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Abstract

Active learning has demonstrated data efficiency in many fields. Existing active learning
algorithms, especially in the context of deep Bayesian active models, rely heavily on the
quality of uncertainty estimations of the model. However, such uncertainty estimates could
be heavily biased, especially with limited and imbalanced training data. In this paper, we
propose BALanCe, a deep Bayesian active learning framework that mitigates the effect
of such biases. Concretely, BALanCe employs a novel acquisition function which lever-
ages the structure captured by equivalence hypothesis classes and facilitates differentiation
among different equivalence classes. Intuitively, each equivalence class consists of instan-
tiations of deep models with similar predictions, and BALanCe adaptively adjusts the
size of the equivalence classes as learning progresses. Besides the fully sequential setting,
we further propose Batch-BALanCe—a generalization of the sequential algorithm to the
batched setting—to efficiently select batches of training examples that are jointly effective
for model improvement. We show that Batch-BALanCe achieves state-of-the-art perfor-
mance on several benchmark datasets for active learning, and that both algorithms can
effectively handle realistic challenges that often involve multi-class and imbalanced data.

Keywords: Deep Active Learning, Bayesian Neural Network, Importance Sampling

1. Introduction

Active learning (AL) (Cohn et al., 1996; Tong and Koller, 2001; Dasgupta and Langford,
2011; Settles, 2012) characterizes a collection of techniques that efficiently select data for
training machine learning models. In a prototypical pool-based setup, an active learner
selectively queries the labels of data points from a pool of unlabeled examples, and incurs a
certain cost for each label obtained. The goal is to minimize the total cost while achieving
a target level of performance. A common practice for active learning is to devise efficient
surrogates, aka acquisition functions, to assess the effectiveness of unlabeled data points in
the pool. There have been a vast body of literature and empirical studies (Huang et al.,
2010; Houlsby et al., 2011; Wang and Ye, 2015; Hsu and Lin, 2015; Huang et al., 2016;
Sener and Savarese, 2017; Ducoffe and Precioso, 2018; Ash et al., 2019; Liu et al., 2020;
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Yan et al., 2020) suggesting a variety of heuristics as potential acquisition functions for AL.
Among these methods, Bayesian Active Learning by Disagreement (BALD) (Houlsby et al.,
2011) has attained notable success in the context of deep Bayesian AL, while maintaining
the expressiveness of Bayesian models (Gal et al., 2017; Janz et al., 2017; Shen et al., 2017).

BALD greedily queries the data point that has the maximal mutual information with
the model parameters at each iteration. As discussed in §A.1, we show that there are
pessimistic scenarios where BALD may fail. These examples are generally applicable to
information-theoretic query strategies (Golovin et al., 2010). Inspired by Chen et al. (2016),
we propose a novel deep active learning framework with Bayesian neural networks (BNNs)
based on a decision-theoretic criterion. Our key contributions are highlighted below.

1. We propose BALanCe, a novel deep Bayesian AL framework that leverages disagree-
ment structures captured by equivalence classes over candidate models (see §2 for
its formal definition). Intuitively, an equivalence class consists of models that (ap-
proximately) agree on their predictions over i.i.d. unlabeled samples from the target
distribution.1 By annealing the diameter of equivalence classes BALanCe can adapt
to task difficulty at different stages of AL (§3.1).

2. We extend BALanCe to the batched setting, and propose efficient approximations
to handle the selections of queries in batches. The resulting algorithm, namely Batch-
BALanCe, which is based on a novel importance sampling strategy, can efficiently
scale to realistic batched learning tasks with reasonably large batch sizes (§3.2,§C).

3. We demonstrate the effectiveness of the proposed algorithms via an extensive empirical
study. Batch-BALanCe achieves state-of-the-art performance—sometimes by a large
margin—on several benchmark datasets involving challenging distributions such as
multi-class and imbalanced data (§4, §F).

2. Background and problem setup

Notations We consider pool-based Bayesian AL, where we are given an unlabelled dataset
Dpool drawn i.i.d. from some underlying data distribution. Further, assume a labeled
dataset Dtrain and a set of hypotheses H = {h1, . . . , hn}. We would like to distinguish a set
of (unknown) target hypotheses among the ground set of hypotheses H. Let H denote the
random variable that represents the target hypotheses. Let p(H) be a prior distribution
over the hypotheses. In this paper, we resort to BNN with parameters ω ∼ p(ω | Dtrain)

2.

Problem statement An AL algorithm will select samples from Dpool and query labels
from experts. The experts will provide label y for given query x ∈ Dpool. We assume
labeling each query x incurs a unit cost. Our goal is to find an adaptive policy for selecting
samples that allows us to find a hypotheses with target error rate σ ∈ [0, 1] while minimizing
the total cost of the queries. Formally, a policy π is a mapping π from the labeled dataset
Dtrain to samples in Dpool. We use Dπ

train to denote the set of examples chosen by π. Given
the labeled dataset Dπ

train, we define pERR(π) as the expected error probability w.r.t. the

1. Our selection criterion takes into account the informativeness of a query with respect to the target models,
while putting less focus on differentiating models with little disagreement on target data distribution.

