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Abstract

We study the problem of adaptively identifying good patient subpopulations for a given
treatment during a confirmatory clinical trial. This type of adaptive clinical trial, often
referred to as adaptive enrichment design, has been thoroughly studied in biostatistics with
a focus on a limited number of subgroups (typically two) which make up (sub)populations,
and a small number of interim analysis points. In this paper, we aim to relax classical re-
strictions on such designs and investigate how to incorporate ideas from the recent machine
learning literature on adaptive and online experimentation to make trials more flexible and
efficient. We find that the unique characteristics of the subpopulation selection problem –
most importantly that (i) one is usually interested in finding good subpopulations (and not
necessarily only the single best subgroup) given a limited budget and that (ii) effectiveness
only has to be demonstrated across the subpopulation on average – give rise to interesting
challenges and new desiderata when designing algorithmic solutions. Building on these
findings, we propose AdaGGI and AdaGCPI, two meta-algorithms for subpopulation con-
struction, which focus on identifying good subgroups and good composite subpopulations,
respectively, and empirically investigate their (dis)advantages.

1. Introduction

The existence of treatment effect heterogeneity across subgroups of patients poses a chal-
lenge to both the success of clinical trials testing the effectiveness of treatments and the
quality of treatment decisions in clinical practice when prescribing a drug that has been
proven to be effective only for the average population [1–3]. Examples for such hetero-
geneity are ubiquituous in practice and include differences in treatment responses in cancer
patients with specific mutations [4], pyschiatric patients with different forms of depres-
sion [5] and stroke patients [6]. Motivated by this, the problem of discovering treatment
effect heterogeneity using logged experimental or observational data has received much
attention in the recent machine learning (ML) literature [7], resulting in the adaptation
of many supervised ML methods for post-hoc effect estimation [8–12]. The active coun-
terpart to this problem, i.e. designing experiments (clinical trials) to actively discover
subpopulations that respond well to a treatment, has received only limited attention in
the ML literature thus far. The biostatistics literature on adaptive clinical trials, on
the other hand, has proposed and extensively studied the use of so-called adaptive en-
richment designs, which allow to change both enrolment criteria and the null hypothesis
to be tested in a clinical trial based on interim data (see e.g. [1, 2] for an overview).
In such designs, the degree of adaptivity and flexibility is usually quite limited as the
ability to adapt features is commonly restricted to a few pre-specified interim analysis
points and the number of subgroups is often very small (most often set to exactly two).
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In this paper, we consider a new approach to designing such adaptive enrichment trials
and investigate whether and how it is possible to make them more flexible and efficient by
adapting tools that were originally developed to solve pure exploration multi-armed bandits
[13] and other adaptive experiments problems in the recent ML literature. We find that
the problem of constructing subpopulations from subgroups in which a treatment has any
positive effect most closely resembles the good arm identification (or thresholding bandit)
problem studied in e.g. [14–19]. Nonetheless, we argue that there are additional unique char-
acteristics of our problem that may change how algorithmic solutions should be designed:
(i) clinical trials operate under constraints on both budget and confidence, (ii) budget is
very limited compared to e.g. online advertising settings, (iii) effectiveness only has to be
demonstrated across a subpopulation on average and (iv) required control of false discov-
ery and power is stricter and more nuanced. Building on these insights, we propose two
meta-algorithms – AdaGGI, which constructs a subpopulation by successively discovering
individual good subgroups, and and AdaGCPI, which proceeds by successively eliminating
subgroups from the full population until the average treatment effect across the leftover
composite subpopulation is satisfactory – and investigate their (dis)advantages empirically.

2. Problem Setup

Objective. We aim to run a trial to establish efficacy of a novel drug (T) relative
to an established control (C) in patient population Ω0, which consists of K disjoint and
prespecified subgroups Ω1, . . . ,ΩK where Ω0 = ∪j≤KΩj , across which efficacy is expected
to differ, e.g. due to known biological pathways. Let θj denote the treatment’s effect in
subgroup j, and let πj denote the prevalence of Ωj in Ω0. To ensure success of the trial, we
aim to construct a composite subpopulation composed of S ⊆ K = {1, . . . ,K}, in which the
treatment is effective; i.e. find a subpopulation S for which θS =

∑
i∈S

πi∑
j∈S πj

θi > 0 (if any

exists); we will refer to such subpopulations as good. Generally, to maximise patient benefit,
we would like to identify the largest subpopulations in which the treatment is effective –
i.e. if θi>θj>0, we prefer Sij = {i, j} over Si = {i} even though θSij < θSi .

