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Abstract
We study a multi-armed bandit problem with clustered arms and a unimodal reward struc-
ture, which has applications in millimeter wave (mmWave) communication, road naviga-
tion, etc. More specifically, a set of N arms are grouped together to form C clusters, and
the expected reward of arms belonging to the same cluster forms a Unimodal function (a
function is Unimodal if it has only one peak, e.g. parabola). First, in the setting when
C = 1, we propose an algorithm, SGSD (Stochastic Golden Search for Discrete Arm), that
has better guarantees than the prior Unimodal bandit algorithm (Yu and Mannor, 2011).
Second, in the setting when C ≥ 2, we develop HUUCB (Hierarchical Unimodal Upper
Confidence Bound (UCB) algorithm), an algorithm that utilizes the clustering structure
of the arms and the Unimodal structure of the rewards. We show that the regret upper
bound of our algorithm grows as O(

√
CT log(T )), which can be significantly smaller than

UCB’s O(
√
NT log(T )) regret guarantee. We perform a multi-channel mmWave communi-

cation simulation to evaluate our algorithm. Our simulation results confirm the advantage
of our algorithm over the UCB algorithm (Auer et al., 2002) and a two-level policy (TLP)
proposed in prior works (Pandey et al., 2007). 1

1. Introduction

1.1 Motivation

Multi-armed bandit (MAB) problem (Thompson, 1933) models many real-world scenarios
where a decision maker learns to take a sequence of arms to maximize reward. Here, the
decision maker is given access to an arm set, and takes an arm from the arm set results in
a reward drawn from an unknown distribution. The objective of the decision maker is to

1. This work was partly supported by ONR YIP grant N00014-16-1-2650, and the paper is accepted by
ECML-PKDD 2022. The authors would like to thank Zhiwu Guo for his help on drawing figures, and
the anonymous reviewers for their helpful comments.
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maximize its expected cumulative reward over a time horizon of T . To this end, it faces a
tradeoff between exploration and exploitation.

In this work, we consider a multi-armed bandit problem with clustered arms, where
the arm space can be partitioned into C clusters, and each cluster’s rewards exhibits a
Unimodality structure. This arises naturally in various decision problems, as shown in
Appendix A:

1.2 Related work

1.2.1 Hierarchical bandit

Hierarchical bandit problem, where the arm space is partitioned into multiple clusters, has
been studied in (Nguyen and Lauw, 2014; Jedor et al., 2019; Bouneffouf et al., 2019; Carlsson
et al., 2021). These papers give regret bounds under different assumptions on the clustering.
Specifically, (Pandey et al., 2007) proposed a Two-level Policy (TLP) algorithm. It divided
the arms into multiple clusters. However, their work does not provide a theoretical analysis
of the algorithm. (Zhao et al., 2019) proposed a novel Hierarchical Thompson Sampling
(HTS) algorithm to solve this problem. The beams under the same chosen channel can be
regarded as a cluster of arms in MAB. However, it does not utilize the Unimodal property
in each cluster. (Bouneffouf et al., 2019) considered a two-level UCB scheme that the arm
set is pre-clustered, and the reward distributions of the arms within each cluster are similar.
However, they didn’t consider the Unimodal property in each cluster. (Jedor et al., 2019)
introduced a MAB setting where arms are grouped in one of three types of categories. Each
type has a different ordering between clusters, and our work does not have such assumption
among the clusters. (Yang et al., 2022) considered a problem of online clustering: a set of
arms can be partitioned into various groups that are unknown. Note that the partition of
cluster is time-variant, and we study a different setting where the clusters are pre-specified.
(Kumar et al., 2019) addressed the problem of hidden population sampling problem in online
social platforms. They proposed a hierarchical Multi-Arm Bandit algorithm (Decision-Tree
Thompson Sampling (DT-TMP)) that uses a decision tree coupled with a reinforcement
learning search strategy to query the combinatorial search space. However, their algorithm
is based on Thompson Sampling, and no theoretical analysis of its regret is given. (Singh
et al., 2020) studies a multi-armed bandit problem with dependent arms. When an agent
pulls arm i, it not only reveals information about its own reward distribution but also reveal
all those arms that belong to the same cluster with arm i, which is not the case in our
problem. (Carlsson et al., 2021) proposed a Thompson Sampling based algorithm with
clustered arms, and give a regret bound which depends on the number of clusters. However,
they do not utilize the Unimodal property as well.

1.2.2 Unimodal bandit

In a Unimodal bandit problem, the expected reward of arms forms a Unimodal function.
Here, specialized algorithms have been designed to exploit the Unimodality structure, to
achieve faster convergence rate (compared to standard bandit algorithms such as UCB).
(Yu and Mannor, 2011) is the first work to propose a Unimodal bandit algorithm for both
continuous arm and discrete arm settings. (Combes and Proutiere, 2014) proposed Optimal
Sampling for Unimodal Bandits (OSUB), and exploits the Unimodal structure under the
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discrete arm setting. They provided a regret upper bound for OSUB which does not depend
on the number of arms. (Zhang et al., 2021) showed that the effective throughputs of
mmWave codebooks possess the Unimodal property and proposed a Unimodal Thompson
Sampling (UTS) algorithm to deal with mmWave codebook selection. However, both papers
only consider Unimodal property without clustered arms. (Blinn et al., 2021) proposed
Hierarchical Optimal Sampling of Unimodal Bandits. The difference with our work is that
they use the OSUB algorithm to select an arm in each cluster, and they did not provide a
theoretical regret analysis.

1.3 Main Contributions

Our main contributions can be summarized as follows:

1. In the single-cluster setting (C = 1), we propose a new Unimodal bandit algorithm,
called Stochastic Golden Search with Discrete arm (SGSD), that improves over an
existing Unimodal bandit algorithm (Yu and Mannor, 2011), in that it simultaneously
achieves gap-dependent and gap-independent regret bounds. In addition, its regret
bounds are competitive with UCB, and can sometimes be much better (Shown in
Appendix B).

2. In the multi-cluster setting (C ≥ 2), built on the SGSD, we present a UCB-based,
hierarchical Unimodal bandit algorithm, called HUUCB, to solve the MAB with Clus-
tered arms and a Unimodal reward structure (MAB-CU) problem. The key insight is
a new setting of reward UCB for each cluster, taking into account the regret incurred
for each cluster. We prove a gap-independent regret bound for this algorithm, and
show that they can be better compared with the baseline strategy of UCB on the
“flattened” arm set.

