive cost functions. Further, in spite of extremely small number of evaluations
compared with the size of the search space in ami49, BO demonstrates its potential for more
general and more realistic objectives on such large number of macros. FD (Samaranayake
et al., 2009) outperforms BO on hp, ami33, ami49 but the macro locations that FD outputs
have overlaps, while our method does not.

4. Conclusions

In this paper, we demonstrated the effectiveness of Bayesian optimization for macro place-
ment, and have shown that it performs competitively with exhaustive search techniques
on small benchmarks and performs reasonably well within compute constraints for large
benchmarks. In comparison to simulated annealing, we have shown our BO framework to
outperform across benchmarks with fewer evaluations. As mentioned above, realistic macro
placement quality evaluation requires an expensive global placement loop. Our optimiza-
tion objective in the experiments was to minimize HPWL of macro to I/O pads connections
which helped us evaluate macro placement quality without standard cell placement in the
loop. In the future, we plan 1) to extend this framework with an objective that considers
standard cell placement for HPWL computation and congestion estimation 2) to utilize the
current work’s output as initial solution to macro placement with subsequent standard cell
placement 3) to extend our constraints with memory stacking requirements, dataflow con-
straints, channel and snapping constraints, which are typical in industry standard IPs. On
the machine learning front, a future challenge is to develop a BO framework that transfers
across designs.

6



References

The-openroad-project. https://github.com/The-OpenROAD-Project/OpenROAD, 2021.

S. N. Adya and Igor L. Markov. Combinatorial techniques for mixed-size placement. ACM
Trans. Des. Autom. Electron. Syst., 10(1):58–90, January 2005. ISSN 1084-4309. doi:
10.1145/1044111.1044116. URL https://doi.org/10.1145/1044111.1044116.

Saurabh N Adya and Igor L Markov. Consistent placement of macro-blocks using floorplan-
ning and standard-cell placement. In Proceedings of the 2002 International Symposium
on Physical design, pages 12–17, 2002.

S.N. Adya and I.L. Markov. Fixed-outline floorplanning through better local search. In Pro-
ceedings 2001 IEEE International Conference on Computer Design: VLSI in Computers
and Processors. ICCD 2001, pages 328–334, 2001. doi: 10.1109/ICCD.2001.955047.

Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim. Vlsi placement parameter
optimization using deep reinforcement learning. In 2020 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), pages 1–9, 2020.

Ricardo Baptista and Matthias Poloczek. Bayesian optimization of combinatorial structures.
In International Conference on Machine Learning, pages 462–471. PMLR, 2018.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy, Andrew O Nel-
son, Mark Boyer, Egemen Kolemen, and Jeff Schneider. Offline contextual bayesian
optimization. Advances in Neural Information Processing Systems, 32:4627–4638, 2019.

Chung-Kuan Cheng, Andrew B. Kahng, Ilgweon Kang, and Lutong Wang. Replace: Ad-
vancing solution quality and routability validation in global placement. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 38(9):1717–1730,
2019. doi: 10.1109/TCAD.2018.2859220.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Inter-
national Conference on Machine Learning, pages 844–853. PMLR, 2017.

Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for bayesian
optimization over combinatorial spaces. Advances in Neural Information Processing Sys-
tems, 34:8185–8200, 2021.

Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. Mercer features for efficient
combinatorial bayesian optimization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 7210–7218, 2021.

Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim. Bayesian op-
timization over permutation spaces. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 6515–6523, 2022.

7

https://github.com/The-OpenROAD-Project/OpenROAD
https://doi.org/10.1145/1044111.1044116


Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

J. Funke, S. Hougardy, and J. Schneider. An exact algorithm for wirelength optimal
placements in vlsi design. Integration, 52:355–366, 2016. ISSN 0167-9260. doi: https:
//doi.org/10.1016/j.vlsi.2015.07.001. URL https://www.sciencedirect.com/science/

article/pii/S0167926015000802.

