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Abstract

Learning from demonstrations (LfD) is the problem of seeking optimal policies without
true reward signals. Practical challenges arise: (1) when the environments of an agent
and a demonstrator (especially, transition dynamics functions) are different and (2) when
demonstrations have suboptimal performances or are too few. The prior-art, Indirect Imi-
tation Learning (I2L), overcomes different dynamics by matching state-only distributions,
instead of state-action distributions, however, its performance is limited to that of the
demonstrator. On the other hand, the method, Trajectory-ranked Reward Extrapolation
(TREX) outperforms the demonstrator by inferring a high-quality reward function from
ranked demonstrations. The learnt reward model inevitably performs poorly under the
dynamic mismatch. In this paper, we propose a novel algorithm that handles both of
the challenges. It learns a reward function with ranked demonstrations while consider-
ing domain mismatches by I2L algorithm. Additionally, I2L in the proposed method is
replaced with Adversarial Inverse Reinforcement Learning (AIRL) for environments with
no dynamic mismatch. It takes the benefit of data augmentation effects when demonstra-
tions are few. In the experiments on continuous physical locomotion tasks, the proposed
method outperforms I2L. and TREX baselines by up to 330%. Our method is shown ro-
bust to transition dynamic mismatches between the agent and demonstrator, and achieves
good policies from suboptimal demonstrations. Also, the method with AIRL outperforms
baselines when no dynamic mismatch.

1. Introduction

Recently, Reinforcement Learning (RL) has demonstrated impressive successes in many
domains such as video games (Mnih et al., 2015; Schrittwieser et al., 2020), continuous
controls (Lillicrap et al., 2016), and robotics (Levine et al., 2016). However, it is difficult
to manually shape a reward function and objective that leads to desired goals. Instead,
Learning from Demonstrations (LfD) (Finn et al., 2016; Ho and Ermon, 2016; Fu et al.,
2018) seeks an optimal policy using demonstrations without a well-designed reward signal.

In conventional LfD settings, high-quality demonstrations are collected, i.e. a series of
states and actions, 7 := {sp, ag,...,ar—_1, 7} from the same environment where an agent is
trained. Practical challenges arise in the LfD setting: (1) when the environments of an agent
and demonstrator (especially, transition dynamic functions) are different and (2) when we
have suboptimal or too few demonstrations. In real-world scenarios, the agent usually learns
desired behaviors from demonstrations collected from another environment with different
physical characteristics. Learning from Observations (LfO) methods reduce requirements
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for demonstrations. While expert actions strongly supervise the agent, desired actions are
not quite useful under the dynamic mismatch since they are varying. Instead, desired states
do not change over the dynamic mismatch, the previous methods, e.g. Indirect Imitation
Learning (I2L), (Gangwani and Peng, 2020; Liu et al., 2020; Desai et al., 2020; Gangwani
et al., 2022) learn from state-only than state-action pairs. Their performances are, however,
limited when demonstrations are suboptimal.

Trajectory-ranked Reward Extrapolation (TREX) (Brown et al., 2019) is one of LfO
algorithms which achieves beyond-demonstrator performance (Brown et al., 2020; Chen
et al., 2020; Jeong et al., 2020; Yuan et al., 2021). Particularly, Brown et al. (2019) addressed
the problem via learning a reward function from suboptimal ranked demonstrations. The
parameterized reward function is first learned with the rank relations, then the agent’s policy
is optimized to maximize the inferred reward. These methods achieve high-quality policies
by outperforming the demonstrator. This preference-based reward function, however, is not
updated during the agent’s policy optimization process. Under the dynamic mismatches,
the model trained with only demonstrations from the demonstrator environment, inevitably
performs poorly in the agent environment. Meanwhile, Adversarial Inverse Reinforcement
Learning (AIRL) (Fu et al., 2018), is a sample efficient LfD method. It performs state-
action distribution matching between the agent and demonstrator via adversarial learning,
demonstrating good performances when demonstrations are few.