3. We evaluate our algorithms experimentally in both the single-cluster setting and the
multi-cluster setting, using two different datasets (synthetic/simulated).

(a) In the single-cluster setting, our SGSD algorithm outperforms UCB.

(b) In the multi-cluster setting, our HUUCB algorithm outperforms UCB with flatten
arms, and TLP.

2. Hierarchical Unimodal bandits: Problem Setup

The problem statement is as follows: There are N arms available and each arm j’s reward
comes from a particular distribution (supported on [0, 1]) with an unknown mean µj . The
arms are partitioned to C clusters, where we denote Clusteri as the i-th cluster. In each
cluster i, we assume that the expected rewards of arm j ∈ Clusteri form a Unimodal
function (a function is Unimodal if the function has only one local maximum, e.g. a negative
parabola). We assume that every cluster have the same size B, therefore, N = CB.

The Multi-armed bandit (MAB) model focuses on the essential issue of balancing the
trade-off between exploration and exploitation (Auer et al., 2002). At each time step, the
algorithm selects one arm jt. Then a reward of this arm is independently drawn, and
observed by the algorithm. The objective of the algorithm is to gather as much cumulative
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Algorithm 1 Hierarchical Unimodal UCB Algorithm
1: Input: DH , DL

2: For each cluster i = 1, . . . , C: ν̂i(0) = 0,Mi(0) = 0, initialize Ai, a copy of Alg. 2.
3: For each arm j = 1, . . . , N : µ̂j(0) = 0,mj(0) = 0
4: for t = 1, 2, ...N, do
5: Play arm j = t, and update corresponding µ̂j(t),mj(t) = 1 ,
6: end for
7: for each cluster i do
8: Mi(t) =

∑
j∈Clusterj

mj(t)

9: ν̂i(t) =
∑

j∈Clusteri

mj

Mi
µ̂j(t)

10: end for
11: for stage t = N + 1, N + 2, ..., do
12: Choose the cluster

it := argmax

ν̂i(t) +

√
2 log(t)

Mi(t)
+

DH

DL

√
log(t)

Mi(t)

 , (2)

13: Resume Ait and run it for one time step, select an arm jt ∈ Clusterit , and obtain the
reward of selected arm rjt(t) at stage t

14: Update empirical mean rewards and counts for all clusters:

(ν̂i(t),Mi(t)) =


(
ν̂i(t−1)·Mi(t−1)+rjt (t)

Mi(t−1)+1 ,Mi(t− 1) + 1
)
, i = it,(

ν̂i(t− 1),Mi(t− 1)
)
, i ̸= it.

15: end for

reward as possible. The expected cumulated regret can be expressed as (Bubeck and Cesa-
Bianchi, 2012):

E[R(T )] =

T∑
t=1

(µj∗ − µjt) (1)

where j∗ = argmaxj∈{1,...,N} µj is the optimal arm, T is the total running time. Note
that the algorithm only observes the reward for the selected arm, also known as the bandit
feedback setting.

3. Hierarchical Unimodal UCB Algorithm

In this section, we study the multi-cluster setting (C ≥ 2)2. Existing works such as
Two-Level Policy (TLP, (Pandey et al., 2007)) approaches this problem using the following
strategy: treat each cluster as a “virtual arm’ ’, and view the cluster selection problem
(which we call inter-cluster selection) as a stationary MAB problem. In each step, the
TLP algorithm chooses a virtual arm first using UCB, and then an actual arm within the

2. The single-cluster setting (C = 1) is shown in Appendix B
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selected cluster using some intra-cluster arm selection algorithm. However, due to the
nonstationary nature of the rewards within a cluster (as the intra-cluster arm selection
algorithm may gradually converge to pulling the cluster’s optimal arm), TLP do not have
theoretical guarantees.

In contrast, in this section, we propose a Hierarchical Unimodal UCB Algorithm (HU-
UCB) (Alg. 1) that has a provable regret guarantee. Our algorithm design follows the
“optimism in the face of uncertainty” principle: clusters are chosen according to their opti-
mistic upper confidence bounds on their maximum expected rewards νi = maxj∈Clusteri µj ’s,
a property not satisfied by TLP. This ensures a sublinear regret for the cluster selection
task. The algorithm proceeds as follows: it first takes into DH , DL as inputs, which are the
reward gap parameters specified in Assumption 1. Then, the initialization phase (lines 4
to 10) begins by selecting each arm at least once to ensure Mi(t) and ν̂i(t) are updated.
Mi(t) is number of times that cluster i has been selected and ν̂i(t) is the empirical mean
value for the cluster i. Once the initialization is completed, the algorithm selects the cluster
that maximizes our designed UCB (Equation 2). From the equation, we can see that the
UCB for cluster i,

ν̂i(t) +

√
2 log(t)

Mi(t)
+

DH

DL

√
log(t)

Mi(t)

is the sum of three terms. The first term is the empirical mean value of the Mi(t) rewards
obtained by pulling the arms in the cluster i. The second term accounts for the concentration
between the sum of the noisy rewards and the sum of their corresponding expected rewards.
The third term is new and unique to HUUCB – it accounts for the suboptimality of the arm
selection in cluster i by SGSD so far, calculated by dividing SGSD’s regret O

(
DH
DL

√
Mi(t)

)
by Mi(t). The three terms jointly ensures that the UCB is indeed a high-probability upper
bound of νi. In line 13, algorithm 1 selects an arm jt ∈ Clusterit using Ait after selecting a
cluster it and obtaining the reward rjt (Ait is a copy of Alg. 2 for cluster it). Last, in line
14, the algorithm updates the chosen cluster it’s statistics, empirical reward mean ν̂it(t) and
count Mit(t). Other clusters’ statistics remain the same as time step t− 1.

We have the following regret guarantee of Algorithm 1:

Theorem 1 If each cluster satisfies assumption 1, the regret of Hierarchical Unimodal UCB
is upper bounded by,

E[R(T )] ≤ O(
DH

DL

√
2CT log(T )), (3)

where C is the number of clusters.