2. We use the conventional notation ω to represent the parameters of a BNN, and use ω and h interchange-
ably to denote a hypothesis.
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posterior p(ω | Dπ
train). Let the cost of a policy π be cost(π) ≜ max |Dπ

train|, i.e., the
maximum number of queries made by policy π over all possible realizations of the target
hypothesis H ∈ H. Given a tolerance parameter σ ∈ [0, 1], we seek a policy with the
minimal cost, such that upon termination, it will get expected error probability less than
σ. Formally, we seek argminπ cost(π), s.t. pERR(π) ≤ σ.

The equivalence-class-based selection criterion A strategy in approximate AL in-
volves learning equivalence classes (ECs) (Golovin et al., 2010). In the following, we review
the concept and introduce the problem setup for EC-based selection criteria. We defer the
detailed discussion of the limitations of EC-based AL algorithms to §B.1 and §B.2.

Definition 1 (Equivalence Class) Let (H, d) be a metric space where H is a hypothesis
class and d is a metric. For a given set V ⊆ H and centers S = {s1, ..., sk} ⊆ V of size k,
let rS : V → [k] be a partition function over V and Di := {h ∈ V | rS(h) = i}, such that
∀i, j ∈ [k], rS(si) = i and ∀h ∈ Di, d(h, si) ≤ d(h, sj). Each Di ⊆ V is called an equivalence
class induced by si ∈ S.

Consider a pool-based AL problem with hypothesis space H, a sampled set V ⊆ H, and an
unlabeled dataset D̄pool which is drawn i.i.d. from the underlying data distribution. Each
hypothesis h ∈ H can be represented by a vector vh indicating the predictions of all sam-
ples in D̄pool. We can construct equivalence classes with the Hamming distances, which are
denoted as dH(h, h

′) and are calculated based on the predictions of D̄pool, and equivalence
class number k on sampled hypotheses V. Let dSH(V) := maxh,h′∈V:rS(h)=rS(h′) dH(h, h

′) be
the maximal diameter of equivalence classes induced by S. Therefore, the error rates of any
unordered pair of hypotheses {h, h′} that lie in the same equivalence class are at most dSH(V)
away from each other. If we construct the k equivalence-class-inducing centers (as in Defini-
tion 1) as the solution of the max-diameter clustering problem: C = argmin|S|=k d

S
H(V), we

can obtain the minimal worst-case relative error (i.e., difference in error rate) between hy-
potheses pair {h, h′} that lie in the same equivalence class. We denote E = {{h, h′} : rC(h) ̸=
rC(h′)} as the set all (unordered) pairs of hypotheses (i.e., undirected edges) corresponding
to different equivalence classes when the centers are C.

3. Our Approach

3.1 The BALanCe algorithm

In this paper, we resort to BNNs and MC dropout (Gal and Ghahramani, 2016) to estimate
the ECED objective ∆ECED. We train the BNN with all available labeled samples Dtrain at
each iteration. Hypotheses ω are sampled from the BNN posterior by MC dropout (Gal and
Ghahramani, 2016). In order to determine if there is an edge {ω̂, ω̂′} that connects a pair
of sampled hypotheses ω̂, ω̂′ (i.e., if they are in different equivalence classes), we calculate
the Hamming distance dH(ω̂, ω̂

′) between the predictions of ω̂, ω̂′ on the unlabeled dataset
D̄pool. If the distance is greater than some threshold τ , we consider the edge {ω̂, ω̂′} ∈ Ê ;
otherwise not. With BNNs, we can safely remove the offset term

(
1−maxω λ2

ω,y

)
since for a

reasonable sized model, maxω λ2
ω,y is close or equal to 1. We define the acquisition function

of BALanCe as:

∆BALanCe(x | Dtrain) ≜ EyEω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·
(
1− λω,yλω′,y

)
(1)
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where 1dH(ω̂k,ω̂
′
k)>τ is the indicator function which equals to 1 only when dH(ω̂k, ω̂

′
k) > τ . In

practice, the threshold τ is not known. Instead of using a fixed parameter τ , we adaptively
anneal τ by setting τ proportional to BNN’s validation error rate in each AL iteration.
BALanCe iterates until the trained BNN achieves the target accuracy.

In practice, we cannot directly compute the expectation Eq. (1); instead we run Alg. 1 as
an approximation: We first acquire K pairs of MC dropout samples {ω̂, ω̂′}. The Hamming
distances dH(ω̂, ω̂

′) between these pairs of BNN MC dropout samples are computed. Next,
we calculate the weight discount factor 1−λω̂k,yλω̂′

k,y
for each possible label y and each pair

{ω̂, ω̂′} where dH(ω̂, ω̂′) > τ . At last, we take the expectation of the discounted weight over
all y configurations. In summary, ∆BALanCe is approximated as follows:

∆BALanCe(x | Dtrain) ≈
∑
ŷ

K∑
k=1

p(ŷ | ω̂k) + p(ŷ | ω̂′
k)

2K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ ·

(
1− λω̂k,ŷλω̂′

k,ŷ

)
K

.