Null hypotheses and problem types. We consider a null scenario of no treatment
effect, i.e. θ0 = 0, giving rise to two types of problems and associated null hypotheses. First,
we consider constructing subpopulations by identifying individual good subgroups, i.e. find
subgroups for which we can reject the null hypothesis H0j : θj = 0 for the alternative
Haj : θj > 0. We will refer to this problem as the Good subGroup Identification (GGI)
problem. Often, however, trials are not powered to detect effects in subgroups separately;
instead, the focus is set on demonstrating average effectiveness across a subpopulation as
in [3]. Second, we therefore consider identifying a composite subpopulation S for which we
can only prove that the treatment is effective on average, i.e. reject H0S : θS = 0 for the
alternativeHaS : θS > 0. We will refer to this problem as theGood Composite subPopulation
Identification (GCPI) problem. Note that the underlying requirement is strictly weaker
than in the GGI problem as rejecting H0S does not require rejecting H0j for every j ∈ S.

Error control. Regulators usually require control of the probability of Type 1 errors
[20] as captured by the familywise error rate (FWER), which is defined for an algorithm A
across problem instances P as FWER(A;P) = supρ∈P Pρ(A rejects a true null hypothesis).
FWER-control at level α ∈ (0, 1) requires that FWER(A;P) ≤ α. Further, clinical trial
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designs are usually optimized for power ; i.e. the ability to avoid Type 2 error (the failure
to detect an effect when it does exist). Because the sample size needed to differentiate
θ0=0 from θj>0 scales as θ−2

j , clinical trials often introduce an additional parameter, the
minimum clinically relevant difference θmin > θ0 = 0 which a trial should be powered to
detect [21]. That is, we aim to ensure that P(H0S is not rejected |θS =θmin) ≤ β for some
β∈(0, 1), where 1−β is usually referred to as the power of the trial.

Environment, data structure and estimators. We assume the stylized setting of
an unlimited stream of patients available for recruitment from each subgroup, where out-
comes are revealed immediately; we discuss possible extensions to more realistic scenarios
in Appendix B. That is, at every time step t ∈ {1, . . . , B}, where 2B is the total patient
budget, a subgroup Jt ∈ K is selected to enroll two patients from, which are then randomly
assigned to one of each treatment and control arm. This gives rise to control and treated
outcome Y C

t , Y T
t ∈ Y, which could be continuous (Y = R) or binary (Y = {0, 1}), and pro-

duces a dataset of tuples Dt = {(Jt′ , Y C
t′ , Y

T
t′ }t′≤t. We denote by Ni(t) =

∑
t′≤t 1{Jt′ = i}

and NS(t) =
∑

t′≤t 1{Jt′ ∈ S} the number of patient pairs enrolled from a subgroup or a
subpopulation by time t, respectively. Due to randomization and under standard assump-
tions such as no interference between patients, we have that θj = E[Y T

t −Y C
t |St = j], so that

we can estimate treatment effects simply as θ̂j,Nj(t) = Nj(t)
−1∑t

t′=1 1{Jt′ = j}(Y T
t′ − Y C

t′ ).
Whenever all subgroups i in S were drawn according to their relative proportion πi/

∑
j∈S πj ,

we can also estimate θ̂S,NS(t)=NS(t)
−1∑t

t′=1 1{Jt′ ∈ S}(Y T
t′ − Y C

t′ ). Finally, as [22] we as-
sume access to always valid confidence intervals ϕ(t, δ) which satisfy for any δ∈ (0, 1) that
P(∩∞

t=1{|θ̂S,t − θS | ≤ ϕ(t, δ)})≥1−δ, and instantiate them using Thm. 8 of [23].