Outline of the proof for Theorem 1: First, we define the event

E =

|ν̂i(t)− νi| ≤

√
2 log(T )

Mi(t)
+

DH

DL

√
const

Mi(t)
,∀i, t

 .

Without loss of generality, assume that Cluster1 contains the globally optimal arm. The
high-level idea of the proof is as follows:

(1) We bound the regret incurred when the algorithm chooses cluster i ̸= 1 when the
event E holds.
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(2) We bound the probability of the event E does not happen using Azuma’s inequality.
(3) Lastly, we bound the regret incurred when the algorithm chooses optimal cluster

Cluster1 but selects a sub-optimal arm using Theorem 2 (see in Appendix B). The detailed
proof is in Appendix D.1.

Remark: Theorem 1 shows that the regret bound depends on the number of clusters
(instead of the number of arms) because we incorporate the SGSD algorithm. Compared
to the “flattened” UCB algorithm with a total of N = CB arms (B is the number of arms
in each cluster), whose regret is O(

√
TCB log(T )), when DH

DL
≪
√
B, HUUCB has a much

better regret.
We can also prove the regret bound of HUUCB with that of a general bandit model

selection algorithm (Abbasi-Yadkori et al., 2020; Cutkosky et al., 2021). We regard each
cluster i’s algorithm as a base algorithm defined in (Abbasi-Yadkori et al., 2020; Cutkosky
et al., 2021). In our problem, C is the number of the base algorithm. Then, we define Ri(T )
as the regret upper bound for cluster i, represented as

Ri(T ) ≤ O

(
DH

DL
log(T )

√
T

)
≤ const1di log(T )

√
T , (4)

where const1 is a positive constant independent of T and i, di = DH
DL

. According to Theorem
2.1 in (Abbasi-Yadkori et al., 2020), the regret is upper bounded by,

E[R(T )] ≤ Cmax
i

Ri(T ) ≤ Cconst1di log(T )
√
T , (5)

Comparing (3) and (5), we can see that our result is better than their result (Our result’s
C term (number of cluster) is in the square root). According to Theorem 1 in (Cutkosky
et al., 2021), the regret is upper bounded by,

E[R(T )] ≤ O

(√
CT + (C

1
2 (

DH

DL
)2 +

DH

DL
+ C

1
2 ) log(T )T

1
2

)
, (6)

Comparing (3) and (6), we can see that our result is better than their result (Our result’s
log(T ) term is in the square root).

4. Experiments

We aim to answer the following questions through experiments:

1. Can SGSD outperform other algorithms in Unimodal bandit environments?

2. Can HUUCB outperform other hierarchical bandit algorithms (such as TLP) in MAB-
CU environments? Meanwhile, we intend to validate whether the simulation result
conforms to our theoretical analysis – specifically, does HUUCB’s new DH

DL

√
log(t)
Mi(t)

bonus term help in cluster selection?

See Appendix C for more details.

5. Conclusion

In this paper, we formulate the hierarchical Unimodal bandit learning problem, which oc-
curs in many real-world applications. First, we adapt the Stochastic Golden Search (SGS)
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algorithm into discrete arm settings (SGSD), and we derive its gap-dependent and gap-
independent regret bounds. Then, we propose a novel HUUCB algorithm based on the
SGSD algorithm. Simulation results show that our algorithm performs better than TLP-
UCB. For future work, we are planning to derive a gap-dependent log(T )-style regret bound
for the HUUCB algorithm and validate the regret bound in various simulation scenarios.
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Figure 1: Road navigation example: cluster means the set under each route (The set
contains different speed. For cluster (route) 1, it contains v1 = 60mph, v2 =
75mph, v3 = 90mph). The safety indices for speeds in route 1 are p1 = 0.9, p2 =
0.8, p3 = 0.5. The expected reward values in cluster 1 are r1 = 150, r2 = 155
and r3 = 140. For cluster (route) 2, it contains v4 = 30mph, v5 = 45mph, v6 =
60mph). The safety indices for speeds in route 2 are p4 = 0.9, p5 = 0.8, p6 = 0.5.
The expected reward values in route 2 are r4 = 120, r5 = 125 and r6 = 110. We
can see that each cluster’s expected reward function has only one peak, which
satisfies the Unimodal property.

Appendix A. Unimodal Example

Example 1: Road navigation. A person driving from A to B has the option to choose
two routes: highway and local way. After choosing a route, she needs to further choose a
speed. In this example, a (route, speed) combination corresponds to an arm, and a route
corresponds to a cluster. The expected reward (Utility) is defined as follows: rj = vj+10×pj ,
where vj denotes velocity for arm j and pj denotes safety (Sun et al., 2018) for arm j. Note
that, if velocity increases, safety will decrease, and thus, each cluster’s reward structure is
oftentimes Unimodal. See Fig. 1 for a numerical example.
Example 2: Multi-channel mmWave communication. Consider optimal antenna beam se-
lection for a mmWave communication link with multiple frequency channels. Theoretical
analysis (Wu et al., 2019) and experimental results (Hashemi et al., 2018) indicate that the
received signal strength (RSS) function over the beam space in the channel with a single
path (or a dominant line-of-sight path) can be characterized by a Unimodal function. Our
goal is to select the best channel and beam combination to maximize the link RSS. In this
example, the arm is the combination of frequency channel and beam, and the reward is the
signal strength. We regard the beams under each channel as a cluster. Our goal is to select
the optimal channel and beam for communication in an online manner. In Fig. 2, we provide
an illustration of the multi-channel mmWave communication example.

Appendix B. Algorithm for the Single-Cluster setting

We first study the single-cluster setting (C = 1), where the problem degenerates to
a Unimodal bandit problem (Yu and Mannor, 2011; Combes and Proutiere, 2014). One
drawback of prior works is that their guarantees have limited adaptivity: achieving gap-
dependent and gap-independent regret bounds require setting parameters differently. In
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Figure 2: Multi-channel mmWave communication example. There are two channels: f1 =
28GHz, f2 = 28GHz + 100MHz (These two frequencies are based on 3GPP TS
38.101-1/2, 38.104-1/2 (Lopez et al., 2019)). For each channel, the algorithm can
select three beams. Experimental results in (Hashemi et al., 2018) show that the
RSS function over the beam space in a fixed frequency is a Unimodal function.