Note that in our algorithms we never explicitly construct equivalence classes on MC
dropout samples, due to the fact that (1) it is intractable to find the exact solution for
the max-diameter clustering problem (see §2) and (2) an explicit approximate partition-
ing of the hypotheses samples tends to introduce “unnecessary” edges where the incident
hypotheses are closeby (e.g., if a pair of hypotheses lie on the adjacent edge between two
hypothesis partitions), and therefore may overly estimate the utility of a query. Neverthe-
less, we conducted an empirical study of a variant of BALanCe with explicit partitioning
(which underperforms BALanCe). We defer detailed discussion on this approach, as well
as empirical study, to §F.3.

3.2 Batch-BALanCe: Batch-mode AL

We now consider a batch-mode variant of BALanCe, via a novel acquisition function
∆Batch−BALanCe by generalizing ∆BALanCe to subsets of points x1:B, where x1:B ≜ {x1, . . . , xB}
and B is the batch size. To avoid the combinatorial explosion when evaluating subsets, we
compute the acquisition function ∆Batch−BALanCe({x1, . . . , xB} | Dtrain) in a greedy manner.
In each acquisition iteration b inside the batch, the acquisition function becomes

∆Batch−BALanCe(x1:b | Dtrain)

≈
∑
ŷ1:b

(
K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

2K

)
·

 K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ ·

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)
K

 .
(2)

The algorithm of Batch-BALanCe and algorithm details are provided in Alg. 2 and
§C. The computational complexity analysis is deferred to §C.4.

4. Experiments

In this section, we sought to show the efficacy of BALanCe and Batch-BALanCe on
several diverse datasets, including MNIST (LeCun et al., 1998), EMNIST (Cohen et al.,
2017) and Fashion-MNIST (Xiao et al., 2017). More experiments on tabular datasets and
larger datasets with different metrics, including macro-average AUC, macro-average F1,
and NLL, are provided in §F.
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4.1 Experimental setup

We split each dataset into unlabeled AL pool Dpool, initial training dataset Dtrain, valida-
tion dataset Dval, test dataset Dtest and unlabeled dataset D̄pool. D̄pool is only used for
calculating the Hamming distance between hypotheses and is never used for training BNNs
or acquiring labels. At each iteration, we train BNNs with the acquired training dataset
and select samples from Dpool to query labels according to the acquisition function of a
chosen algorithm. We provide more experiment details and dataset description in Table 1
and §E.

Besides random selection, BALD and BatchBALD, we also compare BALanCe and
Batch-BALanCe with Variation Ratio (Freeman and Freeman, 1965) and Mean STD
(Kendall et al., 2015). Note that BALanCe and Batch-BALanCe “activize” BNNs. There-
fore, we resort to BALD and Batch-BALD as the natural choice of baseline algorithms,
which, to the best of the authors’ knowledge, achieve state-of-the-art performance for deep
Bayesian AL. Other baselines considered in this paper, including Mean-STD and Variation
Ratio, are representative variants of deep Bayesian AL heuristics.

CINIC10 EMNIST RepeatedMNIST MNIST HAR DRIFT Dry Bean
Balanced ByMerge ByClass

# classes 10 47 47 62 10 10 6 6 7
# samples 270,000 131,600 814,255 814,255 190,000 70,000 10,299 13,910 13,611
budget 1,400 600 600 450 300 260 200 200 200

τ val err
4

val err
4

val err
4

val err
4

val err
4

val err
4

val err
4

val err
4

val err
4

|D̄pool| 40,000 18,800 188,000 188,000 10,000 10,000
5,340

(AL pool)
9,898

(AL pool)
9,597

(AL pool)

Table 1: Experiment details on different datasets.

4.2 Batch-mode deep Bayesian AL on balanced dataset

We also compare 5 different models with acquisition sizes B = 1, B = 3 and B = 10 on
MNIST dataset. The MC dropout numberK = 100 for all the methods. The threshold τ for
Batch-BALanCe is annealed by setting τ to ε/2 in each AL loop. Note that when B = 3,
we can compute the acquisition function with all y1:b configurations for b = 1, 2, 3. When
b ≥ 4, we approximate the acquisition function with Monte-Carlo sampling. Fig. 1 (a)-(c)
show that BALanCe and Batch-BALanCe are consistently better than other baseline
methods for MNIST dataset.