3. The good subgroup identification problem

Related work. We begin by studying the GGI problem as it appears more closely re-
lated to problems studied in the recent ML literature: If θj was the mean of a bandit
arm (instead of a subgroup treatment effect), GGI resembles problems that have been
studied in the pure exploration literature as thresholding bandit [14–17], good arm iden-
tification (GAI) [18, 19] and hypothesis testing using bandits [22, 24].1 In addition to
the difference in target of interest, a major difference between existing formulations and
our problem are the underlying constraints: Unlike our problem, classical pure explo-
ration problems usually operate either under a fixed budget or a fixed confidence con-
straint: For example, in [14]’s thresholding bandit, which aims to classify all arms as
above or below a threshold, the fixed confidence setting requires all classifications (both
above and below the threshold) to be correct with fixed confidence δ (similarly in [18,
19, 22, 24]), while the fixed budget setting aims for the highest confidence in all classifi-
cations given a certain budget. Finally, [29] is the only ML work we are aware of that
studies good subgroup discovery in a clinical trial context – they propose a Bayesian MDP-
based design optimizing patient recruitment given a fixed budget but do not control Type
I error rate of discoveries, which conceptually resembles a fixed-budget-only GAI setup.

Unique characteristics & design considerations. Discovery in a clinical trial
is subject to both budget and FWER constraints – combining the fixed confidence and

1. More typical exploration problems, such as best/top-k arm identification (e.g. [25–27]) are less relevant
as our primary interest lies no in finding the group with the best response to a drug [28]
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fixed budget setting that are usually considered separately. Further, the available budget
is usually very limited relative to e.g. online advertising applications: confirmatory Phase
3 Trials usually enrol between 300-3000 patients [30]. Because it is not necessary to make
a judgement about all subgroups immediately to meet our objective, it is thus advisable to
focus on promising groups2. In particular, we may want to focus on null hypotheses closest
to rejection, recognizing that for a successful trial, rejecting one null hypothesis at level α
is better than having two hypotheses only close to rejection upon termination. Finally, the
distinction (or asymetry) between both confidence α and power 1 − β, and null threshold
θ0 and minimum relevant effect θmin is usually not found in e.g. GAI problems.

3.1 Good subgroup identification using AdaGGI

We propose AdaGGI, an Adaptive Good subGroup Identification meta-algorithm. Its
structure is inspired by fixed confidence GAI algorithms [18, 19, 22], but incorporates bud-
get restrictions and other modifications: Until budget depletion, each iteration (i) uses sam-
pling (exploration) rule E to choose a subgroup Jt from At, the active set of unclassified sub-
groups, to enrol a patient pair from, (ii) screens for new good subgroups using α-dependent
identification rule I and (iii) removes any groups demonstrating no clinical benefit using
(β, θmin)-dependent removal ruleR. We discuss details below, pseudocode is in Appendix A.

Identification rule: Ensuring FWER control. Our identification rule needs to
ensure that FWERGGI ≤ α, adjusting for multiple hypothesis testing. We rely on a simple
Bonferroni correction here3 and use IK

BF (Dt, α) = {j ∈ K : θ̂j,Nj(t) − ϕ(Nj(t),
α
K ) > 0},

which controls FWER as
∑

j∈K:θj=0 P(∩∞
t=1{θ̂j,t − θj > ϕ(t, α

K )} ≤ K α
K .

Sampling rule E: Finding good arms fast. The established sampling rule in
the GAI literature [18, 19, 22] appears to be to use an upper-confidence bound (UCB)
– which will not necessarily sample a subgroup whose null is closest to being rejected4.
Instead, we thus propose to sample according to the best lower confidence bound (LCB),
which corresponds to selecting groups that appear most promising for early identification:
ELCB(Dt−1,At−1) = argmaxj∈At−1 θ̂j,Nj(t−1) − ϕ(Nj(t− 1), α).

