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Abstract

Design optimization is a central problem in the sciences, wherein computationally extensive sim-
ulations or expensive experiments are used to characterize physical systems. This paper focuses
on advancing sequential optimization in these applications, particularly at low data regimes, using
neural network surrogates. To this end, we introduce ∆−UQ, a new uncertainty estimator for
neural networks, based on stochastic data centering. Using empirical studies with synthetic data
and a real-world Inertial Confinement Fusion (ICF) simulator, we demonstrate the effectiveness of
the proposed approach in recovering optima from complex response surfaces.

Keywords: Design optimization, scientific simulators, uncertainty quantification, black-box op-
timization, deep neural networks

1. Introduction

At the core of AI-powered scientific discovery lies the need to perform design optimization for
maximizing a chosen target objective, and to enable automated exploration in high-dimensional
parameter spaces. Formally, denoting the underlying scientific process (e.g., a simulation code
or experiment) using a high-dimensional function f : D → R, our goal is to solve the following
optimization problem: x∗ = argmaxx∈D f(x). Here, D refers to a bounded design space comprising
D different parameters with their corresponding value ranges [ℓd, hd],∀d = 1 · · ·D. While f can be
explicitly evaluated for any x ∈ D, its first and second-order information are unknown, thus making
such a global optimization challenging. Commonly referred to as black-box optimization (Audet and
Hare, 2017) (shortly BBO), this formulation is adopted in a wide-range of applications (Schneider
et al., 2020; Wang et al., 2020; Gonzalvez et al., 2019; Ren et al., 2021).

Bayesian Optimization (BO) based on statistical surrogates form an important class of solutions
for BBO (Shahriari et al., 2015). Given an initial experiment design and their function evaluation,
these techniques incrementally select candidates to effectively achieve the so-called exploration-
exploitation trade-off, and to identify optimal designs in D. With deep neural networks (DNNs)
becoming the standard for approximating complex scientific processes, this paper studies their use
in design optimization. While deep models have produced state-of-the-art results in active learning
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Figure 1: Fourier spectrum of an NTK for an MLP model (A); spectra of an anchor ensemble (B); and
NTK spectra from ∆−UQ (C). Note, the inputs are pre-processed through a sinusoidal PE. We
make two key observations – a) shifts in the input domain cause the effective NTK to be distinct
as a function of the shift c; and b) ∆−UQ achieves a similar effect but with a single model.

for classification (Ash et al., 2019), obtaining reliable uncertainties and understanding their utility
in BBO are ongoing topics of research. In particular, our focus is on scientific problems, where the
computational or financial cost of obtaining a new evaluation of the function f can be prohibitively
expensive. In practice, existing solutions tend to be ineffective, even in moderately high-dimensional
design spaces (4-10), due to the lack of meaningful uncertainty estimates with such low sample sizes.

Proposed Work. Our goal is to advance DNN-powered design optimization in scientific appli-
cations. To this end, we present a novel uncertainty estimator, ∆−UQ for DNNs, that is effective
even in low data regimes. Conceptually, ∆−UQ uses a stochastic data centering strategy to sample
from the hypothesis-space of solutions. For this study, we consider the problem of optimizing design
parameters for an inertial confinement fusion (ICF) (Betti and Hurricane, 2016) simulator. The
physics of ICF fusion ignition are predicated on interactions between multiple strongly nonlinear
physics mechanisms that have multivariate dependence on a number of controllable parameters.
This presents the designer with a complicated response function that has sharp, nonlinear features,
while real experiments can often cost upwards of millions of dollars (Moses, 2010). Using empirical
comparisons to widely adopted uncertainty estimation techniques, we demonstrate the efficacy of
our approach in recovering the optima with standard Bayesian optimization.