We further compare Batch-BALanCe with other baseline methods on three datasets
with balanced classes—Repeated-MNIST, Fashion-MNIST and EMNIST-Balanced. The
acquisition size B for Repeated-MNIST and Fashion-MNIST is 10 and is 5 for EMNIST-
Balanced dataset. The threshold τ of Batch-BALanCe is annealed by setting τ = ε/4.
The learning curves of accuracy are shown in Fig. 1 (d)-(f). For Repeated-MNIST dataset,
BALD performs poorly and is worse than random selection. BatchBALD is able to cope
with the replication after certain number of AL loops, which is aligned with result showed
in Kirsch et al. (2019). The Batch-BALanCe is able to beat all the other methods on this
dataset. An ablation study about repetition number and performance can be found in §F.1.
For Fashion-MNIST dataset, Batch-BALanCe outperforms random selection but the other
methods fail. For EMNIST dataset, Batch-BALanCe is slightly better than BatchBALD.
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(a) MNIST
B = 1, K = 100
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(c) MNIST
B = 10, K = 100
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(d) Repeated-MNIST
B = 10,K = 100
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(e) Fashion-MNIST
B = 10, K = 100

0 100 200 300 400 500 600

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Random
BatchBALD
Mean STD
Variation Ratio
Batch-BALanCe

(f) EMNIST-Balanced
B = 5, K = 10
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(g) EMNIST-ByMerge
B = 5, K = 10
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(h) EMNIST-ByClass
B = 5, K = 10

Figure 1: Experimental results on MNIST, Repeated-MNIST, Fashion-MNIST, EMNIST-
Balanced, EMNIST-ByClass and EMNIST-ByMerge dataset. For all plots, the y-axis rep-
resents accuracy and x-axis represents the number of queried examples.

4.3 Batch-mode deep Bayesian AL on imbalanced dataset

We further compare different algorithms with two imbalanced datasets: EMNIST-ByMerge
and EMNIST-ByClass. The τ for Batch-BALanCe is set ε/4 in each AL loop. B = 5 and
K = 10 for all the methods. As pointed out by Kirsch et al. (2019), BatchBALD performs
poorly in imbalanced dataset settings. BALanCe and Batch-BALanCe can cope with the
imbalanced data settings. The result is shown in Fig. 1 (g) and (h). Further results on
other datasets and under different metrics are provided in §F.

5. Conclusion

We have proposed a novel deep Bayesian active learning framework, with BALanCe for the
sequential setting and Batch-BALanCe as the batched-mode extension. BALanCe and
Batch-BALanCe employ novel acquisition functions which leverage hypothesis structure
captured by equivalence classes without explicitly constructing them. Batch-BALanCe
selects a batch of samples at each iteration which can reduce the overhead of retraining the
model and save labeling effort. The proposed algorithms achieve state-of-the-art perfor-
mance on active learning benchmarks both in balanced and imbalanced dataset settings.
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Appendix A. Challenges with deep Bayesian AL

A.1 The most informative selection criterion

BALD uses mutual information between the model prediction for each sample and pa-
rameters of the model as the acquisition function. It captures the reduction of model
uncertainty by receiving a label y of a data point x: I (y;ω | x,Dtrain) = H (y | x,Dtrain) −
Ep(ω|Dtrain) [H (y | x, ω,Dtrain)] whereH denotes the Shannon entropy Shannon (1948). Kirsch
et al. (2019) further proposed BatchBALD as an extension of BALD whereby the mutual
information between a joint of multiple data points and the model parameters is estimated
as

∆BatchBALD(x1:B | Dtrain) ≜ I(y1:B;ω | x1:B,Dtrain).

A numerical example illustrating the limitation of BALD BALD can be inef-
fective when the hypothesis samples are heavily biased and cluttered towards sub-optimal
hypotheses. Below, we provide a concrete example where such selection criterion may be
undesirable.
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Figure 2: A stylized example where the most informative selection criterion underperforms
the equivalence-class-based criterion.

Consider the problem shown in Fig. 2. The hypothesis class H = {h1, . . . , hn} is struc-
tured such that

dH(hi, hj) =

{
21−i − 21−j if i < j,

21−j − 21−i o.w.

where dH(hi, hj) denotes the fraction of labels hi and hj disagree upon when making predic-
tions on i.i.d. samples of data points. We further assume that for any subset of hypotheses
S ⊆ H, there exists a data point whose label they agree upon. Assume each hypothesis
hi has an equal probability and the target error rate is σ. On the one hand, note that
BALD does not consider dH(hi, hj), and therefore on average it requires log n examples to
identify any target hypothesis. On the other hand, to achieve a target error rate of σ, one
only needs to differentiate all pairs of hypotheses hi, hj of distance dH(hi, hj) > σ (i.e., by
selecting training examples to rule out at least one of hi, hj). Therefore, a “smarter” AL
policy could query examples to sequentially check the consistency of h1, h2, . . . , hn until all
remaining hypotheses are within distance σ. It is easy to check that this requires log(1/σ)
examples before reaching the error rate σ. The gap between BALD and the above policy

logn
log(1/σ) could be large as n increases.