In this work, we address LfO with suboptimal demonstrations in domains with dif-
ferent transition dynamics. To tackle the dynamics mismatch issue, we build on Indirect
Imitation Learning (I2L) (Gangwani and Peng, 2020). To overcome the suboptimal demon-
strations, a simple yet effective unified method, preference-based 12L (P-12L), is proposed,
aiming at jointly learning the parameterized reward network and the agent policy. Ad-
ditionally, we replace I12L with Adversarial Inverse Reinforcement Learning (AIRL) (Fu
et al., 2018) when there is no dynamic mismatch. The preference-based AIRL (P-AIRL)
achieves higher performances, in settings where the dataset is too small and suboptimal,
thanks to the adversarial learning and ranked demonstrations. We test the effectiveness
of our method for continuous locomotion tasks under mismatched transition dynamics in
MuJoCo (Todorov et al., 2012). The experiments show that our method meaningfully out-
performs the demonstrator. When there is no dynamic mismatch, P-AIRL achieves higher
performances compared to baseline LfD methods.

2. Preliminaries

The RL environment is modeled as a Markov decision process (MDP) M consisting of the
tuple (S, A, T,r,7). S is the state space and A is the action space. 7 : S8 x A x S — R*
is the transition dynamics, where given an action a; € A the next state is determined
by the distribution s;11 ~ T(:|st,ar). 7 S — R is the reward function, v € (0,1] is
the discount factor (Puterman, 2014). The policy 7 provides the probability to take an
action, a ~ m(-|s). The objective of RL is to maximize the expected discounted return
J(r) = E,_ (1) [Ze7'7(s¢)] under the distribution induced by the policy 7. Below, we sum-
marise the background components to our proposed solution: AIRL, 121 and TREX.

Adversarial Inverse Reinforcement Learning. Given a set of expert demonstration
trajectories DF = {7, 7, ...7y}, Inverse Reinforcement Learning (IRL) algorithms aim to
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Figure 1: (a) P-I2L has four components: the Wasserstein critic, priority buffer, discriminator,
and policy. The discriminator including the reward model is learnt by the: (1) adversarial loss
to distinguish high score samples in the buffer from samples from the policy and (2) supervised
loss with ranked demonstrations. (b) P-AIRL plugges the ranking loss into the adversarial inverse
reinforcement learning framework. Note top ranked trajectories are obtained from state-action pairs
here, while they are from state-only data in I2L.

learn reward functions that explain task intentions. Adversarial Imitation Learing (Ho and
Ermon, 2016; Fu et al., 2018) tries to find the reward function by generative adversarial
learning. Similar to GANs (Goodfellow et al., 2014), the generator in the form of policy
7w and the discriminator D : § x A — R are trained to optimize the min-max objective
E(sa)~nellog Dy(s; )] + E(s a)~rllog (1 — Dy(s,a))] . To infer the reward, Adversarial In-
verse Reinforcement Learning (AIRL) (Fu et al., 2018) constructs the discriminator Dy by
Dy(s,a) = exp (Ry(s))/ (exp (Ry(s)) + m(als)). The reward function Ry is learnt, s.t. the
discriminator distinguishes expert trajectories from generator policy rollouts, and the policy
7 maximizes the pseudo reward obtained from Ry.

Indirect Imitation Learning (I2L) proposed by Gangwani and Peng performs AIRL
with state-only expert demonstrations where demonstrator actions are missing. See Fig-
ure la. Since AIRL requires the demonstrator actions to compute the objective scores, 12L
splits the process into 2 sub-processes and introduces an intermediate demonstrator (i.e.
the priority buffer) that is represented by high-quality samples generated by the policy .
In the first part, the agent policy is optimized to mimic the intermediate demonstrator, by
matching state-action distributions via the discriminator. In the second part, the interme-
diate demonstrator is updated with state-only expert demonstrations via the critic. This
way, the learnt policy is resistant to domain mismatches and yet accurate. Note ideal states
do not change under different dynamic environments.

