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Abstract

We consider the classical problem of multiclass prediction with expert advice, but with an
active learning twist. In this new setting the learner will only query the labels of a small
number of examples, but still aims to minimize regret to the best expert as usual; the
learner is also allowed a very short burn-in phase where it can fast-forward and query certain
highly-informative examples. We design an algorithm that utilizes Hedge (aka Exponential
Weights) as a subroutine, and we show that under a very particular combinatorial constraint
on the matrix of expert predictions we can obtain a very strong regret guarantee while
querying very few labels. This constraint, which we refer to as ζ-compactness, or just
compactness, can be viewed as a non-stochastic variant of the disagreement coefficient,
another popular parameter used to reason about the sample complexity of active learning in
the IID setting. We also give a polynomial time algorithm to calculate the ζ-compactness
of a matrix up to an approximation factor of 3.

1. Introduction

The problem of multiclass prediction with expert advice has emerged as a simple yet powerful
framework for reasoning about sequential decision tasks. We imagine we have a set of N
experts, at each round there are K possible outcomes, and where each expert j makes a
prediction Xt,j ∈ [K] at time t about an unknown label yt ∈ [K]. Our learning task is to
emit our own estimate ŷt ∈ ∆k of yt, that takes into account the advice of each expert along
with their historical performance up until this time point. The simple goal is: can we predict
well, in the long run, relative to the expert who performs optimally over the full sequence of
predictions, despite that we do not know in advance which expert is best? Moreover, what
can we guarantee even when some of these experts may be predicting in an arbitrary or
perhaps adversarial fashion? These questions have received a great deal of attention over
the past two decades.
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The classical algorithm for this problem is commonly known as Hedge Freund and Schapire
[1995], although variants are often referred to as exponential weights or weighted majority.
While we give a precise description in Algorithm 1, Hedge is quite simple to explain in words:
the algorithm combines the predictions of all the experts on a given round by taking their
weighted average, where the weight of an expert exponentially decays according to the
number of previous mistakes. Important details must be addressed, such as the exponential
decay factor and what to do with fractional predictions, but a great deal of research has made
one point very clear: Hedge is essentially the minimax optimal algorithm for the problem of
prediction with expert advice.

One of the downsides of Hedge, as with many online learning algorithms, is that it is not
label efficient : the learning process requires that we observe the target yt on each round.
Obtaining individual labels can, quite often, be very expensive to the learner; indeed this
is central to why we design prediction algorithms in the first place. Active learning, which
refers broadly to a family of frameworks in which the learning algorithm can make selective
label queries, are designed precisely with the goal of minimizing the number of needed labels
while achieving a suitable learning performance. The key idea is that we do not necessarily
need to have a batch of labelled examples prior to training, in many natural scenarios the
algorithm may be able to actively engage with the labelling process to query labels on a set
of unlabelled examples. The classical Binary Search algorithm is, in some sense, an active
learning algorithm to find an element in a sorted list.

It would be hard to argue against the wealth of empirical results showing the benefits of
active learning Settles [2011], Nguyen and Smeulders [2004], Wang and Hua [2011], Kapoor
et al. [2007], Li and Guo [2013]. At the same time, while our theoretical understanding of the
label-efficiency gains achieved using this new learning model has been studied in a range of
scenarios Hanneke [2007], Zhang [2018], Hanneke and Yang [2012], Hanneke et al., Kulkarni
et al. [1993], Koltchinskii et al., Freund et al. [1997], Dasgupta et al. [2008], our progress
towards a full-fledged concrete mathematical foundation of active learning has been relatively
slow. A persistent challenge is that precisely identifying scenarios in which active label
querying can provide provable benefits, versus those where it necessarily can not, has proven
quite difficult Zhang [2018], Hanneke et al.. The one notable exception is disagreement-based
active learning Hanneke [2014]: it has been shown that, as long as the binary hypothesis
class possesses a particular property with respect to the underlying probability distribution,
known as the disagreement coefficient, a recursive algorithm can “zoom in” to the optimal
hypothesis and achieve faster learning with lower label complexity. While the disagreement
coefficient is somewhat difficult to define, the theoretical work associated to this framework
has been perhaps the crowning achievement of the area.

It is worth noting up front that nearly all work on active learning has imagined a
“batch” setting, where the algorithm is evaluated only at the end of the learning process, in
expectation, on new samples. This is surprising, in particular, given that active learning
methods are by their nature online, as they seek to iteratively refine their learning process
and selection of samples. But thus far there has been no work on putting active learning
algorithms to the test in a no-regret setting of prediction with expert advice, where the
algorithm’s decision is evaluated at each round of the sequence, and where the expert’s
predictions as well as the labels can be non-stochastic and potentially chosen by an adversary.
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In the present paper we aim to remedy this gap, and show that there is a natural
framework for active learning in the no-regret setting of prediction with expert advice with
strong learning guarantees as well as bounded label complexity. First, we define a notion of
complexity of the experts’ predictions, somewhat akin to the disagreement coefficient, that
provides a key tool in obtaining a provable guarantee; we refer to this as compactness for a
parameter ζ ≥ 1. Quite notably, this quantity can be efficiently estimated up to a constant
factor!

For the remainder of the paper, we will consider a matrix X ∈ [K]M×N that represent
the predictions of a set of N experts on a sequence of M rounds. We will use the notation
Xt to refer to the tth row of X, although we will often index rows using the letter i or I.
We write Xi,j to denote the (i, j)th entry of X. Alongside this matrix will be an (unknown)
sequence of labels y1, . . . , yM ∈ [K]. We require a loss function ` : ∆K × [K] → R, and
for simplicity we restrict our attention to the absolute loss `(ŷ, y) := 1

2‖ŷ − δy‖1. Here
δy ∈ {0, 1}K is the indicator vector, with all zeros except a 1 in the y-th coordinate.

2. Prediction Matrix Compactness

In the typical adversarial learning setting we assume that the experts’ predictions and labels
are chosen in some arbitrary fashion. On the other hand, it is well understood that to
obtain any reasonable learning result in an active label-efficient mode one requires stronger
assumptions on the input data. In our framework of prediction with expert advice this will
mean we must constrain the matrix X in an appropriate fashion. Let us now describe a
particular condition on X, which we call compactness, that measures a purely combinatorial
property of the space of predictions.

Definition 1. Given X ∈ [K]M×N , and for any subset V ⊆ [N ] of experts, the points of
contention of V is the set

PoCX(V ) :=
{
i ∈ [M ] | ∃j, j′ ∈ V : Xi,j 6= Xi,j′

}
For any set of experts, the points of contention are the collection of examples where at

least two of the experts in the set disagree.

Definition 2 (ζ- Compactness). For some ζ ≥ 1, we say that an expert prediction matrix
X is ζ-compact if it satisfies

|PoCX(V )|
maxj,j′∈V |PoCX({j, j′})|

≤ ζ (1)

for each V ⊂ [N ] with |V | ≥ 2. We refer to the compactness of X as the smallest ζ for which
inequality (1) holds.