A.2 Empirical validation: Illustration and additional experiments

An empirical example We now show an empirical example to provide some intuition as
to why BALanCe and Batch-BALanCe are effective in practice. In Fig. 3, we demonstrate
the potential issues introduced by MC dropout when sampling from a BNN trained on
a benchmark multi-classification dataset. Here, the hypothesis samples are grouped into
equivalence classes (ECs) (Golovin et al., 2010) according to the Hamming distance between
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their predictions as shown in Fig. 3a. Informally, an equivalence class contains hypotheses
that are close in their predictions for a randomly selected set of examples (See §2 for its
formal definition). We note from Fig. 3b that the probability mass of the models sampled
from the BNN is centered around the mode of the approximate posterior distribution,
while little coverage is seen on models of higher accuracy. Consequently, MIS strategy
tends to select training examples that reveal the maximal information w.r.t. the sampled
distribution, rather than guiding the active learner towards learning high accuracy models.
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Figure 3: (a) Samples from posterior BNN via MC dropout; embedding is generated by applying
t-SNE on the disagreement between hypotheses. The colorbar indicates the (approximate) test
accuracy of the sampled neural networks on the MNIST dataset. See §A.2 for details of the training
and sampling process. (b) Probability mass (y-axis) of equivalence classes (sorted by the average
accuracy of the enclosed hypotheses as the x-axis).

The detailed setup for generating the above example is as follows. We train a BNN
with an imbalanced MNIST training subset that contains 28 images for each digit in [1-8]
and 1 image for digits 0 and 9. The cross-entropy loss is reweighted to balance the training
dataset during training. We obtain 200 MC dropout samples of the trained BNN and use
them to get the predictions on D̄pool. We compute the Hamming distances for predictions
all sample pairs and use these precomputed distances to plot the predictions with t-SNE
(Van der Maaten and Hinton, 2008). The equivalence classes are approximated by farthest-
first traversal algorithm (FFT) (Gonzalez, 1985). In Fig. 3, the equivalence classes are
highly imbalanced. The ground truth D̄pool dataset labels represent the target hypotheses
embedding. This figure highlights the scenario where the equivalence class-based methods,
e.g. ECED and BALanCe are better than MIS and BALD.

Quantitative evaluation We compare BALD and BALanCe with batch size B = 1
and different K’s on an imbalanced MNIST dataset which is created by removing a random
portion of images for each class in the training dataset. Fig. 4 (a) shows that BALanCe
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performs the best with a large margin to the curve of BALD. Note that BALanCe with
K = 50 is also better than BALD with K = 100.
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(a) Acc vs. # samples for different K’s.
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Figure 4: Learning curves of different K and τ for BALanCe.

We also study the influence of τ forBALanCe on MNIST dataset. Denote the validation
error rate of BNN model by ε. BALanCe with fixed τ = 0.05, 0.15, 0.3 and annealing
τ = ε/2, ε/4, ε/8 are run on MNIST dataset and the learning curves are shown in Fig. 4
(b). The BALanCe is robust to τ . However, when τ is set 0.3 and the test accuracy gets
around 0.88, the accuracy improvement becomes slow. The reason for this slow improvement
is that the threshold τ is too large and all the pairs of MC dropout samples are treated as
in the same equivalence class and the acquisition functions for all the samples in the AL
pool are zeros. In another word, the BALanCe degrades to random selection when τ is
too large.

Appendix B. The equivalence-class-based selection criterion

B.1 Equivalence class edge cutting

Consider the problem statement in §2. If σ = 0 and tests are noise-free, this problem can be
solved near-optimally by the equivalence class edge cutting (EC2) algorithm (Golovin et al.,
2010). EC2 employs an edge-cutting strategy based on a weighted graph G = (H, E), where
vertices represent hypotheses and edges link hypotheses that we want to distinguish between.
Here E ≜ {{h, h′} : r(h) ̸= r(h′)} contains all pairs of hypotheses that have different
equivalence classes. We define a weight function W : E → R≥0 by W ({h, h′}) ≜ p(h) ·p(h′).
A sample x with label y is said to ”cut” an edge, if at least one hypothesis is inconsistent
with y. Denote E(x, y) ≜ {{h, h′} ∈ E : p(y | x, h) = 0 ∨ p(y | x, h′) = 0} as the set of edges
cut by labeling x as y. The EC2 objective is then defined as the total weight of edges cut

by the current Dtrain: fEC2 (Dtrain) ≜ W
(⋃

(x,y)∈Dtrain
E (x, y)

)
. EC2 algorithm greedily
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maximizes this objective per iteration. The acquisition function for EC2 is

∆EC2 (x | Dtrain) ≜ Ey [f (Dtrain ∪ {(x, y)})− f(Dtrain) | Dtrain] .

B.2 Equivalence class edge discounting algorithm

The acquisition function of Equivalence Class Edge Discounting algorithm (ECED) (Chen
et al., 2016) takes undesired contribution by noise into account. Given a data point and
its label (x, y), ECED discounts all model parameters by their likelihood ratio: λh,y ≜

p(y|h,x)
maxy′ p(y

′|h,x) . After we get Dtrain, the value of assigning label y to a data point x is defined as

the total amount of edge weight discounted: δ(x, y | Dtrain) ≜
∑

{h,h′}∈E p(h,Dtrain)p(h
′,Dtrain)·

(1 − λh,yλh′,y), where E = {{h, h′} : r(h) ̸= r(h′)} consists of all unordered pairs of
hypothesis corresponding to different equivalence classes. Further, ECED augments the
above value function δ with an offset value such that the value of a non-informative
test is 0. The offset value of labeling x as label y is defined as: ν(x, y | Dtrain) ≜∑