Algorithm 2 Stochastic Golden Search for discrete arm (SGSD)
1: Parameters: ϵ1, .... > 0:
2: Initialize xA = 0,xB = 1

ϕ2 , xc = 1 (ϕ = 1+
√
5

2 )
3: for each stage s = 1, 2, ...S, do
4: if there has more than one discrete arms j/N in [xA, xC ] then
5: Let

x′B =

{
xB − 1

ϕ2 (xB − xA) xB − xA > xC − xB
xB + 1

ϕ2 (xC − xB) otherwise,

6: Obtain the reward of each continuous point {xA, xB, x′B, xC} according to Alg. 3,
each point for 2

ϵ2s
log(8T ) times, and let x̂ be the point with highest empirical mean

in this stage
7: If x̂ ∈ {xA, xB} then eliminate interval (x′B, xC ] and let xC = x′B,
8: else eliminate interval [xA, xB) and let xA = xB
9: else

10: Break
11: end if
12: Keep pulling the only discrete arm j/N in [xA, xC ]
13: end for

this work, we provide an algorithm that simultaneously enjoys gap-dependent and gap-
independent regret guarantees, which is useful for practical deployment. Our algorithm is
built on the SGS algorithm (Yu and Mannor, 2011), and we call it SGS for discrete arm
setting algorithm (SGSD), namely, Algorithm 2.

The high level idea of SGSD is to reduce the discrete-arm Unimodal bandits problem
to a continuous-arm Unimodal bandits, and use the SGS algorithm in the continuous arm
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Algorithm 3 Reward sampling algorithm for an arbitrary continuous point x′

1: Input: x′

2: Output: a stochastic reward of conditional mean f(x′) (Eq. (7))
3: j = ⌊Nx′⌋
4: set

l =

{
j with probability j + 1−Nx′

j + 1 otherwise,

5: r ← reward of pulling arm l
6: return r

setting. Specifically, given a discrete-arm Unimodal bandit problem µ1, . . . , µN , we associate
every arm j to a point j/N in the [0, 1] interval and perform linear interpolation, inducing
a function

f(x) = µj · (j + 1−Nx) + µj+1 · (Nx− j), x ∈ [j/N, (j + 1)/N) (7)

over the continuous interval [0, 1], and use SGS to optimize it. Observe that f has minimum
at x∗ = j∗/N , and for x ∈ [j/N, (j + 1)/N), bandit feedback of f(x) can be simulated by
pulling arms randomly from {j, j + 1} (Algorithm 3; see subsequent paragraphs for more
details). To this end, it narrows down the sampling interval, maintaining the invariant that
with high probability, j∗/N ∈ [xA, xC ].

The SGSD algorithm proceeds as follows: first, the algorithm initialize parameters xA =

0,xB = 1
ϕ2 , xc = 1 (line 2 in Alg. 2, where ϕ = 1+

√
5

2 ). In line 4, the algorithm checks the
number of discrete arms in the range [xA, xC ]; if only one arm j/N is in the range [xA, xC ],
with high probability, it must be the case that j = j∗, i.e. we have identified the optimal
arm – in this case, the algorithm breaks the loop and keep pulling that arm (line 12). Then,
given three points xA < xB < xC where the distance of xB to the other two points satisfy
the golden ratio. The reason we choose three point is to ensure the elimination of a constant
fraction of the sample interval that does not contain j∗/N in each iteration. Note that xB
may be closer to xA or to xC depending on the past updating value of the SGSD algorithm.
The point x′B is set in the larger interval between xB − xA and xC − xB (The updating
procedure for x′B is in Alg. 2’s line 5). If we set xC−xA = ℓ, the following equalities hold at
any step of SGS algorithm: xB−xA = ℓ

ϕ2 , x
′
B−xB = ℓ

ϕ3 , xC −x′B = ℓ
ϕ2 . Then, we eliminate

[xA, xB) or (x′B, xC), depending on whether the smallest empirical mean value is found in
set {xA, xB} or {x′B, xC} (Shown in 2’s line 7 and 8). Algorithm 2 gives the detail of the
algorithm.

Note that we convert the expected rewards of discrete arms into a continuous function,
we need to simulate noisy values of f on {xA, xB, x′B, xC} via queries to the discrete arms
{1, . . . , N}. We use Alg. 3 to calculate such “virtual” instantaneous rewards. Given input
arm x′ ∈ [0, 1], we determine the range [j/N, (j + 1)/N) that x′ belongs to (Alg 3’s line
3). In each iteration, we obtain its reward by the probabilistic sampling of the two discrete
arms in x’s neighborhood (where the sampling probability of each neighboring arm is shown
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in line 4), such that the output reward has expectation f(x′) (Shown in Alg. 3’s line 4 -line
5).

We make the following assumptions similar to (Yu and Mannor, 2011):

Assumption 1 (1) µ is strongly Unimodal: there exists a unique maximizer j∗ of µ1, . . . , µN
3.

(2) There exist positive constants DL and DH > 0 such that
∣∣µj − µj+1

∣∣ ≤ DH , and∣∣µj − µj+1

∣∣ ≥ DL for all j ∈ {1, . . . , N}.

Assumption 1.(1) ensures that the continuous function has one peak value. Assump-
tion 1.(2) extends the validate domain becomes [0, vj∗ ] and [vj∗ , 1]. This is because each
neighbor is connected by linear interpolation. So, our new continuous function has the low-
est slope value which is determined by linear interpolation and DL. Then, we have the
following regret bound.

Theorem 2 Under Assumption 1, the expected regret of Alg. 2, with ϵs = NDLϕ
−(s+3),

is:

E[R(T )] ≤ O

(
min

{
DH

DL
log(8T )

√
T ,

DH

(DL)2
log(8T )

})
. (8)

The proof of the first bound in Theorem 1 is inspired by the analysis of SGS in (Yu and
Mannor, 2011) after linear interpolation to reduce the discrete-arm setting to a continuous-
arm setting. The second bound is inspired by the proof of Theorem IV.4 in (Yu and Mannor,
2011). From Theorem 1, we can see that the upper bound is independent of the number of
arms. However, it depends on the problem-dependent constants (DL, DH).