2. ∆−UQ: Epistemic Uncertainties via Stochastic Data Centering

Background. Accurately estimating epistemic uncertainties in a deep neural network (DNN)
is critical for enabling effective design optimization. Existing approaches include Bayesian meth-
ods (Wilson and Izmailov, 2020; He et al., 2020; Neal, 2012; Blundell et al., 2015), Monte Carlo
approximations such as MC Dropout (Gal and Ghahramani, 2016), and empirical methods such
as Deep Ensembles (DEns) (Lakshminarayanan et al., 2017). Recent advances in the neural tan-
gent kernel (NTK) theory (Jacot et al., 2018; Arora et al., 2019; Bietti and Mairal, 2019; Lee
et al., 2019) provide a convenient framework for analyzing deep uncertainty estimators. The basic
idea of NTK is that, when the width of a neural network tends to infinity and the learning rate
of SGD tends to zero, the function f(x;θ) converges to a solution obtained by kernel regression

using the NTK defined as Kxixj = Eθ

〈
∂f(xi,θ)

∂θ ,
∂f(xj ,θ)

∂θ

〉
. When the samples xi, xj ∈ Sd−1, i.e.,

points on the hypersphere and have unit norm, the NTK for a simple 2 layer ReLU MLP can be
simplified as a dot product kernel (Arora et al., 2019; Bietti and Mairal, 2019; Lee et al., 2019):
Kxixj = hNTK(x

⊤
i xj) =

1
2πx

⊤
i xj(π − cos−1(x⊤i xj)).
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2.1 Anchor Ensembles: Ensembling via Data Centering

We use training data D = {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y, to train a model f(θ) ∈ H with
randomly initialized weights θ0 and hypothesis space H. Our idea is to center the dataset around
an anchor c, i.e., a sample randomly drawn from D, and train the model fc. If the NTK induced
by fc is shift-invariant, we would obtain identical models for different anchors, i.e., fc1 = · · · = fck .
However, NTKs for MLPs or CNNs are not inherently shift-invariant (Lee et al., 2019), and hence
we find that the variation across the predictions is a strong indicator of epistemic uncertainties.

Effect of shifted training on NTK: Assuming xi − c and xj − c are unit norm, we simplify
hNTK((xi − c)⊤(xj − c)) using a Taylor series expansion for cos−1: cos−1(u − c) ≈ cos−1(u) +

c√
1−(u−c)2

. Expanding (xi − c)⊤(xj − c) as x⊤i xj − c⊤(xi +xj − c) and letting v = (xi +xj − c), we

obtain the expression for hNTK under a shifted domain as follows:

K(xi−c)(xj−c) ≈
1

2π
x⊤i xj(π − cos−1(x⊤i xj))−

1

2π
c⊤v(π − cos−1(x⊤i xj))−

c(x⊤i xj − c⊤v)

2π
√

1− (x⊤i xj − c⊤v)2

= Kxixj − Γxi,xj ,c, (1)

where we combine all terms dependent on c into Γxi,xj ,c, which also behaves as a dot product kernel.
From (1), we note that a trivial shift in the domain results in a non-trivial shift in the NTK function
itself. In other words, (1) outlines the effective NTK as a function of c. We also note that Γ does
not affect the spectral properties of the original NTK, as we observe in Figure 1.

In contrast to existing ensembling approaches, even for a fixed θ0, we find that one can make
the NTK stochastic (in c) via stochastic centering. To demonstrate this, we compute the Fourier
spectra using the same MLP on several shifted domains in Figure 1(B). The original spectrum for
the MLP without any shift in the training domain is shown for comparison in 1(A). Note that, we
constructed positional embeddings (PE), based on sinusoidal functions, prior to building the MLP
model. We notice that each individual shift leads to a different NTK.

2.2 ∆−UQ: Rolling Anchor Ensembles into a Single Model

for inputs, targets in trainloader:

A = Shuffle(inputs) %% Anchors

D = inputs−A %% Delta
X d = torch.cat([A, D],axis=1)

y d = model(X d) %% prediction

loss = criterion(y d ,targets)

Figure 2: ∆−UQ Training.