{h,h′}∈E p(h,Dtrain)p(h
′,Dtrain) · (1−maxh λ

2
h,y). The overall acquisition function function

of ECED is:

∆ECED(x | Dtrain) ≜ Ey [δ(x, y | Dtrain)− ν(x, y | Dtrain)] . (3)

Limitation of the ECED algorithm ECED is not directly applicable to deep Bayesian
AL tasks, since computing the acquisition function in Eq. (3) needs to integrate over the hy-
potheses space, which is intractable for large models (such as deep BNN). Chen et al. (2017)
approximate the acquisition function by dynamic hypothesis enumeration, which enumer-
ates the hypotheses in decreasing order of probability. Unfortunately, such an enumeration
strategy is still infeasible for BNNs. Moreover, it is nontrivial to extend to batch-mode
setting since the number of possible candidate batches and the number of labels for the
candidate batch grow exponentially with the batch size. Therefore, we need more efficient
approaches to approximate the ECED acquisition function when dealing with BNNs in
both fully sequential setting and batch-mode setting.

Appendix C. Algorithmic details

C.1 Derivation of acquisition functions of BALanCe and Batch-BALanCe

In each AL loop, the ECED algorithm selects a sample from AL pool according to the
acquisition function

∆ECED(x | Dtrain) ≜ Ey

 ∑
{ω,ω′}∈E

Wω,ω′

(
1− λω,yλω′,y −

(
1−max

ω
λ2
ω,y

)) ,

where E is the total edges with adjacent nodes in different equivalence classes and λω,y =
p(y|ω)

maxy′ p(y
′|ω) . Wω,ω′ is the weight for edge {ω, ω′} which is maintained by ECED algorithm.

After we observe y of selected x, we update the weights of all edges withWω,ω′ = Wω,ω′ ·p(y |
ω)p(y | ω′). In the deep Bayesian AL setting, the offset term 1−maxω λ2

ω,y can be removed
when we use deep BNN. However, we can not enumerate all {ω, ω′} ∈ E in this setting since
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there are an infinite number of hypotheses in the hypothesis space. Moreover, we can not
even estimate the acquisition function of ECED on a subset of sampled hypotheses by MC
dropouts since building equivalence classes with best ϵ is NP-hard.

If we sample {ω, ω′} according to posterior p(ω | Dtrain) and check whether {ω, ω′} ∈ Ê
by Hamming distance in the way we describe in §3.1, we will get

∆ECED(x | Dtrain) ≈ Ey

 ∑
{ω,ω′}∈E

Wω,ω′
(
1− λω,yλω′,y

)
≈ Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·

Wω,ω′

p(ω | Dtrain)p(ω′ | Dtrain)
·
(
1− λω,yλω′,y

)]
∝ Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·

(
1− λω,yλω′,y

)]
.

Inspired by the weight discounting mechanism of ECED, we define the acquisition function
of BALanCe ∆BALanCe(x | Dtrain) as

∆BALanCe(x | Dtrain) ≜ Ey

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·

(
1− λω,yλω′,y

)]
.

After we get K pairs of MC dropouts, the acquisition function ∆BALanCe(x | Dtrain) can
be approximated as follows:

∆BALanCe(x | Dtrain) = Ep(ω|Dtrain)Ep(y|ω)
[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ

(
1− λω,yλω′,y

)]
≈
∑
ŷ

(
1

2K

K∑
k=1

p(ŷ | ω̂k) + p(ŷ | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷλω̂′

k,ŷ

)]
.

In batch-mode setting, the acquisition function of Batch-BALanCe for a batch x1:b is

∆Batch−BALanCe(x1:b | Dtrain) ≜ Ey1:b

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ ·

(
1− λω,y1:bλω′,y1:b

)]
.

Similar to the fully sequential setting, we can approximate ∆Batch−BALanCe(x1:b | Dtrain)
with K pairs of MC dropouts. The x1:b are chosen in a greedy manner. For iteration b
inside a batch, the x1:b−1 are fixed and xb is selected according to

∆Batch−BALanCe(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b|ω)
[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
≈
∑
ŷ1:b

(
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)]
.

C.2 Efficient implementation for batch-mode setting

In Alg. 2, we can store p(ŷ1:b−1 | ω̂k) in a matrix P̂1:b−1 and p(ŷ1:b−1 | ω̂′
k) in matrix P̂1:b−1

for iteration b− 1. The shape of P̂1:b−1 and P̂ ′
1:b−1 is K ×Cb−1. p(ŷb | ω̂k) can be stored in

P̂b and p(ŷb | ω̂′
k) in P̂ ′

b. The shape of P̂b and P̂ ′
b is K × C. Then, we compute probability
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of p(ŷ1:b) as follows:

p(ŷ1:b) =
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

=
1

2K

K∑
k=1

p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′
k)p(ŷb | ω̂′

k)

=
1

2K
(P̂⊤

1:b−1P̂b + P̂ ′⊤
1:b−1P̂

′
b).

The P̂⊤
1:b−1P̂b and P̂ ′⊤

1:b−1P̂
′
b can be flattened to shape 1×Cb after matrix multiplication.