Given a prediction matrix X, the compactness of X controls the divergence between two
key quantities of a group of experts V : the total number of points of contention of all of V
versus the largest number of points of contention over any pair in the group. In one sentence,
the matrix X is ζ-compact if the size of the contentious set for any subset of experts is never
ζ larger than that of the most contentious pair of experts in it. Here are two illuminating
examples that illustrate matrix compactness:
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1. Let K = 2, M = N and let X be the identity matrix, with all 0 entries except 1s on
the diagonal. The compactness of this matrix is M

2 , unfortunately, which is very large.
That’s because if you take V = [N ] we see that PoCX(V ) = [M ] the whole set of
examples. But for any pair j, j′ we have PoCX({j, j′}) = {j, j′}. In other words, any
group of experts has as many points of contention as members in the group, but any
pair of experts will disagree on only two points. This is indeed a very hard case for
active learning, as individual examples are not very informative.

2. Continue to let M = N and now let X be the upper triangular matrix with all 1s on
and above the diagonal, and 0s below. This is a very compact matrix, with ζ = 1!
That’s because for any subset V we have PoCX(V ) = PoCX({min(V ),max(V )}), i.e.
the points of contention in V is identically the points of contention for the largest-index
and smallest-index experts in the set.

Theorem 3 (Informal). There is a polynomial time algorithm to calculate the compactness
ζ of a matrix up to an approximation factor of 3.

3. No Regret Active Learning

We define “no-regret active learning” by laying out what we believe is the appropriate
analogue to the batch setting. To put it briefly, we imagine a scenario in which the learner
must still make sequential predictions on an M -length list of examples, but with the following
modifications: (a) the learner is given the sequence of all experts’ predictions in advance,
(b) the learner can only query the true label yt on a small number of examples, and (c) the
learner is given a very short burn-in period where it can “fast-forward” to future rounds
in order to query particularly-informative examples. It is this last feature that makes our
setting truly active, as this term is used in the batch setting, since the learner can recursively
seek out useful datapoints. After the short burn-in, however, the learner must play the
remainder of the sequence in its original order while querying only a small fraction of the
labels.

We propose an online learning algorithm for this setting, ActiveHedge, that leans heavily
on Hedge as a subroutine yet uses dramatically fewer label queries. We are able to show the
following:

Theorem 4 (Informal). Assume we must predict a sequence of labels in [K], we have N
experts who have provided predictions (in [K]) on all M examples, and the prediction matrix
X ∈ [K]M×N is ζ-compact for some ζ ≥ 1. If some expert makes only εM mistakes, for
some ε > 0, then with probability ≥ 1− ρ algorithm ActiveHedge guarantees that

1. with burn-in period of only O(ζ logN log 1
ε ) rounds,

2. no more than O
(
ζεMpolylog( Nεζρ)

)
label queries,

3. can achieve regret O
(√

εM lnN + lnN
)

.

Assuming the prediction matrix X is ζ-compact for a reasonably-sized constant ζ, this
theorem states that the regret of ActiveHedge is indeed no worse than Hedge, yet requires a
dramatically lower label complexity: roughly Õ(ζεM) queries are needed. The only extra
power we give the learner is a very brief burn-in period, roughly Õ(ζ) rounds, where it can
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do active exploration of future examples. We now give an illustrative example to view this
setting in comparison with more classical batch active learning.

Batch vs Online Active Learning Before we dive into the related work and our results,
let us lay out an intriguing scenario. Imagine that a worldwide viral pandemic has recently
emerged, and a drug company has been working furiously for months to develop a vaccine to
provide immunity to the novel virus. The company has been able to design two candidate
vaccines, A and B, has proven to federal regulators that both drugs are safe enough to study
in humans, but there’s a challenge: some people have a mild allergic reaction to vaccine A
but not B, and everyone else has a similar allergic reaction to vaccine B but not A, but this
only occurs months after exposure. The company knows that the allergic reaction is based
on one of thousands of possible genetic variants, yet must determine quickly which is the
relevant gene. Unfortunately there are only two ways to determine if the allergic reaction
will occur: (a) wait months to inquire with the patient, or (b) run an expensive test after
administering the vaccine that determines immediately whether the allergic reaction will
occur.

In this scenario, the “experts” (hypotheses) correspond to candidate genes, a recipient
of the vaccine is an example, the true label is their sensitivity to A or B, and the label
query cost is incurred by the expensive test needed to detect a future allergic reaction. We
introduce this challenge because it helps to highlight the distinction between the two modes
of active learning, the classical batch framework and our online setting.

1. If the company decides to take a batch active learning approach, they would begin by
asking random members of the population to submit their genetic profile and sign up
for a vaccine study, but with only a small chance to be selected. The company would
then adaptively filter applicants, zero in on particularly-suitable individuals with the
relevant genetic information, administer one of the two vaccines, and then immediately
give the expensive test to detect for future allergic reactions. A population-wide
vaccine administration protocol can then be developed once the key gene in question
is determined.

2. The online approach is more aggressive: the company announces that anyone who
would like to be vaccinated will have the opportunity, but they must submit a certified
genetic profile in advance, arrive at the local mall on a Saturday by 11am, and then
wait in a line. All are promised to receive one of the two vaccines, with the goal of
minimizing potential allergic reaction; some recipients will be given the expensive test
to quickly determine this. Also, all participants are told that a small number may
be brought to the front of the line so that more medically-informative candidates are
treated first; this is the “burn-in” phase which we’ll discuss more in Section B.

The typical way that medical procedures are tested and refined is using the first protocol,
but we would argue1 that the second is superior in how it accounts for and manages the costs
and benefits of both vaccine recipients and developers. The batch active learning framework
has generally been focused on simply minimizing the number of label queries (expensive
tests) in order to achieve ε accuracy on future examples, but prediction errors that occur

1. We want to emphasize that we are not proposing to change the drug design and trial framework, as
this involves a host of ethical and legal issues not considered here. Rather, drug development provides a
useful hypothetical to consider the relative costs of testing and accuracy in an adaptive experimentation
problem.
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in the study phase are not accounted for in the loss objective. The online active learning
framework, on the other hand, does not distinguish between study participants and regular
vaccine recipients – the goal is simply to induce the least number of allergic reactions at the
smallest possible testing cost over the long term.

It is important to note that batch active learning methods, including disagreement-based
learning, can not immediately be applied in the online setting. Batch active learning only
considers label query costs in the training phase and prediction error costs in the testing
phase. Another relevant distinction is that our results do not rely on any IID assumption –
indeed since the algorithm is allowed to move certain examples ahead in the queue adaptively,
new examples are almost certain to be non-independent.
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Appendix A. More Related Works

We briefly survey prior work in the general area of active learning. We will describe salient
aspects of these works, and outline how our paper differs from these existing approaches in
terms of framework, method, and theory. At a fundamental level, active learning deals with
label efficient learning, namely, identifying a good predictor, h∗, from within a hypothesis
class, H, based on selectively choosing examples to query for labels. Within this context, a
number of methods under a variety of scenarios and assumptions have been studied.