Trajectory-ranked Reward Extrapolation (TREX) (Brown et al., 2019) performs
IRL using ranking information, extrapolating beyond suboptimal demonstrations. Given
the ranked demonstrations, TREX first trains the reward function Ry to approximate the
true reward function. With the learnt reward function Ry, the policy 7 is optimized via RL
and the high-quality reward model enables the agent to perform better than the demon-
strator. However, in two cases: first when the imitator is learned in a different environment
than the demonstrator, and second when the number of ranked demonstrations is small,
the reward model inevitably performs poorly degrading performance.
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3. Our Approach

We propose a unified framework that learns a parameterized reward function and optimizes
a high-quality policy network in an end-to-end manner, using suboptimal ranked demon-
strations. The pipeline of our method is shown in Figure la. Our method is motivated by
that TREX, which enables the agent to perform better than given demonstrations, might
overfit to an environment where the demonstrations are collected. Under the transition
dynamics mismatch between the agent and demonstrator, the reward model inevitably
performs poorly. On the other hand, I2L and AIRL, which train the reward model (i.e.
discriminator) with demonstrations collected in the agent and demonstrator environments,
do not provide a powerful reward signal that enables the agent to generate a better behavior
than the demonstrator. In the following Sections, we introduce Preference-based Indirect
Imitation Learning (P-I2L) that learns from demonstrations when the imitator and demon-
strator MDP have different transition dynamics, then Preference based Adversarial Inverse
Reinforcement Learning (P-AIRL).

3.1 Preference-based Indirect Imitation Learning (P-I2L)

Let’s consider the loss function of TREX. Given the state-only ranked demonstrations Dy =
{751,752, -, TN}, Where 75 ; < 75 j if i < j, the reward function Ry is trained via supervised
learning. When 75; < 75 5, Yser, , Ro(s) < Yser, ;Ro(s), with the following according to the
Luce-Shepard rule (Luce, 2012):

exp (2 Reo(s))

SETs, 5

2 o8 S R ) t e (5 Ro(d))

Ts,i=Ts,j SETs SETs,;

The I2L architecture is shown in Figure 1la. Let D be the top ](7 rank demonstrations
that are extracted from the suboptimal state-only demonstrations Ds. I12L divides the
process into 2 sub-processes. Let B be a priority buffer that consists of the trajectories
generated by the policy in the imitator environment during the training. Let p(s) and
p(s,a) be the state and state-action distribution of the trajectories in B. I2L measures
Wasserstein-1 distance between p(s) and p*(s), where p*(s) is the state distribution of expert
demonstrations, and trains the critic network g4 with Lipschitz continuity constraint s.t.

441 (:5(8)7 p*(s)) = SupHg¢HL§1Es~p* [g¢(8)] - Eswﬁ [g¢(s)]. (2)
The critic network measures the score reflecting the similarity of the state distributions
between the best trajectories and samples generated by the policy network.

The priority buffer selects trajectories from the policy with scores provided by the critic
network. Since the actions are available in B, the state-action distribution is used to train
the policy in AIRL manner. Thus, the discriminator Dy trains the reward model Ry to
distinguish high quality samples in B and samples from the policy.

Lranking(e) - -

(1)

'Cadv(g) = E(s,a)NB[log (1 - D@(Sv CL))] + E(sa)wﬁ[log D@(Sa CL)] (3)
The agent policy 7 is trained with Rg. The reward function Ry is learnt with the total loss
£totaul(e) = 'Cadv(g; (87 CL) ~ B, (37 CL) ~ 7T) + Eranking(‘g; (S) ~ Ds) (4)

The reward Ry in P-12L is trained with ranked demonstrations as in TREX, while learnt
to distinguish sampled demonstrations by the policy 77 and B. Therefore, it is robust under
transition dynamics mismatch. See Algorithm 1 in Appendix A.
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3.2 Preference-based Adversarial Inverse Reinforcement Learning (P-AIRL)