We store maxŷ1:b−1
p(ŷ1:b−1 | ω̂k) in a matrix Â1:b−1 and maxŷ′1:b−1

p(ŷ′1:b−1 | ω̂′
k) in a matrix

Â′
1:b−1. The shape of Â1:b−1 and Â′

1:b−1 is K×1. We can compute λω̂,ŷ1:b inside edge weight
discount expression by

Â1:b = Â1:b−1 ⊙max
ŷb

P̂b;

p(ŷ1:b | ω̂k) = p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) = P̂1:b−1 ⊗ P̂b;

λω̂,ŷ1:b =
p(ŷ1:b | ω̂k)

maxŷ1:b p(ŷ1:b | ω̂k)
=

P̂1:b−1 ⊗ P̂b

Â1:b

.

⊙ is element-wise matrix multiplication and ⊗ is the outer-product operator along the
first dimension. After the outer product operation, we can reshape the matrix by flattening
all the dimensions after 1st dimension to maintain consistency. Similarly, we can compute
Â′

1:b, p(ŷ1:b | ω̂′
k) and λω̂′,ŷ1:b with matrix operations. The indicator function 1dH(ω̂k,ω̂

′
k)>τ

can be stored in a matrix with shape K × 1. The acquisition function can be computed
with all matrix operations as follows:

∆Batch−BALanCe(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b|ω)
[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
≈
∑
ŷ1:b

(
1

2K

K∑
k=1

p(ŷ1:b | ω̂k) + p(ŷ1:b | ω̂′
k)

)[
1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)]

=

(
1

K
1D(ω̂k,ω̂

′
k)>τ

)⊤
(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙
P̂ ′
1:b−1 ⊗ P̂ ′

b

Â′
1:b

)[
1

2K
(P̂⊤

1:b−1P̂b + P̂ ′⊤
1:b−1P̂

′
b)

]⊤
.
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C.3 Importance sampling of configurations

Given that p(y1:b | ω) can be factorized as p(y1:b−1 | ω) · p(yb | ω), the acquisition function
can be written as:

∆Batch−BALanCe(x1:b | Dtrain)

≜Ey1:b

[
Ep(ω|Dtrain)1dH(ωk,ω

′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(ω|Dtrain)Ep(y1:b|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ωk,ω

′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(ω|Dtrain)Ep(y1:b−1|ω)Ep(yb|ω)

[
Eω,ω′∼p(ω|Dtrain)1dH(ωk,ω

′
k)>τ

(
1− λω,y1:bλω′,y1:b

)]
Suppose we have M samples of y1:b−1 from p(y1:b−1), we perform importance sampling using
p(y1:b−1) to estimate the acquisition function:

∆Batch−BALanCe(x1:b | Dtrain)

=Ep(ω|Dtrain)Ep(y1:b−1)
p(y1:b−1 | ω)
p(y1:b−1)

Ep(yb|ω)
[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
=Ep(y1:b−1)Ep(ω|Dtrain)Ep(yb|ω)

p(y1:b−1 | ω)
p(y1:b−1)

[
Eω,ω′∼p(ω|Dtrain)1dH(ω,ω′)>τ

(
1− λω,y1:bλω′,y1:b

)]
≈ 1

M

M∑
ŷ1:b−1

∑
ŷb

1
K

∑K
k=1 p(ŷ1:b−1 | ω̂k)p(ŷb | ω̂k) + p(ŷ1:b−1 | ω̂′

k)p(ŷb | ω̂′
k)

p(ŷ1:b−1)
·

[
1

K

K∑
k=1

1dH(ω̂k,ω̂
′
k)>τ

(
1− λω̂k,ŷ1:bλω̂′

k,ŷ1:b

)]

=

(
1

K
1dH(ω̂k,ω̂

′
k)>τ

)⊤
(
1− P̂1:b−1 ⊗ P̂b

Â1:b

⊙
P̂ ′
1:b−1 ⊗ P̂ ′

b

Â′
1:b

) 1

M

P̂⊤
1:b−1P̂b + P̂ ′⊤

1:b−1P̂
′
b

1⊤
(
P̂1:b−1 + P̂ ′

1:b−1

)
⊤

.

Here we save p(ŷ1:b−1 | ω̂k) and p(ŷ1:b−1 | ω̂′
k) for M samples in P̂1:b−1 and P̂ ′

1:b−1. The

shape of P̂1:b−1 and P̂ ′
1:b−1 is K ×M . ⊙ is element-wise matrix multiplication and ⊗ is the

outer-product operator along first dimension. After the outer product operation, we can
reshape the matrix by flattening all the dimensions after the 1st dimension. 1 is a matrix
of 1s with shape K×1. P̂⊤

1:b−1P̂b and P̂ ′⊤
1:b−1P̂

′
b are of shape M ×C and their sum is reshape

to 1×MC after divided by 1⊤
(
P̂1:b−1 + P̂ ′

1:b−1

)
.