There has been a great deal of work in this area, yet we limit our survey here to a few
important themes, in order to draw contrasts and parallels to our setting. Label efficient
learning has been considered in pool-based Settles [2012], Hanneke [2014], streaming Cohn
et al. [1994], Balcan et al. [2006], Beygelzimer et al. [2008] and online scenarios Cesa-Bianchi
et al. [2006, 2009], Dekel et al. [2012]. Pool and stream-based scenarios have been considered
largely within the setting of IID examples and/or labels, whereas online methods have
been considered under probabilistic Dekel et al. [2012] as well as adversarial Cesa-Bianchi
et al. [2006] label noise assumptions. A number of approaches including disagreement-
based Beygelzimer et al. [2008, 2010], Hanneke [2007], Dasgupta et al. [2008], Hanneke
[2009], Hanneke and Yang [2012], margin-based Dasgupta et al. [2005], Balcan et al. [2007],
Balcan and Long [2013], Awasthi et al. [2014, 2015], Zhang [2018], importance-sampling-
based Beygelzimer et al. [2008], Cortes et al. [2019], and multiplicative-weight update-
based Cesa-Bianchi et al. [2006] and other online Yang [2011], Dekel et al. [2012] based
methods.

In much of the pool and streaming based methods, the underlying assumption is that the
examples and labels, are or can be, drawn IID from some fixed unknown distribution, with
labels hidden from the learner. The learner after making a number of label requests, not
exceeding, say U , outputs a predictor ĥ. In this line of work, the active-learning protocol
is based on comparing ĥ against the Bayes optimal predictor on an independent labeled
sequence. While there is a rich history of methods, which have been explored under a
variety of label noise assumptions, the setting of our work is quite different, in that we
make no probabilistic assumptions on the data generation process or label noise; and our
active learning protocol, in contrast to these works, does not require independence between
training and test scenarios. In particular, our protocol follows the online regret setting,
and the incorrect predictions are penalized on the dataset available to the learner during
the training process. On the other hand, our proposed method and theoretical results
are fundamentally related to the so called disagreement based methods, and leverages key
insights of Hanneke’s disagreement coefficient Hanneke [2014]. In particular, we develop
the notion of ζ-compactness, which can be interpreted, in some sense, as a deterministic
and combinatorial version of disagreement coefficient. Nevertheless, since we make no
probabilistic assumptions all previous disagreement-based methods, we cannot leverage
classical empirical risk minimization bounds in our context. For this reason, we draw upon
insights from the Hedge algorithm and its associated regret bounds, which are agnostic to
such probabilistic assumptions.

Our work is also closely related to the label efficient online learning methods, which
have been analyzed both under unbiased probabilistic noise as well as adversarial noise
assumptions. Cesa-Bianchi et al. [2005] describes a selective sampling method within the
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framework of online regret minimization for bounded loss functions. The learner plays M
rounds and at time t gets an input xt, and can decide to seek a label, while being aware of the
overall label budget U . Within this setting, leveraging a variant of the Hedge algorithm, and
with no additional assumptions on data process, Cesa-Bianchi et al. [2005] provides regret

guarantees, which scale as M

√
log(N)
U for N experts (number of hypothesis). A number of

online variants to this selective sampling approach have been proposed. Cesa-Bianchi et al.
[2009], Dekel et al. [2012] introduce probabilistic noise assumptions, and in particular assume
that the regression function is linear, and the label noise is unbiased and independent of
other examples or queries. The linearity of the regression function together with independent
label noise allows them to leverage recursive least-squares techniques. Similar to these works,
we also consider a regret-minimization techniques. Different from Cesa-Bianchi et al. [2009],
Dekel et al. [2012] we make no probabilistic assumptions on label noise. Zhao et al. [2013],
Hao et al. [2018] consider the same setting as that of selective sampling where the learner can
request the label after making the predictions in each round but don’t give any theoretical
guarantees on the label complexity. In contrast to Cesa-Bianchi et al. [2005] we assume
data from all the N rounds are available to the learner a priori. In addition, we impose the
notion of ζ-compactness on the dataset of experts’ predictions via a concept closely related
to disagreement coefficient, which allows for dramatic improvements in label efficiency. As a
matter of comparison, say the optimal expert makes εM errors, then the existing selective

sampling results with budget U = O(εM), would lead to a regret equal to

√
M log(N)

ε in

comparison to our result suggesting
√
εM log(N). Nevertheless, improvement in our result

can be attributed to the additional imposition of ζ-compactness.

Appendix B. Notation, Setting, and Background

For the remainder of the paper, we will consider a matrix X ∈ [K]M×N that represent the
predictions of a set of N experts on a sequence of M rounds. We will use the notation Xt to
refer to the tth row of X, although we will often index rows using the letter i or I. We write
Xi,j to denote the (i, j)th entry of X. Alongside this matrix will be an (unknown) sequence
of labels y1, . . . , yM ∈ [K]. We require a loss function ` : ∆K × [K]→ R, and for simplicity
we restrict our attention to the absolute loss `(ŷ, y) := 1

2‖ŷ − δy‖1. Here δy ∈ {0, 1}K is the
indicator vector, with all zeros except a 1 in the y-th coordinate.

B.1 Basics: Prediction with Expert Advice, and Hedge

In the classical setting of prediction with expert advice, the learner receives prediction
vector Xt at round t, makes a prediction ŷt ∈ ∆K , observes the true label yt, and suffers
the loss `(ŷt, yt). Each expert j suffers a loss as well, `(Xt,j , yt), and note that this loss is
conveniently the 0-1 loss as well, 1[Xt,i 6=yt]. The algorithm wants to choose the predictions
ŷ1, . . . , ŷM in order to minimize the regret :

Regalg :=

M∑
t=1

`(ŷt, yt)− min
j∈[N ]

M∑
t=1

`(Xt,j , yt).
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At times it will be convenient to refer to the cumulative loss of expert j as LMj =∑M
i=1 `(Xi,j , yi). Similarly, the loss of the algorithm is LMHedge =

∑M
t=1 `(ŷt, yt)

Algorithm 1: Hedge

1 Input: η > 0 /* learning rate parameter */

2 Init: ~w0 = [1, . . . , 1] /* N initial weights */

3 for t = 1, . . . ,M do
4 Xt ← Preds(t) /* Receive multiclass expert predictions */

5 ŷt ← HedgePredict(Xt, ~w)
6 yt ← QueryLabel(t)
7 ~w ← HedgeUpdate(~w,Xt, yt, η)

8 end
1 Procedure HedgePredict(~x, ~w)

2 ~p←
[

w1∑N
i=1 wj

, . . . , wN∑N
i=1 wj

]
3 ŷ ← ~p ·OneHot(~x) /* Weighted multiclass prediction */

/* OneHot converts multiclass preds ~x to one-hot matrix encoding */

4 return ŷ /* ŷ is a probability vec in ∆K */

1 Procedure HedgeUpdate(~w, ~x, y, η)
/* Decrease weight of incorrect experts */

2 for j = 1, . . . , N do
3 w+

j ← wj exp(−η1[xj 6=y])

4 end
5 return ~w+

We have already discussed Hedge, the most well-known algorithm for the problem of
prediction with expert advice. We lay this out in full detail in Algorithm 1, with two
important subroutines, HedgeUpdate and HedgePredict, that will be needed later.