Our method can also be adapted to the settings where suboptimal demonstrations are
collected under the same dynamics environments. Let D be state-action ranked demonstra-
tions. Under a small number of D, TREX fails to recover the true reward signal. Instead,
ATRL trains the reward network in adversarial manner, using expert demonstrations D*
and policy-generated data. The proposed method P-AIRL learns Ry with the total loss

Etotal = ‘Cadv(g, (S, a) ~ 'D*, (57 a) ~ 77) + ﬁranking(97 (5) ~ ®) (5)

It exploits not only a small number of D but also policy-generated data. The P-AIRL is
implemented by replacing I2L with AIRL in P-12L. The discriminator Dy tries to maximize
the chance to distinguish top N demonstrations D* as expert and policy-generated data as
negative samples. The detailed algorithm is provided in Algorithm 2 in Appendix A.

4. Experiments

We evaluated the proposed methods for three robotic control tasks in MuJoCo (Todorov
et al., 2012) within OpenAl Gym (Brockman et al., 2016): HalfCheetah, Hopper, Walker2D.
P-I2L with Transition Dynamics Mismatch. We created GravityDouble /Heavy/
HighFrictionBody environments by modifying properties such as gravity, density, frictional
coefficients of the three original demonstration environments. In order to evaluate under
transition dynamic mismatches between the demonstrator and imitator, we collected ranked
demonstrations from default environments, and evaluated the methods in the modified
environments. We compared our P-12L algorithm with the following baselines, GAIL, GAIL-
s(GAIL with the state-dependent discriminator), 121, and TREX. See Appendix B.1 for the
experiment setup in details.
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Figure 2: Comparison of P-I12L,, TREX, I12L, GAIL-s, GAIL, and the Figure 3: Training
demonstrator’s best performance, under dynamic mismatches. The imi- progress for P-I2L and
tator and demonstrator MDPs are different. I2L.
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Figure 2 shows the performance comparison of P-I12L, and baselines. The policies learned
by P-I2L successfully outperformed the demonstrator in all cases. I2L also outperforms
the demonstrator in some cases, however, as shown in Figure 3, the performance of 12L
highly fluctuates over training iterations. Since GAIL, GAIL-s and I2L imitates the demon-
strations by performing state-action/state distribution matching, the agent policy fails to
achieve beyond-demonstrator performance. TREX outperforms the demonstrations in 2
out of 9 environments. It is designed to infer the reward from states, being less sensi-
tive to dynamic differences. However, TREX trains the reward function Ry only using the
ranked demonstrations collected from the demonstrator’s environment. In our experimental
settings, the demonstrations are not enough to generalize Ry and Ry causes the poor per-
formance in the agent’s environment. Similar to I12L, P-I2L trains Ry using demonstrations
in B, which are sampled from the agent environment, as well as ranked demonstrations
from the demonstration environment. This way, Ry is more robust under different domains
and better approximates the true environmental reward, which enables the agent to achieve
better-than-demonstrator performance. P-I2L outperforms other baselines in 7 out of 9
environments.
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Figure 4: Comparison of P-AIRL, TREX, AIRL, Figure 5: Training progress for P-AIRL and
HAIRL, and the demonstrator’s performance. AIRL in Hopper and Walker environments.

P-AIRL without Transition Dynamics Mismatch. We compared our method, P-
AIRL with the following baselines, AIRL (P-AIRL without Lyanking, TREX, and HAIRL,
proposed by Yuan et al. (2021), which achieves better-than-demonstrator performance,
based on curiosity-driven reward inference.

In TREX, the trained reward network is not well generalized due to the small number of
ranked demonstrations; thus, it fails to outperform the demonstrator. In AIRL, the agent
successfully imitated the demonstrations for Hopper, but the agent performance for Walker
is about 40% lower than the demonstrations. As shown in Figure 5, the agent performance
fluctuates over time, since the reward network is trained to maximize the reward for a
given demonstration. On the other hand, our method relatively less fluctuates and is shown
outperforming the baseline methods.