Removal criterion: Focusing on clinically relevant effects. Finally, we employ
removal criterion Rfut(Dt, θmin, β) = {j ∈ K : θ̂j,Nj(t) + ϕ(Nj(t), β) < θmin}. This ensures
that subgroups can be removed early for futility while power to detect a clinically relevant
effect is preserved. Note that this allows requiring less evidence for discarding a “bad” sub-
group than for accepting a good one. This differs from the recent GAI literature, where arms
are either discarded and accepted using the same rule [18] or not discarded at all [19, 22].

4. The good composite subpopulation identification problem

Related work. Most work on adaptive enrichment designs considers a simplified version of
the GCPI problem, where K = {1, 2}. Initially patients from both subgroups are enrolled;
at a single [2, 32, 33] or multiple [6, 34] prespecified interim analysis points it is then possible

2. This is contrary to thresholding bandits [14–16] which focus explicitly on the hardest to find arms.
3. To be less conservative in settings where many null hypotheses are false, one could use more sophisticated

strategies e.g. [22]’s adapted Benjamini-Hochberg procedure, or α-investing approaches [31].
4. As confidence intervals shrink in t, we suspect that UCB-sampling encourages switching between groups

when multiple good groups are similar, possibly leading to no null rejections before budget depletes.
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to discontinue either subgroup. [3]’s GSDS does not restrict K but fixes subgroups included
in subpopulation S at the first interim analysis; subsequently only early termination of the
entire subpopulation based on normal error-spending boundaries is allowed. From a bandit
perspective, the GCPI problem can be interpreted as a generic combinatorial bandit problem
[35, 36], where each subpopulation is a super-arm; however, to the best of our knowledge
no existing solutions exploit the idea of sharing statistical strength across arms by pooling
samples and solutions derived from e.g. [35, 36] would therefore resemble our GGI solution.

Unique characteristics & design considerations. Relative to the GGI problem,
GCPI has two interesting characteristics: First, the weaker requirement of establishing a
positive average effect should make it possible to share statistical strength across subgroups.
While the need to identify individual groups fast led us to consider non-uniform sampling
schemes for GGI, this possibility thus makes successive elimination algorithms [25, 37],
which uniformly sample all subgroups that have not yet been eliminated for futility, a more
attractive alternative: intuitively speaking, if all subgroups had exactly the same (positive)
effect, uniformly allocating samples would lead to rejection of the full population null hy-
pothesis using the same expected number of samples that the GGI problem would need to
identify a a single group5. Second, while GGI considers K separate subgroups/hypotheses,
the GCPI problem is combinatorial as there are 2K possible subpopulations (and null hy-
potheses). Also here, successive elimination lends itself as a solution as it substantially
limits the number of subpopulations (and associated null hypotheses) to be considered – if
subgroups are irreversibly eliminated, at mostK (nested) subpopulations will be considered.

4.1 Good composite subpopulation identification using AdaGCPI

We propose AdaGCPI, an Adaptive Good Composite subPopulation Identification meta-
algorithm. Until budget is depleted, the algorithm proceeds by uniformly sampling all
subgroups in the active set At by enroling two patients from each6. We then apply an
identification criterion I that tests for evidence of an average positive subpopulation effect
across At. Upon success, the algorithm terminates; when evidence is not statistically sig-
nificant, removal criterion R checks whether groups should be eliminated before enrolment
continues. We discuss identification and removal rule below, pseudo-code is in Appendix A.

Identification rule: Ensuring (approximate) FWER control. A full Bonferroni-
style adjustment would require the significance level to be adjusted by 2K , the number of
hypotheses that could potentially be tested. As we only select at most K hypotheses for
testing in practice, this adjustment is clearly overly conservative. If the K hypothesis tests
were independent7, we could use IK

BF (Dt, α) = 1{θ̂At,NAt (t)
− ϕ(NAt(t),

α
K ) > 0}. Clearly,

5. Note that such potential efficiency of successive elimination in the GCPI problem stands in contrast to
what has been observed for the best arm identification problem, where UCB-style algorithms empirically
dominate successive elimination algorithms which are too wasteful in that context (see e.g. [27]).

6. For ease of presentation we assume equal sized subgroups (πj = 1
K
) here but note that this could easily

be avoided by sampling (with replacement) K indices from At according to prevalence πj/
∑

i∈At
πi.