Theorem 5. Assume we know a quantity L∗ such that minj=1,...,N L
M
j ≤ L∗. Then, choosing

η = log
(

1 +
√

2 lnN
L∗

)
Algorithm 1 guarantees

LMHedge − min
j=1,...,N

LMj ≤
√

2L∗ lnN + lnN. (2)

This is, in many respects, a fundamental bound. We know, for example, that this can
not be made any tighter, even up to constants Cesa-Bianchi and Lugosi [2006].

Appendix C. Discussion about Matrix Compactness

We can give a simple bound on the compactness of any expert prediction matrix X, whose
proof is in Appendix I. But this bound is mostly useless from the perspective of our main
results, as we need ζ �M for a non-trivial guarantee on label complexity.

Theorem 6. For any matrix X ∈ [K]M×N , for M ≥ 2, the compactness of X is less than
or equal to min {M,N}
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Comparison to the Disagreement Coefficient. As we mentioned early in the paper,
one of the major theoretical accomplishments in the literature on label-efficient statistical
learning is the work on disagreement-based active learning, first introduced by Hanneke
[2007] with several followup works Hanneke [2009], Hanneke et al., Balcan et al. [2006],
Hanneke [2014], Hanneke and Yang [2015]. The key quantity of interest in this work is
known as the disagreement coefficient, a scalar that measures the difficulty of active learning
with respect to a particular hypothesis class and data distribution. What was shown all the
way back to Hanneke [2007] was that this coefficient controls the label complexity of learning
on the given task, and they show several examples where the disagreement coefficient is of
reasonable size.

While we developed our notion of compactness independently, and with a different model
in mind, we later realized that in the case of binary classification our definition can in some
sense be viewed as a “derandomization” of Hanneke’s disagreement coefficient; we make this
more precise in the proposition below. The compactness ζ of a prediction matrix X does not
depend on any notion of IID sampling from an underlying data distribution, as ζ is purely
a combinatorial property of the experts’ predictions which could have been adversarially
chosen. And, while there is some resemblance between the burn-in procedure in Phase I of
ActiveHedge and the A2 algorithm of Hanneke [2007], our results are not at all comparable:
the goal of our work was to produce an algorithm that suffers low regret, as it is forced to
make a prediction and suffer loss on each example, and be robust against non-stochastic
sequences of data.

Proposition 7. Consider a binary expert prediction matrix X with compactness ζ. Construct
a data distribution D which generates an x, y pair by uniformly sampling x as a row of
X and let y be the corresponding label. We can considers the set of experts as an N-sized
hypothesis class H. Then the disagreement coefficient of (D,H), as defined by Hanneke
[2007], is 2ζ where ζ is the compactness of X.

Appendix D. Online active learning with experts

Let us now specify the details of our framework for active learning with expert advice. It
can be described in terms of the vanilla Hedge setting, but with three key modifications:

1. The sequence of expert predictions, specified by X, can be precomputed and is given to
the learner in advance of the prediction task.

2. The learner aims to make only a small number of label queries, limiting the number of
times yt is observed.

3. We allow a very brief burn-in period, which we call Phase I, where the learner can
“fast-forward” to act on particular examples, and query their labels, out of turn. In Phase
II the learner then plays the remaining points, which are the vast majority, in the order
they are given, with the occasional label query if needed.

Modification 1 above is not unusual and arises naturally in settings where the experts are
a set of pre-selected deterministic hypotheses, the rounds/examples are given by a queue of
contexts/input vectors, and we can pre-evaluate each hypothesis on each context (the vaccine
development scenario given in the introduction is another such example). Modification 2
captures the underlying goal that we want to skip the potentially-expensive step of obtaining

12



Algorithm 2: ActiveHedge

Parameters : ε, η, k,T, ζ
Input : X ∈ [K]M×N

Initialize :V 0 ← [N ], t← 0, Done← ∅
/* //// PHASE I //// Recursively shrink candidate experts */

1 for τ = 0, . . . ,T− 1 do
2 Zτj ← 0 (∀j ∈ [N ]) /* #errs expert j at epoch τ */

3 for c = 0, · · · , k − 1 do
4 I ∼ PoCX(V τ ) /* Sample w/ replacement */

5 if I /∈ Done then
6 ŷI ← HedgePredict(XI , ~w

t)
7 yI ← QueryLabel(I)
8 ~wt+1 ← HedgeUpdate(~wt, XI , yI , η)
9 t← t+ 1 /* increment hedge update count */

10 Done← Done ∪ {I}
11 end
12 Zτj ← Zτj + 1[XI,j 6=yI ] ∀j ∈ V τ

13 end

14 δτ ← M

2|PoCX(V τ )|

(
1

2τ+1ζ
− ε
)

/* Update thresh */

15 V τ+1 ←
{
j ∈ V τ : Zτj /k ≤ δτ

}
/* Shrink V */

16 end
/* //// PHASE II //// Play all remaining rounds */

17 Select j∗ ∈ V T arbitrarily
18 for i = 1, . . . ,M do
19 if i ∈ Done then
20 continue /* skip if example already done */

21 else if i ∈ PoCX(V T) then
22 ŷi ← HedgePredict(Xi, ~w

t)
23 yi ← QueryLabel(i)
24 ~wt+1 ← HedgeUpdate(~wt, Xi, yi, η)
25 t← t+ 1 /* increment hedge update count */

26 else
27 ŷi ← OneHot(Xi,j∗) /* use default expert j∗ */

/* One-hot encoding required so that ŷi ∈ ∆K */

28 end

29 end

13



the correct multiclass label in all but a small fraction of rounds; adding this modification
alone is often referred to as label efficient online learning, e.g. Sculley [2007].

Modification 3 is perhaps the most unusual in the context of adversarial online learning,
where one assumes that the learner the sequence of examples and labels is chosen in an
adversarial fashion. But we would argue that this is actually necessary to achieve any kind
of non-trivial guarantee: without a small number of fast-forward rounds, the adversary
can simply postpone all informative examples to the end of the sequence, at which point
querying their labels would provide no benefit to the learner. Indeed we show that the
burn-in period can be extremely short, no more than roughly O(ζ logN log 1

ε ) where ζ is
the compactness of X, in order to obtain the same regret as Hedge with vastly fewer label
queries (roughly Õ(ζεM)).