Since different models in an anchoring-based ensemble are
trained with the same initialization, we present a new tech-
nique to approximate the uncertainties using a single model.
We perform a simple coordinate transformation by lifting the
domain to a higher dimension as E : x → {c, x− c}, we refer
to the residual by ∆ = x − c. This transformation allows
the use of multiple representations (w.r.t. many anchors) for
the same x, i.e., f∆({c1, x − c1}) = f∆({c2, x − c2}) = · · · =
f∆({ck, x − ck}), where f∆ refers to the ∆−UQ model that
takes the tuple ({ck, x− ck}) and predicts the target y.

Training. During training, for every input xi we choose an anchor as random sample from the
training dataset. Subsequently, we obtain the coordinate transformation {[c, xi−c], yi}, using which
we train the model. With vector-valued data, this is implemented as a simple concatenation. We
show simple a Pytorch snippet for training ∆−UQ . Over the course of training, every training
pair gets combined with a large number of anchors. Since the prediction on this training pair –
regardless of anchor choice – must always be the same, this places a consistency in the predictions
across different anchor choices. This consistency can trade-off with diversity in functions that can
be learned when compared to an anchor ensemble, where the models are trained independently.
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Anchoring-based Ensembles Training

Figure 3: Comparing anchor ensembles and ∆−UQ in function fitting with an MLP. As expected, we see
that the disagreement between models in an anchor ensemble correlate strongly with the epistemic
uncertainty, and that ∆−UQ , with a single model, matches this behavior very closely.

This can be seen in the comparisons of the NTK spectra for ∆−UQ with anchor ensembles in
Figures 1(C). In practice, we find that the diversity from this single model is still sufficiently
large, to estimate good quality uncertainties. We hypothesize that, since ∆−UQ uses simple data
manipulation to sample from the hypothesis space of the DNN, it can be sample efficient, unlike
competing methods that require more data to be able to produce meaningful uncertainties.

Inference. For a test sample xt, we obtain the prediction from ∆−UQ as the mean prediction
across several randomly chosen anchors; and the standard deviation around these predictions is our
estimate for the epistemic uncertainty. In other words, we marginalize out the effect of anchors to
obtain the final prediction mean and uncertainty. Formally, the predictive distribution is given by
p(yt|xt) =

∫
c∈X p(yt|xt, c,θ)p(c)dc. In Figure 3, we show an 1D regression example using 20 training

examples along with the predicted mean and estimated uncertainties. As it can be seen, both the
anchoring-based ensemble (left) and ∆−UQ training show high uncertainties around regions with
no training samples, though the former requires training 20 networks.

3. Experiments

Setup. We use the following baseline uncertainty estimation approaches in our study: (i) Gaussian
processes (GP); (ii) Monte-Carlo dropout (MCD); (iii) Bayesian neural networks (BNN) trained
via variational inferencing; and (iv) deep ensembles (DEns). For all neural network surrogates,
we computed positional embeddings (sinusoidal) of the raw parameter inputs prior to building a
fully-connected network with 4 hidden layers each containing 128 neurons and ReLU activation.
All methods were trained with the same set of hyperparameters: Adam optimizer learning rate
1e− 4 and 500 epochs, except for BNN, which required 1000 epochs for convergence. With MCD,
we used 50 forward passes for each sample to obtain the uncertainties. Finally, for ∆−UQ, we
set the number of anchors for inferencing as min(20, n), where n is the number of samples in the
observed dataset in any iteration. The DEns model was constructed using 5 constituent members,
each trained with a different initialization. The number of initial samples (Init.) and number of
steps (Steps) in the optimization were fixed for all methods. In each round of BO, we used 10, 000
samples for initialization and 15 restarts (i.e., multistart acquisition function optimization), and
finally one candidate was evaluated with the black-box function. Since the goal is to reach the global
optima with the fewest number of samples, we use the widely adopted area under the iteration vs
best achieved function value curve to obtain a holistic evaluation of different approaches.
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Figure 4: Convergence curves obtained with different uncertainty estimators: We show the best
function value achieved for two different functions at dimensions 2, 4 and 8 respectively (for 1
random seed). We also include the table for AUC scores (averaged across 5 random seeds).