Chengyue Gong, Jian Peng, and Qiang Liu. Quantile stein variational gradient descent for
batch bayesian optimization. In International Conference on Machine Learning, pages
2347–2356. PMLR, 2019.
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Appendix A. Related Work

Sequential macro placers (Markov et al., 2015; Adya and Markov, 2002, 2005) produce
overlap-free placements for macros in four steps: 1. cluster standard cells into soft rectan-
gles, 2. run a floorplanner on the original (hard) macros and new soft rectangles, 3. remove
the soft rectangles, 4. place standard cells with fixed macros. The floorplanner of choice
is typically based on SA over sequence pairs with the most popular implementation being
Parquet (Adya and Markov, 2001) which incorporates several heuristics to select new con-
figurations. Modern sequential workflows such as the Triton macro placer included in the
OpenRoad project (ope, 2021) use RePlace (Cheng et al., 2019) for standard cell placement.
Replace is a state-of-the-art academic analytical placer that uses an electrostatic analogy
whereby cells and macros are modelled as charged objects with charges proportional to their
areas, and their electrostatic equilibrium leads to a uniformly spread placement. Perform-
ing joint macro and standard cell placement using RePlace produces overlaps that must be
later removed by a legalization step, as done in (Lu et al., 2015) that also uses SA.

In all the aforementioned workflows we can replace SA with our BO algorithm. SA
requires many iterations to converge and does not scale when using realistic cost functions,
which limits the choice of cost functions that designers can feasibly use for SA and thus
may lead to important aspects of the problem being ignored. Furthermore, SA requires
the designer to carefully adjust parameters such as temperature schedule and acceptance
probability to obtain good results – though (Vashisht et al., 2020) proposes an algorithm
that learns to propose good initial values. In contrast, in BO the kernel hyperparameters
can be tuned automatically by fitting the training data with gradient-based optimization.
Nevertheless, acquisition function maximization in our combinatorial setting requires some
tuning, see Sec. 2.

Various techniques other than SA have been proposed for floorplanning. In (Funke
et al., 2016) an exact enumeration algorithm is applied to larger problems using a divide-
and-conquer strategy. However, this method can only be applied to the half-perimeter wire
length objective and not more realistic cost functions. Similarly, (Liu and Nannarelli, 2008;
Samaranayake et al., 2009) also use wire length proxy functions.

A closely-related work to ours uses RL for macro placement (Mirhoseini et al., 2020).
RL requires many training iterations to converge to a good policy, while BO is more data-
efficient and is therefore more appealing when evaluating an expensive reward function.
In contrast to RL, BO does not learn to act in multiple situations, meaning that each
new design requires optimization from scratch. BO can be seen as a simplified instance of
RL where one takes a single action (instead of a sequence of actions) in a fixed state (i.e.
bandits) (Sutton and Barto, 2018; Srinivas et al., 2009; Chowdhury and Gopalan, 2017).
Other practical differences of our work and (Mirhoseini et al., 2020) are: 1) their RL agent
places macros sequentially while we jointly place all macros as done in SA; 2) they discretize
the macro positions on a fictitious grid while we work in the exact continuum optimization
formulation with no overlap constraints. In Sec.3 we compared our results against our SA
implementation and previously reported methods on the same benchmark dataset. We leave
benchmarking against (Mirhoseini et al., 2020) as future work.

Recently, BO was tested on similar but much smaller cases in (Deshwal et al., 2022).
Their focus is on proposing a new kernel on permutations and it is orthogonal to our focus
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on the batch acquisition to tackle super-exponential growth. In contrast to (Deshwal et al.,
2022), our experiments were conducted on much larger spaces i.e., 3∼4 times more macros
– in terms of the size of search space, this makes huge difference due to super-exponential
growth of permutation spaces – and demonstrated the effectiveness of the batch acquisition.
We leave the search for the optimal combination of the kernel and the batch acquisition for
macro placement as a future work.

Finally, we note that in (Xu et al., 2017) a bandit-based approach similar to BO has
been applied to optimizing parameters of FPGA compilation. This work does not tackle
the challenges of large combinatorial spaces in macro placement.