Note that if we don’t allow a burn in phase, the lower bounds of Cesa-Bianchi et al. [2005,
Theorem 13] apply to the online active learning setting as well. This implies that if we don’t
allow a burn-in phase, then to guarantee the same

√
2εM lnN regret as Hedge, any algorithm

would require at least C·M
ε labels for some constant C. Since ε ≤ 1, C·M

ε = Ω(M). Thus,
without a burn-in period, any algorithm would require Ω(M) labels to get the same regret
guarantee as Hedge. Since Hedge also request O(M) labels, there would be no advantage in
using anything other than Hedge.

Appendix E. Algorithm And Performance Guarantee

Henceforth we will let b denote the index of the best expert, i.e. b = argminj∈[N ] L
M
j , and

that the number of mistakes satisfies LMb ≤ εM.

E.1 An Overview of ActiveHedge

We present a multiplicative style algorithm ActiveHedge, described precisely in Algorithm 2.
First let us give a high-level intuitive description of the procedure. ActiveHedge is divided into
two phases.

1. Phase I. This is the so-called burn-in period, where the algorithm can fast-forward
to future examples out of turn. On each such example, the algorithm must still make
a prediction, and can then query the label. This phase, while short, is done in small
epochs of length k = O(ζ log(N/ρ)), with a total of T = O(log(1/ε)) epochs. In a
given epoch τ the algorithm has a set of “candidate experts” V τ who have predicted
reasonably well thus far. To reduce the number of candidate experts, the algorithm
samples future rounds from the points of contention of V τ , makes a Hedge prediction on
each, and then queries the label. At the end of the epoch the algorithm discards any
experts in V τ whose average error was above a given threshold. On the next epoch we
shrink the threshold and consider the new set of candidate experts V τ+1, and sample
examples from the new set PoCX(V τ+1), etc.

2. Phase II. At the start of this phase the algorithm has a relatively small set of
candidate best experts, V T, that were selected in Phase I, and with high probability b
remains in V T and also every expert in V T agrees with b on all but O(εM) examples.
With the burn-in segment over the algorithm now plays the remaining examples, which
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make up the vast majority, in their original (adversarial) order; rounds played in Phase
I are skipped. Uses a very simple prediction strategy:

(a) if the example i is in PoCX(V T), we use Hedge to make a prediction on this
example, we query the label yi, and we do a Hedge update on the weights;

(b) if i /∈ PoCX(V T), we simply use an arbitrary expert j∗ ∈ V T and use Xi,j∗ as
our prediction.

The choice in condition (b) might seem unusual, but recall that all experts in V T

agree on examples i /∈ PoCX(V T). As long as we did not accidentally evict b from our
candidate experts in Phase I, the prediction Xi,j∗ will match that of Xi,b. Therefore
on these rounds we should suffer no regret.

E.2 Regret and Label Guarantees

We now present the regret and label complexity guarantee for ActiveHedge (Algorithm 2)

Theorem 8. Assume we have ε, ρ > 0, ~y, and ζ-compact matrix X such that 10εζ ≤ 1 and
for some b ∈ [N ] we have

∑
i∈[M ] 1[Xi,b 6=yi] ≤ εM . We set the ActiveHedge params

k :=
⌈
192ζ log

(
N
ρ log 1

10εζ

)⌉
, T :=

⌈
log 1

10εζ

⌉
and

η := log

(
1 +

√
2 lnN
εM

)
.

(3)

Then with probability at least 1− ρ:

1. the number of calls to QueryLabel is no more than

O
(
ζ log

(
N
ρ log 1

10εζ

)
log 1

10εζ + εζM
)

2. the length of Phase I is no more than Tk which, up to logarithmic terms, is Õ(ζ) rounds;
3. and finally we have that

RegActiveHedge ≤
√

2εM lnN + lnN.

Corollary 9. If the burn-in phase in ActiveHedge is limited to only B rounds, then we can
achieve the same regret as Hedge with label complexity Õ(B + M

2B/ζ
).

Theorem 8 states that ActiveHedge achieves the same regret guarantee as Hedge with high
probability while using considerably less labels. Hedge requires a label complexity of M ,
where as for a small ε and ζ, the label complexity of ActiveHedge is closer to Õ(ζεM).

The proof of Theorem 8 can be found in the Appendix H. The basic proof sketch is that
we divide the regret analysis and the label complexity analysis into the regret and label
complexity of the two phases.

In Phase I, using induction, we show that with high probability, the size of the candidate
experts set V τ shrinks in every round and the best expert is always present in V τ . After the
end of the Phase I, we have narrowed down to the set of candidate experts V T so that with
high probability |PoCX(V T)| = O(ζεM), using compactness, yet still b ∈ V T. In Phase II
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we only request the labels for the examples that are in PoCX(V T), thus the label complexity
of Phase II is bounded by O(εζM).

Bounding the regret of ActiveHedge is surprisingly easy, since for all examples played in
Phase I as well as for those played in Phase II from PoCX(V T), we appeal directly to Hedge

where we have an optimal bound. In many examples in Phase II, where i /∈ PoCX(V T), we
make a prediction that (with high probability) agrees with expert b and thus we suffer no
regret on these rounds.

It should be noted that even though the guarantees in Theorem 8 are dependent on
the knowledge of ε and ζ for initializing the parameters K and T of Algorithm 2, for our
proofs to follow through, we just an upper bound on the error rate ε of the best expert, and
similarly for the compactness ζ. In Theorem 10, we give a polynomial time algorithm to
approximate ζ; this can be used to initialize Algorithm 2.

Appendix F. Calculating compactness

Algorithm 3: Calculate compactness

1 Input: X ∈ [K]M×N /* Expert prediction matrix */

2 Init: ζ̃ ← 0
3 for all pairs j, j′ ∈ [N ] do
4 Vj,j′ ← {j, j′} /* Initialize Vj,j′ */

/* Add experts with distance from j ≤ dist(j, j′) */

5 Vj,j′ ← Vj,j′ ∪ {h|dist(h, j) ≤ dist(j, j′)}
/* Add experts with distance from j′ ≤ dist(j, j′) */

6 Vj,j′ ← Vj,j′ ∪ {h|dist(h, j′) ≤ dist(j, j′)}

7 ζj,j′ ←
|PoCX(Vj,j′ )|
Diam(Vj,j′ )

/* Update ζ̃ if a bigger ratio is found */

8 if ζj,j′ > ζ̃ then

9 ζ̃ ← ζj,j′

10 end

11 end

12 Return: ζ̃

The compactness of an expert prediction matrix is a combinatorial quantity which is
easy to compute for some concept classes, but in the worst case it might be hard to compute
exactly as we have a supremum over all subsets of experts. We present an algorithm that
gives a 3-approximation of the compactness in polynomial time.

For the remainder of this section and the appendix, for any V ⊂ [N ] let Diam(V ) :=
maxj,j′∈V |PoCX({j, j′})| and for any experts j, j′, let dist(j, j′) = |PoCX({j, j′})|.