7. To gain intuition, let TS denote whether hypothesisHS is selected for testing at any time, and RS whether
it is rejected. Using an argument adapted from the discussion of discard-spending in [31], we note that
FWER ≤ E[

∑
S:θS≤0 TSRS ] by Markov’s inequality. Further, E[

∑
S:θS≤0 TSRS ] =

∑
S:θS≤0 E[RS |TS =

1]P (TS = 1). If the data used to determine hypothesis selection TS was independent of that used to
determine rejection RS , we would have that E[RS |TS = 1] = E[RS ] = P(∩∞

t=1{θ̂S − θS ≥ ϕ(t, α
K
)}) ≤ α

K

so that E[
∑

S:θS≤0 TSRS ] ≤ α
K
E[
∑

S:θS≤0 TS ] ≤ α
K
K as at most K hypotheses will be tested.
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they are not independent as datasets used for testing overlap, so identification using IK
BF

will not lead to exact FWER control. However, between selection and testing of a new
hypothesis, at least |At| new samples accrue (and often many more), so any dependence
decreases due to the online data collection. In experiments (Appendix D), we observe that
FWER-α seems to hold empirically when using IK

BF , so we rely on it in our implementations.

Removal rule: Using subgroup and subpopulation signals. As in AdaGGI, we
remove subgroups for futility if their individual effects are insufficient usingRfut(Dt, θmin, β).
In addition, we exploit full subpopulation information by realising that the event Ft =
1{θ̂At,NAt (t)

+ ϕ(NAt(t), β) < θmin} provides evidence that at least one subgroup has no
sufficient treatment effect. Thus, if Ft is true, we remove the empirically worst subgroup
through the rule Rpop-fut(Dt,At, θmin, β) = argminj∈At θ̂j,Nj(t) − ϕ(Nj(t), α) if Ft else ∅.

5. Experiments: Clinical Trial Simulation adapted from [3]

Table 1: Results of 1000 simulated trials.

Scenario: θ Method %Succ. |S|
tstop

B

t1g
B

t1b
B

A:[0, 0, 0] GSDS 2.6 0.04 0.74 0.5
AdaGGI 0 0 0.64 0.24
AdaGCPI 0 0 0.49 0.23

B:[−0.2, 0, 0.2] GSDS 99.3 1.19 0.64 0.64 0.5
AdaGGI 97.9 0.98 0.63 0.46 0.38
AdaGCPI 95 1.04 0.61 0.61 0.15

C:[0, 0.1, 0.3] GSDS 100 2.03 0.50 0.50 0.50
AdaGGI 99 1.00 0.55 0.29 0.59
AdaGCPI 89 2.28 0.89 0.55 0.44

D:[0.2, 0.2, 0.2] GSDS 100 2.98 0.50 0.5
AdaGGI 99.8 2.27 0.94 0.36
AdaGCPI 99.8 2.99 0.37 0.37

E:[0.3, 0.3, 0.3] GSDS 100 3 0.5 0.5
AdaGGI 100 3 0.49 0.16
AdaGCPI 100 3 0.17 0.17

We compare AdaGCPI and AdaGGI to [3]‘s
GSDS with one interim analysis (as in [3]).
We consider 3 equal sized subgroups with θ =
[θ1, θ2, θ3] and as [3] let θmin = 0.2, α = 0.025,
β = 0.1 and B = 800. [3]’s setup considers bi-
nary outcomes (Y C

j ∼ B(µ0,j), Y
T
j ∼ B(µ0,j +

θj)); in Appendix D we also consider normal
outcomes. GSDS and the simulation setup are
described further in Appendix C. The original
experiment in [3] has θ ≈ [0, .05, .1], i.e. all
θj < θmin, so that no design is powered to de-
tect any effect8. To gain more interesting in-
sights into relative performance, we instead vary θ in Table 1. In addition to trial success
and |S|, we examine stopping time of the algorithm (i.e. tstop

def
= t : At = ∅ ∨ t = B), as well

as tid,1g (tid,1b ), the time taken to identify the 1st good group (discard the 1st bad group).