We now compare this regret bound with that of the UCB algorithm (Auer et al., 2002).
UCB has a gap-independent regret bound of O(

√
TN log(T )), and gap-dependent regret

bound of O(
∑

j ̸=j∗
log(T )
∆j

) (where ∆j = µj∗ − µj). Then, we examine UCB’s gap-dependent
bound in terms of DH . Note that, the function is a Unimodal function, and the number of
arms on either the left or the right side of the optimal arm j∗ must be greater than N

2 . Then,
the gap-dependent regret bound of UCB must be larger than

∑N/2
j=1

log(T )
jDH

= log(T )
DH

∑N/2
j=1

1
j =

Ω(log(N2 ) ·
log(T )
DH

). We therefore see that the regret bound of the UCB algorithm depends
on the number of arms in both gap-independent and gap-dependent bounds, which does not
apply to SGSD.

Appendix C. Experiments

We aim to answer the following questions through experiments:

1. Can SGSD outperform other algorithms in Unimodal bandit environments?

2. Can HUUCB outperform other hierarchical bandit algorithms (such as TLP) in MAB-
CU environments? Meanwhile, we intend to validate whether the simulation result
conforms to our theoretical analysis – specifically, does HUUCB’s new DH

DL

√
log(t)
Mi(t)

bonus term help in cluster selection?

3. Strong Unimodality means that it only has one optimal arm among the arm set.
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To answer these questions, we consider two sets of experiments:

1. Learning in a synthetic Unimodal bandit setting, taken from (Combes and Proutiere,
2014). First, we consider N = 17 arms with Bernoulli rewards which µ = [0.1, 0.2...0.9, 0.8...0.1]
and the rewards are Unimodal. Then, we consider N = 129, and the expected rewards
form a triangular shape as in the previous example N = 17 (µ is between [0.1, 0.9]).
We evaluate three algorithms: our SGSD algorithm, UCB (Auer et al., 2002), and
OSUB (Combes and Proutiere, 2014).

2. Bandit learning in the MAB-CU setting. We use a simulated environment of multi-
channel mmWave communication. We perform our simulations using MATLAB. Recall
from Section 1.1 that in this application, an arm is a combination of channel and beam
(chosen by the transmitter), and the reward is the received signal strength (RSS) at
the receiver. We regard the beams under the same channel as a cluster. We fix
the transmitter (i.e., base station) at location [0,0], and we randomly generate four
receiver locations from a disk area with a radius of 10 meters. The base station is
equipped with a uniform linear array (ULA) with four antennas, which are separated
by a half wavelength. For the wireless channel model, we assume that there either
exists only one line-of-sight (LOS) path or one non-line-of-sight (NLOS) path if the
LOS path is blocked. We obtain the RSS under channel i and beam j in each time
step using Monte-Carlo simulations, following the free-space signal propagation model:
RSSij = αiP

TXGRX
j GTX

j ( λi
4πd)

2 (Molisch, 2012), where αi is the random path fading
amplitude under channel i (since there’s a dominant LoS path, αi is assumed to follow
the Rician distribution (Samimi et al., 2016)), GRX

j and GTX
j are the gains of the

receive and transmit antennas for beam j (in the directions of angle-of-arrival (AoA)
and angle-of-departure (AoD)), respectively, λi is the wavelength for channel i (j ∈
Clusteri), d is the distance between transmitter and receiver, and P TX is the transmit
power. Note that, the AoA, AoD, distance d, and fading αi are all unknown to the
transmitter during the bandit algorithm execution. We denote RSSij as the reward
for beam j under channel i. The system is assumed to operate at 28GHz center carrier
frequency (based on the 3GPP TS 38.101-1/2 standard (Lopez et al., 2019)), has a
bandwidth of 100 MHz, and uses 16-QAM modulation. We consider two scenarios:
1) two channels (clusters): [28 ∼ 28.1, 28.1 ∼ 28.2] GHz, 2) five channels (clusters):
[27.8 ∼ 27.9, 27.9 ∼ 28, 28 ∼ 28.1, 28.1 ∼ 28.2, 28.2 ∼ 28.3] GHz. For each channel,
there are a total of 16 beams and we only consider TX beam selection (each beam’s
width is 5 degrees and the step between adjacent beams’ angles is 10 degrees.).

We evaluate the following algorithms: (1) our HUUCB algorithm; (2) UCB algorithm
(Auer et al., 2002) and (3) Instantiations of the Two-level Policy framework (TLP) of
(Pandey et al., 2007) using different base algorithms for intra-cluster arm selection. In
each step, the TLP algorithm chooses a cluster first, and then an actual arm within the
cluster is selected. The key difference between algorithms under TLP framework and
our HUUCB algorithm is that, TLP uses an aggressive confidence bound for selecting
clusters, which does not follow the “optimism in the face of uncertainty” principle, and
does not have theoretical guarantees. We consider TLP composed with three base
algorithms: first, UCB, which does not utilize the Unimodal property in each cluster;

12
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Figure 3: Comparison between UCB and SGSD algorithm under Unimodal setting
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Figure 4: Comparison of cumulative regret among HUUCB and existing algorithms

second, SGSD, our algorithm 2; third, OSUB (Combes and Proutiere, 2014) – we call
the resulting algorithms TLP-UCB, TLP-SGSD, and TLP-OSUB respectively.

C.1 Simulation Result

Fig. 3 shows the cumulative regret of our SGSD algorithm. Regrets are calculated averaging
over 100 independent runs. SGSD significantly outperforms the UCB algorithm. This is
because the UCB algorithm does not utilize the Unimodal property. Meanwhile, the SGSD
algorithm has better performance than the OSUB algorithm. We speculate that SGSD’s
improved performance is due to its use of DH and DL, in contrast to OSUB.