Theorem 10. If the input matrix X to Algorithm 3 is ζ-compact, then Algorithm 3 returns
ζ̃ such that ζ

3 ≤ ζ̃ ≤ ζ in runtime O
(
N4M

)
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As stated earlier, for initializing Algorithm 2 for the results in Theorem 8, we just need
an upper bound on the ζ-compactness. Using Algorithm 3, we can obtain an estimate ζ̂ = 3ζ̃
such that ζ ≤ ζ̂ ≤ 3ζ.

Appendix G. Experiments

We provide preliminary experiments to compare ActiveHedge (Algorithm 2), with standard
Hedge and Cesa-Bianchi et al. [2005].
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Figure 1: Labels queried and the cumulative mistakes of ActiveHedge, Hedge, and Cesa-
Bianchi et al. [2005](CL05) in 3 different settings. Hedge queries label in every
round and is not shown in Labels queried plots to maintain readability.

In Figure 1: a), we uniformly sample linear classifiers as experts from a unit sphere
centred at origin. In Figure 1: b), we consider multi-dimensional thresholds as experts where
a point x ∈ Rd is labled 1 by an expert h ∈ Rd if xi ≥ hi∀i ∈ [d]. The experts are sampled
by sampling threshold uniformly between 0 and 1. In both case, ActiveHedge is able to
achieve similar accuracy to Hedge and beats Cesa-Bianchi et al. [2005] in both regret and
label complexity. ActiveHedge only requires less 5% of the labels and the burnin phase is
less than 2% of points.

We also consider the more adversarial case in Figure 1: c), where the expert prediction
matrix has an identity matrix like structure with ζ = O(N). Even in such this case,
ActiveHedge out performs the competition as even though the zeta compactness is high, it
also implies that by removing a expert from consideration, we also remove a lot of points we
are confused on. This allows us to quickly converge to the optimal expert. All experiments
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are repeated 100 times, with M = 10000 and N = 100 and d = 10. We use upper bounds
for θ and ε and other parameters are set optimally.

Appendix H. Proof of Theorem 8

To prove Theorem 8, we need a few preliminary lemmas.

Lemma 11. If a set of experts H1 is a subset of another set of experts H2, then PoCX(H1) ⊆
PoCX(H2)

Proof. If i ∈ PoCX(H1), then there exist two experts j, j′ ∈ H1, such that Xi,j 6= Xi,j′ .
Since H1 ⊆ H2, j, j′ ∈ H2, hence i ∈ PoCX(H2).

In each epoch τ of Phase I, we maintain a set of candidate experts V τ and a set
of candidate points PoCX(V τ ) we might query the labels for. For ease of notation, let
Sτ = PoCX(V τ ), Diam(V ) := maxj,j′∈V |PoCX({j, j′})|, and for any experts j, j′, let
dist(j, j′) = |PoCX({j, j′})|.

For the purpose of analysis, we partition the set V τ into two sets. Let

Bτ =
{
j ∈ V τ | dist(b, j) > M

2τ+1ζ

}
and also Bτ = V τ \Bτ .

Intuitively, Bτ are the experts which are far from the best expert and thus they make
more mistakes and we want to remove them. Using an inductive analysis, we will show that
in each epoch, with high probability, we can shrink the set of candidate experts, i.e for all τ ,
V τ+1 ⊆ Bτ and that we never remove the best expert b, i.e b ∈ V τ+1. For the rest of the

section, we set k = d192ζ log(Nρ log 1
10εζ )e, T = dlog 1

10εζ e and η = log(1 +
√

2 lnN
εM )

In the following lemma, we show that the size of the set of candidate points sampled
from in epoch τ is bounded.

Lemma 12. If V τ ⊆ Bτ−1, then |Sτ | ≤ M
2τ−1

Proof. By definition, Sτ = PoCX(V τ ). Since V τ ⊆ Bτ−1, using Lemma 11, Sτ ⊆
PoCX(Bτ−1). By definition, of Bτ−1, these experts are at a distance of at most M

2τ ζ from

the best expert, the diameter of this set is at most M
2τ−1ζ

. Using definition of ζ−compactness,

|PoCX(Bτ−1)| ≤ ζ · M
2τ−1ζ

= M
2τ−1 . Hence |Sτ | ≤ M

2τ−1 .

Now we show that in expectation, any expert in Bτ makes a large number of mistakes in
epoch τ which we will use to obtain a high probability bound.

Lemma 13. If b ∈ V τ then for any j in Bτ , if Zτj is the number of mistakes made in epoch

τ , then E
[
Zτj

]
≥ k
|Sτ |(

M
2τ+1ζ

− εM)
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Proof. Since j ∈ V τ and b ∈ V τ , By definition of Sτ = PoCX(V τ ), if for some i, Xi,j 6= Xi,b,
then i ∈ Sτ . b makes at-most εM mistakes, so in the worst case, j can disagree with b on
these points and be correct, but it has to be wrong on at least M

2τ+1ζ
− εM points in Sτ as it

disagrees with b on M
2τ+1ζ

points in Sτ .

We samples k points from Sτ . Let the examples samples in epoch τ be (I1, · · · , Ik),
then Zτj =

∑k
c=1 1[XIc,j 6=yIc ], =⇒ E

[
Zτj

]
=
∑k

c=1 E
[
1[XIc,j 6=yIc ]

]
=
∑k

c=1 P[XIc,j 6= yIc ] ≥∑k
c=1

1
Sτ ( M

2τ+1ζ
− εM) = k

Sτ ( M
2τ+1ζ

− εM)

Lemma 14. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1− ρ|Bτ |
N log 1

10εζ

, V τ+1 ⊆ Bτ

Proof. For a fixed j ∈ Bτ , by definition the number of mistakes, Zτj =
∑k

c=1 1[XIc,j 6=yIc ].

The probability that we keep j in V τ+1 is

P
[
Zτj
k ≤

1
2|Sτ |(

M
2τ+1ζ

− εM)
]

= P
[
Zτj
k −

1
|Sτ |(

M
2τ+1ζ

− εM) ≤ − 1
2|Sτ |(

M
2τ+1ζ

− εM)
]

≤P
[
Zτj
k −E

[
Zτj
k

]
≤ − 1

2|Sτ |(
M

2τ+1ζ
− εM)

]
≤ exp(− k

12
(

M
2τ+1ζ

− εM
2|Sτ |

)) (Chernoff Lower tail)

≤ exp(− k

12
(
1− 2τ+1ζε

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(− k

12
(

1

16ζ
)) (as τ < log2

1

10εζ
)

=
ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Thus, with probability at least 1− ρ

N log 1
10εζ

, Zτj > δτ , thus j /∈ V τ+1. A union bound over

j ∈ Bτ gives the proof.

So far in the inductive process we have shown that we shrink V τ to only keep experts
from Bτ . Now we show that with high probability, we never remove the best expert b.