We observe that GSDS generally has more power to detect smaller effects. This is not
surprising because (i) GSDS does not automatically discard groups below θmin and (ii)
the used anytime confidence intervals in both our algorithms are overly conservative (see
Appendix D) – especially when compared to the exact normal boundaries used in GSDS.
Nonetheless, compared to our fully adaptive approaches, GSDS suffers from its rigidity
(i.e. being restricted to pre-specified analysis times). In Scenarios B-D, it is apparent that
both AdaGGI and AdaGCPI can make judgements about a single subgroup much before
GSDS’ first interim analysis. Comparing the two, AdaGGI generally finds the first good
group faster, while AdaGCPI discards the first bad subgroup faster and is able to stop
much faster as it can exploit shared statistical strength both in accepting and discarding
subgroups. In Scenarios A&E, where outcomes are extreme, the advantage of the flexibility
of AdaGCPI relative to GSDS is most obvious, as, due to the lack of restriction on analysis
times, AdaGCPI can terminate much earlier than GSDS’s first scheduled interim analysis.

8. Indeed we find that across 1000 replications GSDS declares the trial successful 67% of the time, while
AdaGGI and AdaGCPI declare success only in 13% and 7% – a direct consequence of our designs
discarding effects below the minumum clinically relevant θmin.
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multi-armed bandits. In COLT, pages 41–53. Citeseer, 2010.

[26] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identi-
fication: A unified approach to fixed budget and fixed confidence. Advances in Neural
Information Processing Systems, 25, 2012.

8



[27] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb: An
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Appendix A. Pseudo-code and illustrations of Algorithms

A.1 Pseudo-code

Algorithm 1 AdaGGI

Require: α, β∈ (0, 1), θmin>0, budget B, init. sam-
ples n0. Sampl. rule E , ID. rule I, removal rule R

1: Initialise: AKn0 = K; ∀j ∈ K, sample n0 times &
set DKn0 = {(St′ , Y

C
t′ , Y

T
t′ }t′≤Kn0

2: for t ∈ {Kn0 + 1, B} do
3: Choose subgroup Jt = E(Dt−1,At−1) to enrol,

set Dt = Dt−1 ∪ (St, Y
C
t , Y T

t )
4: Identify good subgroups St = St−1 ∪ I(Dt, α),

set At = K \ St

5: Remove bad groups: At=K \ R(Dt, θmin, β)
6: If At = ∅, Output: False, ∅
7: Output: True if |SB | > 0, SB

Algorithm 2 AdaGCPI

Require: α, β ∈ (0, 1), θmin > 0, budget B. ID. rule I,
removal rule R

1: Initialise: A1 = K, set D0 = ∅, t = 0
2: while t < B do
3: Sample each j ∈ At, obtain D′ =

{(j, Y C
t+j , Y

T
t+j}j∈At , set t+ = |At|, update

Dt.
4: Test for positive effect in current population

I(Dt, α): if detected, Output: True, At

5: Remove bad groups: At = K \R(Dt, θmin, β)
6: If At = ∅, Output: False, ∅
7: Output: False,∅

A.2 Illustration of the two algorithms

Figure 1: Overview of the
two considered problem formu-
lations and proposed solutions.
(A) The adaptive good sub-
group identification (AdaGGI)
algorithm finds individual good
subgroups by successively dis-
covering the next good group.
(B) The adaptive good compos-
ite subpopulation (AdaGCPI)
algorithm finds a composite
subpopulation by successively
removing the worst subgroup
until a positive average treat-
ment effect is discovered.