Appendix B. Background

B.1 Sequence pair

Sequence pairs (SPs) were introduced in (Murata et al., 1996) as a combinatorial represen-
tation for macro packing problems. We recall that a macro is a rectangle with distinguished
points called pins which may connect wires. For macros {m1,⋯,mN}, an SP is a pair of
permutations of length N , one per spatial dimension, and specifies the relative location of
each pair of macros. The relationship between the four possible relative locations of macros
mi and mj and SPs are explained in Tab. 2.

Table 2: Relative location specified by sequence pair (π, π′)

π π
′

Relative location of i and j

(⋯, i,⋯, j,⋯) (⋯, i,⋯, j,⋯) i is to the left of j

(⋯, j,⋯, i,⋯) (⋯, j,⋯, i,⋯) i is to the right of j

(⋯, i,⋯, j,⋯) (⋯, j,⋯, i,⋯) i is below j

(⋯, j,⋯, i,⋯) (⋯, i,⋯, j,⋯) i is above j

Traditionally, the SP representation has been used in macro placement for optimizing
area and half perimeter wire length (HPWL) (Murata et al., 1996). HPWL is the half
perimeter of the bounding box around a net (e.g. the red boxes in Fig. 1). To convert the
SP to a packed placement, an algorithm called the Longest Common Subsequence (LCS) is
used. It ensures minimal area placement, where no further vertical or horizontal adjustment
of any macro is possible (Murata et al., 1996).

Simulated annealing (SA) is commonly used to search over the space of SPs by carefully-
designed stochastic moves (Adya and Markov, 2001). The optimization objective is typically
a linear combination of area and HPWL. The conversion from an SP to a placement is the
main computational bottleneck. Since SA requires several thousands of evaluations to find
a good solution, a cheap proxy for the objective that relies on LCS is used in practice (Adya
and Markov, 2001). Another direction of work focused on the efficient LCS implementations
to handle this computational bottleneck (Tang and Wong, 2001; Tang et al., 2001). In
contrast, our work aims to optimize a complex and expensive objective through a BO
routine, while using LCS to assert whether an SP can be converted to a placement which
fits within the fixed placement region.
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B.2 Bayesian optimization

BO has been widely successful in optimizing expensive-to-evaluate objectives such as hy-
perparameter optimization (Snoek et al., 2015), neural architecture search (Nguyen et al.,
2021) and optimization of the tokamak control for nuclear fusion (Char et al., 2019). The su-
perior sample efficiency of BO is attributed to two components, namely the surrogate model
and the acquisition function. The surrogate model is a probabilistic model that approxi-
mates the objective while measuring the uncertainty of its approximation. This uncertainty
plays a crucial role in the exploration-exploitation trade-off. For this reason, Gaussian pro-
cesses (GPs) are widely used due to their superior uncertainty quantification (Rasmussen,
2003; Snoek et al., 2012). Given a point x in the search space, at the t-th iteration of BO,

the predictive mean µt(x) and the predictive covariance K
(t)(x, x′) of the GP surrogate

model are defined as

µt(x) = mx +Kx,X(t)(KX(t),X(t) + σ
2
I)−1(y(t)

−mX(t))
K

(t)(x, x′)=Kx,x′ −Kx,X(t)(KX(t),X(t)+σ
2
I)−1KX(t),x′ (3)

where m⋅ is the mean function, K⋅,⋅ is the kernel (i.e. prior covariance function), σ
2
is

the variance of the observational noise and X
(t)

is the set of points evaluated so far. The

predictive variance is σ
2
t (x) = K

(t)(x, x).
Using the GP predictive distribution conditioned on the evaluation dataset (X(t)

,y
(t)),

the acquisition function a(⋅, ⋅) quantifies the chance that the evaluation of a point improves
the GP optimization. An acquisition function is based on the intuition that the predic-
tive mean and the predictive variance can be used to make an informed guess about the
usefulness of a point in the input space (Shahriari et al., 2015):

a
(t)(x) = a(µt(x), σ2

t (x)) . (4)

In general, the acquisition function value is higher at points where the predictive mean
and the predictive variance are relatively high. The argument of the maximum of the

acquisition function x
(t)
opt is evaluated under the true objective y

(t)
= f(x(t)opt). This new

datapoint is then added to the evaluation dataset and the BO process is repeated.