Lemma 15. If Zτb is the number of mistakes made in epoch τ by the best expert b, then
E[Zτb ] ≤ kεM

Sτ

Proof. Since the best expert makes at-most εM mistakes, in the worst case all of these εM
examples are present in Sτ . Since we samples k points from St, Zτb =

∑k
c=1 1[XIc,b 6=yIc ]

=⇒ E[Zτb ] =
∑k

c=1 E
[
1[XIc,b 6=yIc ]

]
=
∑k

c=1 P[XIc,b 6= yIc ] ≤
∑k

c=1
εM
Sτ = kεM

Sτ

Lemma 16. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1− ρ

N log 1
10εζ

, b ∈ V τ+1
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Proof. The probability that b is not present in V τ+1 is

P
[
Zτb
k ≥

1
2|Sτ |(

M
2τ+1ζ

− εM)
]

= P
[
Zτb
k ≥

εM
2|Sτ |(

1
2τ+1εζ

− 1)
]

≤P
[
Zτb
k ≥ E

[
Zτb
k

]
1
2( 1

2τ+1εζ
− 1)

]
≤ exp(− kεM

6|Sτ |
1

2
(

1

2τ+1εζ
− 3)) (Chernoff upper tail)

≤ exp(−k
3

(

M
2τ+1ζ

− 3εM

2|Sτ |
))

≤ exp(−k
3

(
1− 2τ+13ζε

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(−k
3

(
1

16ζ
)) (as τ < log2

1

10εζ
)

=
ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Combining the two results, we can prove the inductive step.

Lemma 17. If b ∈ V τ and V τ ⊆ Bτ−1, then with probability at least 1− ρ

log 1
10εζ

, b ∈ V τ+1

and V τ+1 ⊆ Bτ

Proof. Union bound over Lemma 14 and 16.

We consider the base case and show that even in the first round, we shrink V 0 to get V 1

and that we don’t remove b.

Lemma 18. With prob. ≥ 1− ρ

log 1
10εζ

, V 1 ⊆ B0 and b ∈ V 1

Proof. δ0 = k
2 ( 1

2ζ − ε). For any fixed j ∈ B0, E
[
Z0
j

]
≥ k( 1

2ζ − ε) (13). Probability that

j ∈ V 1 is

P

[
Z0
j

k ≤
1
2( 1

2ζ − ε)
]

≤P

[
Z0
j

k −E

[
Z0
j

k

]
≤ −1

2( 1
2ζ − ε)

]
≤ exp(− k

12
(
1− 2ζε

4ζ
)) (Chernoff lower tail)

≤ exp(− k

12
(

1

8ζ
)) (as 1− 2ζε > 1/2)

≤ ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))
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Thus with probability at least 1− ρ

N log 1
10εζ

, j /∈ V 1

For b, E
[
Z0
b

]
≤ k

ε . Probability that b /∈ V 1

P
[
Z0
b
k ≥

1
2( 1

2ζ − ε)
]

≤P
[
Z0
b
k −E

[
Z0
b
k

]
≥ 1

2( 1
2ζ − 3ε)

]
≤ exp(−k

3
(
1− 6ζε

4ζ
)) (Chernoff lower tail)

≤ exp(−k
3

(
1

8ζ
)) (as 1− 6ζε > 1/2)

≤ ρ

N log 1
10εζ

(as k = 192ζ log(
N

ρ
log

1

10εζ
))

Thus with probability at least 1− ρ

N log 1
10εζ

, b ∈ V 1

Union bound over j ∈ B0 and over b proves the statement of the lemma.

Now that we have proved the inductive step and the base case, we can use these results
to state the result for Phase I.

Lemma 19. In ActiveHedge (algorithm 2), when Phase I ends after T = 1
10εζ epochs, with

probability at least 1− ρ, b ∈ V T and for all j ∈ V T , dist(b, j) ≤ 10εM

Proof. Using induction and union bound over τ = 1, · · · ,T for Lemmas 18 and 17, we get

that with probability at least 1− ρ, b ∈ V T, and V T ∈ BT−1 ⊆
{
j ∈ [M ] | dist(b, j) ≤ M

2Tζ

}
,

M
2Tζ

= M

2
log( 1

10εζ
)
ζ

= 10εM

Now that we have shown that at the end of Phase I, i.e the burn-in period, we have
considerably shrunk down our set of candidate experts and thus confusing points. We can
prove Theorem 8.

Since, ActiveHedge (Algorithm 2) is divided into two phases, a portion of the regret is
incurred in each phase. The examples we predict and request labels for in Phase I are
denoted by the set Done at the end of Phase I. So the portion of regret incurred in
Phase I be RI =

∑
i∈Done(`(ŷi, yi) − `(Xi,b, yi)). For Phase II, the points are either in

ST = PoCX(V T) where we make hedge updates and request for labels, or they are not
in PoCX(V T), and we use an arbitrary expert j∗ ∈ V T to make predictions. Let the
regret on the points in PoCX(V T), i.e. the points of contention for V T in phase II be
Rcon =

∑
i∈([M ]\Done)∩ST(`(ŷi, yi)− `(Xi,b, yi)) and the total regret for the points in Phase

II not in PoCX(V T) be Ragree =
∑

i∈([M ]\Done)\ST(`(ŷi, yi)− `(Xi,b, yi))

Proof of Theorem 8. First, let’s show the regret bound,

Regret Bound:

Since RegActiveHedge = RI + Rcon + Ragree, let’s consider the terms individually.
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• RI and Rcon: We are using Hedge (Algorithm 1) to make predictions and make updates.
If we re-sample a point for which we have already made a prediction, we do not incur loss
on it again. We know that LMb ≤ εM , hence L∗ = εM is an upper bound on the loss of the

best expert in RI + Rcon as well. Setting η = log
(

1 +
√

2 lnN
εM

)
, we can directly use the

regret bound of Theorem 5, to show that

RI + Rcon =
∑

i∈Done∪ST

(`(ŷi, yi)− `(Xi,b, yi))

≤
∑

i∈Done∪ST

`(ŷi, yi)− min
j∈[N ]

∑
i∈Done∪ST

`(Xi,j , yi)

≤
√

2εM lnN + lnN

• Ragree: Using Lemma 19, with probability at least 1− ρ, the best expert b ∈ V T. Since
ST = PoCX(V T), all the experts present in V T agree on [M ]\ST. Since ([M ]\Done)\ST ⊆
M \ ST all the experts in V T agree on all examples in ([M ] \ Done) \ ST. Thus for all
i ∈ ([M ] \Done) \ ST, for any j ∈ V T, Xi,j = Xi,b. This is also true for j∗ selected before
the start of Phase II, We get

Ragree =
∑

i∈([M ]\Done)\ST

(`(ŷi, yi)− `(Xi,b, yi))

=
∑

i∈([M ]\Done)\ST

`(Xi,j∗ , yi))− `(Xi,b, yi))

=
∑

i∈([M ]\Done)\ST

`(Xi,b, yi))− `(Xi,b, yi)) = 0

Thus with probability at least 1− ρ,

RegActiveHedge ≤
√

2εM lnN + lnN

Label complexity:

Let’s consider the number of labels requested in each phase.