Appendix B. Possible extensions to more realistic settings

We believe that this paper opens up many interesting avenues for future research; a par-
ticularly interesting natural next steps lies in extending the setting under consideration to
incorporate more realistic problem features. Multiple modifications to the data generating
process might lead to a more realistic setting and interesting research problems at the same
time:

• Considering batched (grouped) observations: In practice, it might be oper-
ationally difficult to collect and reveal individual patient responses as they come in;
instead it might be more easily feasible to release patient responses in batches or groups
as is commonly done in group sequential designs [38]. AdaGCPI could directly ac-
commodate this: instead of recruiting |At| patient pairs uniformly and evaluating the
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subpopulation immediately, a larger batch of patients could be recruited (uniformly
from the active set) before using the updated dataset for testing the hypothesis. Do-
ing the same for AdaGGI may not be optimal, as – because the original sampling
strategies are deterministic – one would then have to recruit an entire batch of pa-
tients from the same subgroup, which may explore insufficiently. Instead, sampling
strategies that resemble Thompson sampling [39, 40] – i.e. strategies that are random
and recruit patients proportionally to the probability of their subgroup being good –
may be more suited to this scenario.

• Allowing delayed feedback: Another difficulty likely to be encountered in prac-
tice, particularly when considering time-to-event data or other long term outcomes,
might be that not all outcomes of previously recruited patients are available when
making the next recruitment decision. The biostatistics literature has investigated
how one can use available short term outcomes that are indicative of the long term
outcomes in such scenarios [41], while the bandit literature has developed approaches
for decision making under delayed feedback [42]; it would be interesting to investigate
how to incorporate either into our framework.

Appendix C. Experimental details

In Section 5, we use a modified version of the experiment in section 6 of [3], which is in turn
motivated by the I-SPY 2 breast cancer trial for neoadjuvant therapies [43]. The assumed
end point of interest is the occurrence of pathologic complete response (pCR), [3] assume
this to follow a Bernoulli distribution where for the controls Y C ∼ B(0.4) for all subgroups
while the outcomes in treated individuals can differ across subgroups as Y T

j ∼ B(0.4 + θj).

As [3] we consider 3 subgroups, for simplicity we assume them to be equal sized (πk = 1
3)

here. In addition to the Bernoulli setting from the main text, we also consider an additional
setting with normally distributed outcomes in Appendix D (with known σ2 = 1) i.e. Y C

j ∼
N (0, 1), Y T

j ∼ N (θj , 1), ∀j ∈ [3].

As [3] we let θmin = 0.2, α = 0.025 and β = 0.1. For our algorithms we additionally
let n0 = 5 (the number of initialization samples) due to the higher variance induced by
considering a difference between random variables. To construct confidence intervals, as
[22] we use Thm. 8 of [23] which shows that for mean-zero σ2

p-(sub)gaussian variables Xs,

P(∃t∈N :
∑t

s=1 Xs

t >

√
2σ2

pζ(t,δ)

t )≤ δ for ζ(t, δ)= log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2)
and δ ≤ 0.1. We can use this as ϕ(·, ·) in our experiments due to the fact that (i) the
difference between two σ2-(sub)gaussian variables is 2σ2-(sub)gaussian and (ii) Bernoulli

variables are 1
4 -subgaussian. That is, we use ϕ(t, δ) = 2

√
log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))

t

for the normal outcomes, and we use ϕ(t, δ) =

√
log(1/δ)+3 log log(1/δ)+(3/2) log log(et/2))

t for the
difference between binary outcomes.

Description of GSDS. We now briefly formally describe the group sequential design
for subgroups (GSDS) proposed in [3]. The design requires: a pre-specified number of
interim analyses na, a test statistic Yj(t) and associated Fisher information Ij(t), a desired
significance level α and power 1−β. α is used to calculate stopping boundaries {(lp, up)}na

p=1

for each interim analysis. β is used to calculate a maximum information level Imax, which
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is in turn used to determine the sample size. The algorithm proceeds as follows: at the
first interim analysis at time t1, a subpopulation is selected through exclusion of all bad
subgroups: S∗ = {j ∈ K : Yj(t1)

√
Ij(t1) > l1}. If YS∗(t1)

√
IS∗(t1) > u1, the trial

terminates immediately for efficacy; otherwise the trial continues and at all na−1 subsequent
stages, the trial is terminated for efficacy if YS∗(tk)

√
IS∗(tk) > uk and terminated for futility

if YS∗(tk)
√
IS∗(tk) < lk.

Budget calculation. We follow the example in [3] who calculate that for a two stage
trial with α = 0.025, β = 0.1 and θmin = 0.2, we have (l1, u1) = (0.7962, 2.7625) and
l2 = u2 = 2.5204 and Imax = 1495.5.