Fig. 4(a) shows the cumulative regret of the joint beam and frequency selection with
5 clusters, and Fig. 4(b) shows the same result with 2 clusters. Regrets are calculated
averaging over 20 independent runs. From Fig. 4(a) and 4(b), we can see that HUUCB
has lower regret than the UCB and TLP-UCB algorithm. This result is consistent with our
expectation since the Unimodal property in each cluster can help the algorithm converge
faster. Meanwhile, we can see that our HUUCB algorithm has a similar performance as TLP-
SGSD and TLP-OSUB algorithms, and has the best performance in the 2-cluster setting.
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Figure 5: Comparison of Intra-cluster and inter-cluster cumulative regret

To further examine the advantage of our proposed algorithm over the baseline, we an-
alyze the inter-cluster and intra-cluster cumulative regret of all algorithms. Intra-cluster
cumulative regret is the regret that the algorithm chooses an arm that is not the optimal
arm in the currently chosen cluster; formally, Rintra(T ) =

∑T
t=1(νit − µjt). Inter-cluster cu-

mulative regret is the regret that the algorithm chooses a suboptimal cluster, i.e. the cluster
that does not contain the optimal arm; formally Rinter(T ) =

∑T
t=1(µj∗ − νit). It can be

seen that the regret can be decomposed as: R(T ) = Rintra(T )+Rinter(T ). From Fig. 5, we
can see that UCB and TLP-UCB algorithms incur both large inter-cluster cumulative regret
and intra-cluster cumulative regret. This is because both algorithms do not fully utilize
Unimodal and Hierarchical properties. Meanwhile, we can see that HUUCB has comparable
performance to TLP-SGSD. In the 2-cluster setting, HUUCB has better inter-cluster regret
than TLP-SGSD - this may be due to the setting of the extra bonus term in HUUCB.

Appendix D. Proof

For convenience, we define CH = NDH , CL = NDL; therefore,
∣∣µj − µj+1

∣∣ ≤ CH |vj − vj+1|,
and

∣∣µj − µj+1

∣∣ ≥ CL|vj − vj+1| for all j ∈ {1, . . . , N} (where vj is the feature for arm j,
and vj =

j
N ).
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D.1 Proof of Theorem 2

After linear interpolation, using elementary algebraic identities for ϕ, one can show that
setting xC − xA = 1 the following equalities hold at any step of SGSD

xB − xA =
1

ϕ2
, x′B − xB =

1

ϕ3
, xC − x′B =

1

ϕ2
(9)

Since either xB − xA or xC − x′B are eliminated at each stage, at each stage SGSD shrinks
the search interval by a factor of 1− ϕ−2 = 1

ϕ . Let [xA,s, xC,s] be the search interval at the
beginning of stage s+ 1, where xA,0 = 0 and xC,0 = 1.

Lemma If ϵs = CLϕ
−(s+3) then

P (vj∗ /∈ [xA,s, xC,s]) ≤
s

T
, (10)

Proof Once the interval containing vj∗ is eliminated, it is never recovered. Thus, we have

P (vj∗ /∈ [xA,s, xC,s]) ≤ P (vj∗ /∈ [xA,s−1, xC,s−1]) +

P (vj∗ /∈ [xA,s, xC,s]|vj∗ ∈ [xA,s−1, xC,s−1]), (11)

Let Xs = {xA,s−1, xB,s−1, xB′,s−1, xC,s−1} where xB,s−1 < xB′,s−1 are computed in line
6 (Alg.1) of stage s. Let µ̂s(x) be the sample loss of point x ∈ Xs in stage s and let
x̂s = argminx∈Xs µ̂(x). Since at stage s every point in Xs is played 2

ϵ2
log(6n) times,

Hoeffding bounds imply that |µ(x) − µ̂s(x)| ≤ ϵs with probability at least 1 − 1
6n for all

x ∈ Xs simultaneously. Let,

x∗s = arg min
x∈Xs

µ(x), (12)

Now assume vj∗ ∈ [xB′,s−1, xC,s−1]. Then vj∗ /∈ [xA,s, xC,s] implies µ̂(xA,s−1) < µ̂(xB′,s−1)
or µ̂(xB,s−1) < µ̂(xB′,s−1). Similarly, assume vj∗ ∈ [xA,s−1, xB,s−1]. Then vj∗ /∈ [xA,s, xC,s]
implies µ̂(xB′,s−1) < µ̂(xB,s−1) or µ̂(xC,s−1) < µ̂(xB,s−1). In both cases, we need to compare
three values of µ on the same side with respect to vj∗ (When vj∗ ∈ [xB,s−1, xB′,s−1] we always
have vj∗ ∈ [xA,s, xC,s]). Hence, we can apply our assumption involving CL. More precisely,
(9) implies that after s − 1 stages the search interval has size ϕ−(s−1) and min{xB,s−1 −
xA,s−1, xB′,s−1 − xB,s−1, xC,s−1 − xB′,s−1} = ϕ−(s+2)4. Hence, introducing

∆s′ =

{
min{xB′,s−1 − xB,s−1, xC,s−1 − xB′,s−1} = ϕ−(s+2) vj∗ ∈ [xA,s−1, xB,s−1]

min{xB,s−1 − xA,s−1, xB′,s−1 − xB,s−1} = ϕ−(s+2) vj∗ ∈ [xB′,s−1, xC,s−1],

4. In (Bubeck and Cesa-Bianchi, 2012) proof, it applies {xA,s, xB,s, xB′,s, xC,s} to the Hoeffding bound.
However, in stage s, it uses Xs = {xA,s−1, xB,s−1, xB′,s−1, xC,s−1} to operate the algorithm. Note that,
vj∗ ∈ [xA,s−1, xC,s−1] and assumption 1 (2) cannot hold because CL|vj − vj+1| ≤ |r(vj) − r(vj+1)| for
neighboring point vj , vj+1 ∈ [0, vj∗ ] or vj , vj+1 ∈ [vj∗ , 1] (It needs the two points in the same side
of vj∗ . However, xA,s−1 and xC,s−1 are not in the same side vj∗). We divide into two cases 1)vj∗ ∈
[xA,s−1, xB,s−1] 2) vj∗ ∈ [xB′,s−1, xC,s−1]. In first case, we only consider the interval [xB,s−1, xC,s−1] and
we can satisfy assumption 1 (2) because the interval [xB,s−1, xC,s−1] in the same side of vj∗ . Similarly,
in second case, it also satisfy assumption 1 (2).
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If vj∗ ∈ [xA,s−1, xB,s−1], we have

∆s′ ≥ CLmin{xB′,s−1 − xB,s−1, xC,s−1 − xB′,s−1} ≥ CLϕ
−(s+2) = ϵsϕ

−1 (13)

Similarly, if vj∗ ∈ [xB′,s−1, xC,s−1], we have

∆s′ ≥ CLmin{xB,s−1 − xA,s−1, xB′,s−1 − xB,s−1} ≥ CLϕ
−(s+2) = ϵsϕ

−1 (14)