Synthetic Data. In order to analyze the behavior of the proposed approach, we use a standard
Bayesian optimization setup (implemented using BoTorch), and use the popular expected improve-
ment (EI) score to perform candidate selection. We first consider two benchmark functions, namely
Ackley and Levy, in varying dimensions. From Figure 4, we find that ∆−UQ produces significantly
higher AUC scores in comparison to existing baselines. While MCD and DEns behave reasonably
well in low dimensions, their performance suffers as dimension increases. Further, we find that the
performance of BNN is generally lower due to the low small samples sizes that we operate in.

3.1 Use-Case: Inertial Confinement Fusion

In this section, we test our method’s performance on a real-world scientific application: controlled
nuclear fusion via inertial confinement. In the indirect-drive approach to inertial confinement fusion
(ICF), a small millimeter-sized spherical capsule filled with hydrogen isotopes (such as deuterium
and tritium) are compressed with high-energy x-rays to high temperatures and densities, at which
conditions the isotopes can fuse together and release large quantities of energy. The goal of ICF
research is to find a design (e.g. capsule material composition and geometry) that when compressed
will produce more energy than it consumes (such that it yields positive net energy gain). However, a
major challenge is that ICF experiments are costly and the design space vast, making optimization
via experimentation difficult. Furthermore, computer models that could be used in digital design
and in silico engineering require significant computational resources. As such, a data-efficient
algorithm for design optimization could significantly accelerate the pursuit of ICF.
The Hydra Simulator As a test of our proposed methods, we created a database of 35,000 ICF
simulations using the radiation-hydrodynamics code Hydra (Marinak et al., 2001). The workflow,
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Figure 5: Sequential optimization results with the Hydra simulator in ICF. In each case, we start
with 10 initial samples and run 50 rounds of adaptive sampling. We show the convergence curves
and corresponding AUC scores for all methods. We also illustrate the optimal design identified
by our method along with the known optima (inferred using a large experiment design.)

built with Merlin (Peterson et al., 2022), varied eight design parameters, variations of the National
Ignition Facility (NIF) (Moses, 2010) experiment N210808. Seven of the parameters specify the ge-
ometry of the capsule, which is comprised of three layers of varying thickness of high-density carbon
doped with a varying percentage of tungsten. Six of the design parameters (P DOPANT LR[1,2,3]
and THICKNESS LR[1,2,3]) define these layers’ atomic percentage of dopant and thickness in cen-
timeters, respectively. Another design variable (THICKNESS ICE) defines the thickness (cm) of
the frozen deuterium-tritium ice fuel layer inside the capsule. The final design variable (SC PEAK)
adjusts the length of final x-ray drive on the capsule (in nanoseconds) around the baseline design,
such that negative(positive) values indicate a shorter(longer) compressing drive and consequently
less(more) energy put into the experiment.

To construct the dataset, we created a 1000-point latin-hypercube stencil of the seven capsule
parameters and moved this stencil linearly through the eighth SC PEAK variable, such that the
same capsule designs were simulated at both low and high energy. For these 35,000 simulations,
the best design produced slightly more than 18 mega-joules of energy yield (180 simulator units of
energy), which would correspond to a energy gain of approximately 9, if realized in an experiment.
The brute-force optimal design can be found in red in the right of Figure 5. The 35,000 simulations
consumed approximately 8,750 core-hours on the Lassen supercomputer at LLNL (Computing,
2022). Note, we first fit a surrogate model to the data, and then perform a series of sequential
optimization experiments on that surrogate.

Results. From the results in Figure 5, we find that even in this real-world setting, the proposed
approach consistently leads to faster convergence to the optimum (indicated by higher AUC scores).
Both MCD and DEns perform comparably, but tend to converge to other local optima in the multi-
modal response surface of Hydra. We also plot the design identified using our approach to the known
optima inferred using a large experiment design (∼ 35K samples).

4. Conclusion

We introduced a new method to estimate epistemic uncertainty in deep neural networks, and
demonstrated its utility in sequential optimization with scientific simulators. The efficacy of our
approach even in low sample regimes warrants further analysis of its behavior and investigating
extensions to other model architectures such as graph neural networks and transformers.
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