In their example with binary outcomes, if we let b denote the number of pairs of recruited
patients9, and p̂C , p̂T the observed binary proportions in each group, we have that

Y = p̂T − p̂C and I =
b

2p̃(1− p̃)
(1)

where p̃ is the average response rate and is conservatively set to 0.5. Solving Imax for b
yields a (rounded) budget B = 800 pairs of patients.

Similarly, when doing the same for normal outcomes with known variance σ2, if we let
µ̂C , µ̂T denote the means in treated and control arm, we have

Y = µ̂T − µ̂C and I =
b

2σ2
(2)

and with σ2 = 1 this yields a rounded budget of B = 3000.

Appendix D. Additional results

D.1 Discussion of Type I error

Across 1000 repetitions of all simulation settings, we found that AdaGGI and AdaGCPI
(with Bonferroni correction) never made a Type I error (incorrectly rejecting a true null
hypothesis), while GSDS made Type I errors only in setting A (θ = [0, 0, 0]), in the expected
≈ 2.5% of cases. To see whether this is due to the conservativeness of the Bonferroni
correction, we reran AdaGGI and AdaGCPI without Bonferroni correction, and even then
found that Type I errors occured in ≈ 0% of cases. We attribute this observation to the
used anytime confidence intervals being unnecessarily conservative as t<<∞ here. It may
be interesting for future work to investigate how to construct less conservative confidence
intervals, e.g. by making use of the fact that they only need to allow for at most B<<∞
peeks at the data.

D.2 Results with normal outcomes (Table 2)

9. We believe there is a typo in Sec. 6 of [3], so that n should denote the number of pairs of patients, and
not patients. We have adapted budget calculations accordingly
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Binary Normal
θ Method %Succ. |S| tstop

B

t1g
B

t1b
B

%Succ. |S| tstop
B

t1g
B

t1b
B

A:[0, 0, 0] GSDS 2.6 0.04 0.74 0.5 2.4 0.04 0.75 0.51
AdaGGI 0 0 0.64 0.24 0 0 0.69 0.25
AdaGCPI 0 0 0.49 0.23 0 0 0.54 0.26

B:[−0.2, 0, 0.2] GSDS 99.3 1.19 0.64 0.64 0.5 97.9 1.18 0.68 0.68 0.5
AdaGGI 97.9 0.98 0.63 0.46 0.38 96.6 1 0.69 0.52 0.57
AdaGCPI 95 1.04 0.61 0.61 0.15 92 0.97 0.67 0.65 0.16

C:[0, 0.1, 0.3] GSDS 100 2.03 0.50 0.50 0.50 100 1.98 0.51 0.51 0.5
AdaGGI 99 1.00 0.55 0.29 0.59 79 0.87 0.93 0.34 0.57
AdaGCPI 89 2.28 0.89 0.55 0.44 98 2.26 0.59 0.59 0.46

D:[0.2, 0.2, 0.2] GSDS 100 2.98 0.50 0.5 100 2.97 0.5 0.5
AdaGGI 99.8 2.27 0.94 0.36 99.7 2.06 0.96 0.4
AdaGCPI 99.8 2.99 0.37 0.37 99.7 2.98 0.41 0.4

E:[0.3, 0.3, 0.3] GSDS 100 3 0.5 0.5 100 3 0.5 0.5
AdaGGI 100 3 0.49 0.16 100 3 0.53 0.18
AdaGCPI 100 3 0.17 0.17 100 3 0.18 0.18

Column legend: (1) %Succ. : prop. of trials which found a significant effect in some group. (2)
|S|: Average size of discovered subpopulation S. (3) tstop/B: Average algorithm termination
time (as prop. of budget). (4) t1g/B: Average time it took to identify the first good group (as
prop. of budget). (5) t1b/B: Average time it took to discard the first bad group (as prop. of
budget).

Table 2: Results for simulated clinical trials with binary outcomes (left) and normal outcomes (right)
using different treatment effect vectors θ; averaged across 1000 replications.
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