Next, we calculate the probability of P (vj∗ /∈ [xA,s, xC,s]|vi∗ ∈ [xA,s−1, xC,s−1]). For
simplicity, we define event A : vj∗ /∈ [xA,s, xC,s], event B : vj∗ ∈ [xA,s−1, xC,s−1], sub-case
1: B1 : vj∗ ∈ [xA,s−1, xB,s−1], sub-case 2: B2 : vj∗ ∈ [xB,s−1, xB′,s−1] and B3 : vj∗ ∈
[xB′,s−1, xC,s−1]. we can write

P (A|B) =
P (A,B)

P (B)

(a)
=

P (A,B1) + P (A,B2) + P (A,B3)

P (B)

=
P (A,B1)

P (B1)

P (B1)

P (B)
+

P (A,B2)

P (B2)

P (B2)

P (B)
+

P (A,B3)

P (B3)

P (B3)

P (B)

= P (A|B1)
P (B1)

P (B)
+ P (A|B2)

P (B2)

P (B)
+ P (A|B3)

P (B3)

P (B)

(b)

≤ P (A|B1) + P (A|B2) + P (A|B3) (15)

Eq.(a) is based on the fact B = B1 +B2 +B3 and marginal probability. Inequality (b) is
based on the fact that B1, B2, B3 are the subset of B. So, we have P (B1)

P (B) ≤ 1, P (B2)
P (B) ≤ 1

and P (B3)
P (B) ≤ 1. First, we calculate P (A|B1). In sub-case 1, vi∗ /∈ [xA,s, xC,s] implies

µ̂(xB′,s−1) < µ̂(xB,s−1) or µ̂(xC,s−1) < µ̂(xB,s−1). Then, we have

P (A|B1) ≤ P (µ̂(xB′,s−1) < µ̂(xB,s−1)) + P (µ̂(xC,s−1) < µ̂(xB,s−1))

(a)

≤ P (µ̂(xB′,s−1) < µ(xB′,s−1)−
∆s′

2
) + P (µ(xB,s−1) < µ̂(xB,s−1)−

∆s′

2
)

+P (µ̂(xC,s−1) < µ(xC,s−1)−
∆s′

2
) + P (µ(xB,s−1) < µ̂(xB,s−1)−

∆s′

2
)

≤ 4e−Ts∆2
s′/8 ≤ 4e−Ts(ϵsϕ−1)2/8 ≤ 1

2T
(16)

Inequality (a) is based on the following facts

P (µ̂(xB′,s−1) < µ̂(xB,s−1))

= P (µ̂(xB′,s−1)− µ(xB′,s−1)− µ̂(xB,s−1) + µ(xB,s−1) + µ(xB′,s−1)− µ(xB,s−1) < 0)

≤ P (µ̂(xB′,s−1)− µ(xB′,s−1) +
µ(xB′,s−1)− µ(xB,s−1)

2
< 0) +

P (µ(xB,s−1)− µ̂(xB,s−1) +
µ(xB′,s−1)− µ(xB,s−1)

2
< 0)

(a)

≤ P (µ̂(xB′,s−1) < µ(xB′,s−1)−
∆s′

2
) + P (µ(xB,s−1) < µ̂(xB,s−1)−

∆s′

2
) (17)
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Inequality (a) is based on the fact that µ(xB′,s−1)−µ(xB,s−1)

2 ≤ ∆s′
2 , and ∆s′

2 makes that the
event becomes much easier to smaller than 0 because we adding a smaller number. We can
obtain a similar result for P (µ̂(xC,s−1) < µ̂(xB,s−1)). Due to space limitations, we omit the
details. Next, we calculate P (A|B2). Note that, when vi∗ ∈ [xB,s−1, xB′,s−1], we always
have vi∗ ∈ [xA,s, xC,s]. Then, we have,

P (A|B2) = 0 (18)

Last, we calculate P (A|B3). The procedure to calculate P (A|B3) is same to the P (A|B1).Then,
we have,

P (A|B3) ≤
1

2T
(19)

Combing (16) (18) (19), we have

P (A|B) ≤ 1

T
(20)

Substituting this in (11) and recurring gives the desired result. We start by decomposing
the pseudo-regret as follows:

E[R(T )] ≤
S∑

s=1

Ts(min
x∈As

µ(x)− µ(vi∗)) +
S∑

s=1

(
∑
t∈Ts

µ(xt)− Ts min
x∈As

µ(x)), (21)

Using the Lipschitz assumption

max
x,x′∈As

|µ(x)− µ(x′)| ≤ CH |xC,s − xA,s|, (22)

and recalling that |xC,s − xA,s| ≤ ϕ−s, we bound the first term in this decomposition as
follows

Ts(min
x∈As

µ(x)− µ(vi∗)) ≤ TsCH |xC,s − xA,s|P (vi∗ ∈ [xA,s, xC,s])

+TsCHP (vi∗ /∈ [xA,s, xC,s]) ≤
TsCH

ϕs
+ TsCH

s

T
(23)

The second term is controlled similarly,∑
t∈Ts

µ(xt)− Ts min
x∈As

µ(x) ≤ TsCH |xC,s − xA,s| ≤
TsCH

ϕs
(24)
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Hence we get an easy expression for the regret,

E[R(T )] ≤ CH

S∑
s=1

Ts(
2

ϕs
+

s

T
)

≤ CH

C2
L

8ϕ6 log(8T )
S∑

s=1

ϕ2s(
2

ϕs
+

s

T
) (25)

We now compute an upper bound on the number S of stages,

T ≥
S∑

s=1

Ts =
8ϕ6

C2
L

log(8T )
S∑

s=1

ϕ2s =
8ϕ6

C2
L

log(8T )
ϕ2S+2 − ϕ2

ϕ2 − 1
(26)

Solving for T and over approximating, we get

S ≤ 1

2
logϕ(1 + C2

LT ) (27)

Therefore, the sum in (25) is bounded as follows

2
S∑

s=1

ϕs + S2 ≤ 2ϕ

ϕ− 1

√
1 + C2

LT +
1

4
log2ϕ(1 + C2

LT ) (28)

Next, we derive the regret bound when we consider a final stage. In a similar fashion to the
proof of algorithm 2, the regret of the s-th iteration is bounded by,

Ls ≤
2CH

ϕs
Ts + TsCH

s

T
, (29)

since the sampling interval is 1
ϕs at the s-th iteration, the sampling interval is at most 1