X
(t+1)

= [X(t)
;x

(t)
opt], y

(t+1)
= [y(t)

; y
(t)] (5)

BO can be accelerated when computational resources permit parallel evaluation of the
objective. In this case, the acquisition function is defined over multiple points so that its
optimization yields multiple points whose evaluation can be parallelized.

{x(t)opt,b}
B
b=1 = argmaxx1,⋯,xB

a
(t)
batch(x1,⋯, xB) (6)

This is called batch BO. Several works have proposed methods which use different batch
acquisition functions(González et al., 2016; Wu and Frazier, 2016; Lyu et al., 2018; Gong
et al., 2019). For a detailed overview of BO, the reader is referred to (Brochu et al., 2010;
Shahriari et al., 2015; Frazier, 2018).

Appendix C. Algorithms
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Algorithm 1 Parallel heuristic

Require: a : an acquisition function for a single point
abatch : a batch acquisition function
ulocal(g(⋅), x) : a local update function

such that g(ulocal(g(⋅), x)) ≥ g(x)(maximization)
Xfeasible : a feasible set

1: xopt,1 = argmaxx∈Xfeasible
a(x)

2: Randomly choose x0,b for b = 2,⋯, B from Xfeasible

3: repeat
4: Xfeasible,s = ∅
5: for b ∈ {2,⋯, B} do {Parallel}
6: Update xs,b

as,b(x) = abatch(xopt,1, xs,2,⋯, xs,b−1, x, xs,b+1,⋯)
xs+1,b,Xfeasible,s,b = ulocal(as,b(⋅), xs,b)

7: Collect feasible sets
Xfeasible,s = Xfeasible,s ∪Xfeasible,s,b

8: end for
9: Expand the feasible set

Xfeasible = Xfeasible ∪Xfeasible,s

10: Update step count s = s + 1
11: until Convergence or other stopping criteria
12: return (xopt,1, x⋅,2,⋯, x⋅,B),Xfeasible

Algorithm 2 Local update with feasibility check

Require: g(x) : an objective function
xold : an initial point
cfeasible(x) : a function checking the feasibility
N (x) : a function listing neighbors of x

1: Find neighbors of xold, N (xold)
2: Compute feasibility

Nfeasible(xold) = {x ∈ N (xold) ∣ cfeasible(x) is true}
3: Move toward the best feasible neighbor

xnew = optx∈Nfeasible(xold) g(x)
4: Expand the feasible set

Xfeasible = Xfeasible ∪Nfeasible(xold)
5: return xnew, Xfeasible
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Algorithm 3 Batch Bayesian optimization macro placement

Require: f : the optimization objective

X
(0)
feasible : an initial feasible set

X
(0)

,y
(0)

: an initial evaluation dataset
1: repeat

2: Fit the surrogate model on the data (X
(t)
, y

(t)
)

µt(x), σ2
t (x) [Used in the acquisition function]

3: Optimize the acquisition function
by calling Alg. 1 with
- Local update fn.: Alg. 2

- Feasible set: X
(t)
feasible

(x(t)1 ,⋯, x
(t)
B ), Xnew

feasible ← Alg. 1

4: Evaluate the objective at (x(t)1 ,⋯, x
(t)
B ) in parallel

y
(t)
1 = f(x(t)1 ),⋯, y

(t)
B = f(x(t)B )

5: Expand the evaluation dataset

X
(t+1)

= [X(t)
;x

(t)
1 ;⋯;x

(t)
B ]

y
(t+1)

= [y(t)
; y

(t)
1 ;⋯; y

(t)
B ]

6: Expand the feasible set

X
(t+1)
feasible = X

(t)
feasible ∪X

new
feasible

7: Update BO round count t = t + 1
8: until Computational budget is exhausted

9: return X
(⋅)
, y

(⋅)
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