• Phase I:

Since number of epochs T = log 1
10εζ and in each epoch we request the label for

k = 192ζ log(Nρ log 1
10εζ ) examples, the number of labels requested is Phase I is at most

192ζ log(Nρ log 1
10εζ ) log 1

10εζ . This is also the size of the burn-in period.

• Phase II:

Using Lemma 19, with probability at least 1− ρ, for every j ∈ V T , dist(b, j) ≤ 10εM ,
thus Diam(V T) ≤ 20εM . Using the definition of ζ-compactness, |ST| = |PoCX(V T)| ≤
ζDiam(V T) ≤ 20εζM . Since we only request labels for the examples in PoCX(V T), the
number of labels requested in Phase II is bounded by |PoCX(V T)|, which is less than or
equal to 20εζM

Hence with probability at least 1− ρ, the number of labels requested in Phase II is at
most 20εζM
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Combining the label complexity for each of the phase, with probability at least 1− ρ,
the number of labels requested by Algorithm 2 is at most

O

(
ζ log

(
N

ρ
log

1

10εζ

)
log

1

10εζ
+ εζM

)
Note that the regret bound and the label complexity result hold simultaneously with

probability at least 1− ρ.

Appendix I. Proof of theorem 6

Proof of Theorem 6. If for a set of experts V , if |V | ≤ 2 then |PoCX(V )| = Diam(v).
Assume V has all unique experts. For any set V ∈ [N ], |PoCX(V )| ≤M , thus ζ ≤M .

For any V , we show that |PoCX(V )| ≤ |V |Diam(V ). Let show this by induction over
the size of V . For |V | ≤ 2, the base cases are direct. Assume that it is true for some V ,
i.e. |PoCX(V )| ≤ |V |Diam(V ). If we add one more expert h to this set, then two cases are
possible, a) Diam(V + h) = Diam(V ) or b) Diam(V + h) > Diam(V ).

a) Diam(V + h) = Diam(V )
We can show that |PoCX(V + h)| ≤ |PoCX(V )| + Diam(V ). If this is not true, i.e.

if |PoCX(V + h)| > |PoCX(V )| + Diam(V ) then h disagrees with all j ∈ V on at least
Diam(V ) + 1 points which are not in PoCX(V ). Thus PoCX(h, j) ≥ Diam(V ) + 1 >
Diam(V ) which would imply Diam(V + h) > Diam(V ) which is a contradiction. Thus
|PoCX(V + h)| ≤ |V + h|Diam(V + h)

b) Diam(V + h) > Diam(V )
The extra points added in PoCX(V ) by adding h is bounded by Diam(V + h). We get

|PoCX(V + h)| ≤ |PoCX(V )|+ Diam(V + h)

≤ |V |Diam(V ) + Diam(V + h)

≤ |V + h|Diam(V + h)

This implies for any V , |PoCX(V )| ≤ Diam(V )|V |. Since |V | ≤ N , ζ ≤ N .

Appendix J. Proof of Theorem 10

Proof. Consider the subset

V ∗ = argmax
V,Diam(V )>0

|PoCX(V )|
Diam(V )

Let h1, h2 ∈ V ∗ be the experts such that dist(h1, h2) = Diam(V ∗). For any h′ ∈ V ∗,
dist(h′, h1) ≤ Diam(V ) and dist(h′, h2) ≤ Diam(V ), hence h′ ∈ Vh1,h2 , i.e V ∗ ⊆ Vh1,h2 in
Algorithm 3. This gives us that |PoCX(Vh1,h2)| ≥ |PoCX(V ∗)|

Since we include all experts that are at a distance of at most dist(h1, h2) from h1 or h2,
the diameter Diam(Vh1,h2) ≤ 3dist(h1, h2) = 3Diam(V ∗)
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Using these two facts, we get
|PoCX(Vh1,h2 )|
Diam(Vh1,h2 )

≥ |PoCX(V ∗)|
3Diam(V ∗)

= ζ
3

We consider all pairs of experts in Algorithm 3, hence the ζ̃ returned satisfies

ζ̃ ≥
|PoCX(Vh1,h2)|
Diam(Vh1,h2)

≥ ζ

3

For the upper bound, since the ζ̃ returned is
|PoCX(Vj,j′ )|
Diam(Vj,j′ )

for some j, j′, it is obvious

that

ζ̃ ≤ max
V,Diam(V )>0

|PoCX(V )|
Diam(V )

= ζ

The run time comes from the fact that we consider all O(N2) pairs of experts and for any
subset V ⊆ [N ], |PoCX(V )| can be computed in O(|V |M) and Diam(V ) can be computed
in O(|V |2M)

J.1 Proof of Corollary 9

In ActiveHedge (Algorithm 2), in the results of Theorem 8, the learner is allowed to set the
length of the burn-in period itself, i.e. it can decide how many examples that we actually
need to actively select and move ahead in the queue. The burn-in phase in Theorem 8 is set
in such a way that it minimizes the overall label complexity of the the algorithm required to
get the same regret bound as Hedge.

If instead of giving the learner the freedom to set its own length of Phase I, if the learner
is only given a budget B of number of examples it can move ahead in the queue, then by
setting k = Õ(ζ) and TasB/k, the size of the burn-in phase becomes B. At the end of
Phase I, in this case |PoCX(V T)| at end of Phase I is Õ( M

2B/ζ
) allowing the learner to select

the size of it’s own burn in (Phase I) (as done in Theorem 8), if the learner is given a budget
B of

If we were to ignore the mistakes in the learning part, then using an off-the-shelf active
learning algorithm (eg Balcan et al. [2006]) to solve this problem, i) We would need bounded
VC dimension d, and ii) we would require a Õ(ζd log 1

ε + εζMd)-long burn-in to ensure an

excess error rate of the same order as the O(
√
εM) regret on the remainder of the examples.

This brings out a key benefit of our formulation: in pool-based batch active learning,
there is no way to separate the number of targeted queries (i.e. burn-in) and the label
complexity ; in our online setting the former can be dramatically smaller than the latter.

Appendix K. Auxiliary lemmas

Lemma 20 (Chernoff Bounds). Let X1, . . . , Xn be independent random variables, and Xi

lies in the interval [0, 1]. Define X =
∑n

i=1Xi and denote E[X] = µ. For any δ ∈ [0, 1], we
have Chernoff lower tail:

Pr{X < (1− δ)µ} ≤ exp(−µδ
2

3
)
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and we have Chernoff upper tail:

Pr{X > (1 + δ)µ} ≤

{
exp(−µδ

3 ) for δ > 1

exp(−µδ2

3 ) for δ ∈ [0, 1]

The proofs for the inequalities in Lemma 20 can be found in Theorem 4.4 and Theorem
4.5 of Mitzenmacher and Upfal [2017]
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