N
wide after logϕ(N) and hence contains a single arm. Therefore, the algorithm 2 continues
picking the same arm after logϕ(N) iterations. Observe also that the length of the s-th stage
of the algorithm 2 is

Ts =
2

(ϵs)2
log(8T ) =

2ϕ(2s+6)

(NDL)2
log(8T ) (30)

for all T . Combining equation (29) and (30), we have,

Ls ≤
2NDH

ϕs

2ϕ(2s+6)

(NDL)2
log(8T ) +

2ϕ(2s+6)

(NDL)2
log(8T )NDH

s

T

=
4ϕ6DHϕs

N(DL)2
log(8T ) +

2ϕ(2s+6)DH

N(DL)2
log(8T )

s

T
, (31)
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Note that the largest iteration time is logϕ(N). Hence the total regret is,

E[R(T )] ≤ 2ϕ6DH

N(DL)2
log(8T )

logϕ(N)∑
s=1

(2ϕs + ϕ(2s) s

T
)

≤ 2ϕ6DH

N(DL)2
log(8T )(

2ϕ(1−N)

1− ϕ
+

ϕ2 (1−N2)
1−ϕ2 logϕ(N)

T
)

≤ 2ϕ6DH

N(DL)2
log(8T )(

2ϕ(1−N)

1− ϕ
+

ϕ2 (1−N2)
1−ϕ2 logϕ(m)

T
), (32)

Note that, the term 2ϕ(1−N)
1−ϕ is at the order of Θ(N). The second term becomes to a constant

value when T ≥ ϕ2 (1−N2)
1−ϕ2 logϕ(N) (T is time horizon so we can choose a large enough stage).

When T ≥ ϕ2 (1−N2)
1−ϕ2 logϕ(N), the regret is,

E[R(T )] ≤ O(
2ϕ6DH

(DL)2
log(8T )), (33)

Combining Inequality (28) (33), we get

E[R(T )] ≤ min{CH

C2
L

8ϕ6 log(8T ){ 2

1− 1
ϕ

√
1 + C2

LT +
1

4
log2ϕ(1 + C2

LT )}, O(
2ϕ6DH

(DL)2
log(8T ))}

≤ min{O(
CH

CL
log(8T )

√
T ), O(

2ϕ6DH

(DL)2
log(8T ))}

= min{O(
DH

DL
log(8T )

√
T ), O(

2ϕ6DH

(DL)2
log(8T ))}. (34)

D.2 Proof of Theorem 1

Recall that we have C clusters, and each cluster has B arms.

We define UCB(νi) = ν̂i(t) +
√

2 log(T )
Mi(t)

+ DH
DL

√
log(T )
Mi(t)

= ν̂i(t) +
√

2 log(T )
Mi(t)

+ CH
CL

√
log(T )
Mi(t)

.
Where ν̂i(t) =

∑
b∈iwi,b(t)µ̂i,b(t), Mi(t) is selected time for cluster i. We define event E:

|ν̂i(t) − νi| ≤
√

2 log(T )
Mi(t)

+ CH
CL

√
log(T )
Mi(t)

, where νi = maxj∈i µj . Conditioning on the event E,

19



we have

T∑
t=BC+1

(νi∗ − νit) ≤
T∑

t=BC+1

(UCBt(i
∗)− νit) ≤

T∑
t=BC+1

(UCBt(it)− νit)

≤ 2

T∑
t=BC+1

{

√
2 log(T )

Mit(t)
+

CH

CL

√
log(T )

Mit(t)
}

= 2

T∑
t=BC+1

C∑
i=1

I(i = it){

√
2 log(T )

Mit(t)
+

CH

CL

√
log(T )

Mit(t)
}

= 2
C∑
i=1

Mi(T )∑
s=1

{
√

2 log(T )

s
+

CH

CL

√
log(T )

s
}

(a)

≤ 2
C∑
i=1

2
√

2Mi(T ) log(T ) +

2
CH

CL

C∑
i=1

Mi(T )∑
s=1

√
log(T )

s

(b)

≤ 8
√
2CT log(T ) +

CH

2CL

√
CT log(T ), (35)

Inequality (a) (b) are based on Cauchy-Schwarz inequality. Next, we derive P (Ec). First,
we divide |ν̂i(t)− νi| into,

|ν̂i(t)− νi| ≤ |νi −
∑
b

wi,b(t)µi,b|+ |ν̂i(t)−
∑
b

wi,b(t)µi,b|, (36)

We define event E1 is |νi−
∑

bwi,b(t)µi,b| ≤ CH
CL

√
log(T )
Mi(t)

, and event E2 is |ν̂i(t)−
∑

bwi,b(t)µi,b| ≤√
2 log(T )
Mi(t)

. Then, we know that if E1 and E2 hold, E must hold. Then, the P (Ec) is,

P (Ec) ≤ P (Ec
2 ∩E1) + P (E2 ∩Ec

1) + P (Ec
2 ∩Ec

1)

= P (Ec
2)P (E1|Ec

2) + P (Ec
1)P (E2|Ec

1) + P (Ec
2)P (Ec

1|Ec
2)

(a)

≤ 2P (Ec
2) + P (Ec), (37)

Inequality (a) is based on the fact that P (E1|Ec
2) ≤ 1, P (E2|Ec

1) ≤ 1 and P (Ec
1|Ec

2) ≤ 1.
Then, according to Azuma’s inequality, we derive P (Ec

2)

P (Ec
2) = P (|ν̂i(t)−

∑
b

wi,b(t)µi,b| >

√
2 log(T )

Mi(t)
) ≤ exp(−2ϵ2Mi,b(t))

= exp(−4 log(T )
Mi,b(t)

Mi,b(t)) = T−4, (38)

According to lemma 6.4 in (Bubeck and Cesa-Bianchi, 2012), P (Ec
1) is

P (Ec
1) ≤ T−1, (39)
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Combining (37), (38) and (39), we get

P (Ec) ≤ 2T−4 + T−1 = O(T−1), (40)

Therefore, we have:

Regret(T ) ≤ 8
√
2CT log(T ) +

CH

2CL

√
CT log(T ) + P (Ec)× T

= O(
CH

CL

√
2CT log(T )) = O(

DH

DL

√
2CT log(T )). (41)
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