5. Conclusion

In this paper, we propose P-12L, an end-to-end LfO method that learns from suboptimal
demonstration, while considering transition dynamics mismatch between the agent and the
demonstrator. We next propose P-AIRL, an LfD algorithm that enables to learn the reward
when only a small number of demonstrations is available. We empirically evaluated P-12L
and P-AIRL on several continuous physical simulations and showed that our algorithms
successfully outperform the best demonstration and even state-of-the-art methods in 9 out
of 11 experiments.
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Appendix A. Algorithms

Algorithm 1 Preference-based Indirect Imitation Learning

—_ =

Input: Suboptimal state-only demonstrations Dg = {75},
Extract top N rank demonstrations D¥ from Dg
Initialize the policy network 7, discriminator Dy and Wasserstein critic gy
Empty the priority buffer B
for step t do
Generate trajectories 777 = (36, a%, - s%ﬁ,, agﬂi) by the policy 7
Train gy using B and D from Eqn 2
Update the score for each 77 using g4
Update B with 77 to store highest score trajectories
Update Ry from Eqn 4 using 77, B and Dy
Update 7 with PPO using the reward function Ry

: end for
: Output: Policy 7

Algorithm 2 Preference-based AIRL

Input: Suboptimal state-action demonstrations D = {r;}¥
Extract top N rank demonstrations D* from D
Initialize poicy 7w and Discriminator Dy
for step t do
Generate trajectories 777 = (s, al, ..., sgﬂi, aﬁ,) by the policy 7
Update Ry to minimize Lo using 7™, D* and D.
Update m with PPO using the reward function Ry
end for
Output: Policy 7

Appendix B. Experiment Details

B.1 P-I2L with Transition Dynamics Mismatch

In this appendix we explain more details of the experiment for Section 4:

B.1.1 EXPERIMENTAL SETUP

We trained the demonstrator agent via PPO (Schulman et al., 2017) using ground truth
rewards for 500 training steps (1M environmental steps) and checkpointed the policy for
every 10 training steps. We used the PPO implementation from OpenAl baselines (Dhariwal
et al., 2017) with the default hyperparameters. To construct the ranked demonstrations,
we generated a trajectory of length 1000 per each policy checkpoint.
HalfCheetah, we used worst 13 and 11 trajectories. For Walker, we used worst 6 trajectories

generated by the policy checkpoints.

For Hopper and
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We created new environments by changing some properties of the original demonstra-
tion environments, in order to evaluate under transition dynamic mismatches between the
demonstrator and imitator. First, we used the default environments HalfCheetah, Hop-
per and Walker in MuJoCo to collect the demonstrations. We then created GravityDou-
ble/Heavy/HighFrictionBody environments by modifying the corresponding parameters of
each environment for the imitator. GravityDouble has 2.0x gravity of the default environ-
ment. Heavy has 2.0x density and HighFrictionBody has 3.0x frictional coefficient on all
the leg and tail joints of the default environment.

We extracted single (N = 1) best suboptimal trajectory from ranked demonstrations
as an expert, and then trained the framework to surpass the demonstrator performance.
The proposed framework consists of 4 components: the priority buffer, the policy, the
discriminator and the critic. We fixed the capacity of the priority buffer to 10 episodes.
The policy network has 3 fully connected layers of 64 units with Tanh nonlinearities. We
train the discriminator network using the Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 3e-4. The critic network has 4 fully connected layers of 64 units with Tanh
nonlinearities. We train the critic network using the RMS-Prop optimizer with a learning
rate of 5e-5.

B.2 P-AIRL without Transition Dynamics Mismatch

In this appendix we explain more details of the experiment for Section 4:

B.2.1 EXPERIMENTAL SETUP

To evaluate the P-AIRL method, we conducted the experiments in the default configuration
environments for Hopper and Walker2D. We used the same ranked demonstrations collected
in Section 4. We first extracted a single best suboptimal trajectory from ranked demon-
strations as an expert, and then trained the framework. The policy network has 3 fully
connected layers of 64 units with Tanh nonlinearities. We train the discriminator network
using the Adam optimizer with a learning rate of 3e-4.

10
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