C.4 Computational complexity

Let C be the number of classes, B be the acquisition size, K be the MC dropout number and
M be the sample number for y1:b configurations. When we compute ∆Batch−BALanCe (x1:b | Dtrain)
by enumerating all y1:b configurations, the computational complexity of Batch-BALanCe
is O

(
|Dpool| ·B · CB · 2K

)
. The computational complexity of Batch-BALanCe by Monte-

Carlo sampling is O
(
|Dpool| ·B ·min{CB,M} · 2K

)
and it is similar to the one of Batch-

BALD. Besides, our algorithms need to iterate over D̄pool once to determine the pair dis-
tances and D̄pool is very small compared to Dpool.
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Algorithm 1 Active selection w/ BALanCe

1: input: Dpool,D̄pool, a trained BNN and threshold τ
2: draw K pairs of MC dropout samples {ω̂k, ω̂

′
k}Kk=1 from the trained BNN

3: for k ∈ [K] do
4: calculate the indicator function 1dH(ω̂k,ω̂

′
k)>τ with predictions on D̄pool

5: for each x ∈ Dpool do
6: ∆(x) = 0
7: for each ŷ do
8: p(ŷ) = 1

2K

∑K
k=1 (p(ŷ | ω̂k) + p(ŷ | ω̂′

k))
9: δ(x, ŷ) = 0

10: for k ∈ [K] do
11: if 1dH(ω̂k,ω̂

′
k)>τ = 1 then

12: δ(x, ŷ)← δ(x, ŷ) + 1
K

(
1− λω̂k,ŷλω̂′

k,ŷ

)
13: ∆(x)← ∆(x) + p(ŷ) · δ(x, ŷ)
14: x← argmaxx∈Dpool

∆(x)
15: output: {x}

Algorithm 2 Batch selection w/ Batch-BALanCe

1: input: acquisition size B, Dpool and D̄pool, trained BNN and threshold τ
2: A0 = ∅
3: for b ∈ [B] do
4: for x ∈ Dpool\Ab−1 do
5: sx ← ∆Batch−BALanCe(Ab−1

⋃
{x})

6: xb ← argmaxx∈Dpool\Ab−1
sx

7: Ab ← Ab−1
⋃
{xb}

8: output: batch AB = {x1, . . . , xB}
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Appendix D. Related work

Batch-mode Bayesian AL Batch-mode Bayesian AL has shown promising performance
for practical AL tasks. Some methods (Gal et al., 2017) choose a batch of samples with
top acquisition functions. These methods could lead to performance drops compared to
the methods that choose one sample with the highest acquisition function value since these
methods will choose similar and correlated samples inside each batch. Kirsch et al. (2019)
extended Houlsby et al. (2011) and proposed a batch-mode deep Bayesian AL algorithm,
namely BatchBALD. Chen and Krause (2013) formalized a class of interactive optimization
problems as adaptive submodular optimization problems and prove a greedy batch-mode
approach to these problems is near-optimal as compared to the optimal batch selection
policy.

Semi-supervised learning Semi-supervised learning leverages unlabeled data (together
with labeled examples) in the training process (Kingma et al., 2014; Rasmus et al., 2015).
Some work has combined AL and semi-supervised learning (Wang et al., 2016; Sener and
Savarese, 2017; Sinha et al., 2019). Our methods are different from these methods since our
methods never leverage unlabeled data to train the models, but rather use the unlabeled
pool to inform the selection of data points for AL.

Appendix E. Experiment setup and dataset description

The training set is small in the early stage and could be imbalanced. To avoid overfitting,
we train the BNNs at each iteration with early stopping, where we terminate the training of
BNNs with patience of 3 epochs. The BNN with the highest validation accuracy is picked
and used to calculate the acquisition functions. Additionally, we use weighted cross-entropy
loss for training the BNN to mitigate the bias introduced by imbalanced training data. The
BNN models are reinitialized in each AL iteration similar to Gal et al. (2017); Kirsch et al.
(2019). It decorrelates subsequent acquisitions as the final model performance is dependent
on a particular initialization. We use Adam optimizer (Kingma and Ba, 2017) for all the
models in the experiments.

In the batch-mode setting, if b < 4, Batch-BALanCe enumerates all y1:b configura-
tions to compute the acquisition function ∆Batch−BALanCe according to Eq. (2); otherwise,
it will use M = 10, 000 Monte-Carlo samples of y1:b and importance sampling to estimate
∆Batch−BALanCe. All our results report the median of 6 trials, with lower and upper quar-
tiles. We use these quartiles to draw the filled error bars on our figures.

MNIST We randomly split MNIST training dataset into Dval with 10,000 samples, D̄pool

with 10,000 samples and Dpool with the rest. The initial training dataset contains 20 samples
with 2 samples in each class chosen from the AL pool. The BNNmodel architecture is similar
to Kirsch et al. (2019). It consists of two blocks of [convolution, dropout, max-pooling, relu]
followed by a two-layer MLP that a two-layer MLP and one dropout between the two layers.
The dropout probability is 0.5 in the dropout layers.

Repeated-MNIST Kirsch et al. (2019) show that applying BALD to a dataset that
contains many (near) replicated data points leads to poor performance. We again randomly
split the MNIST training dataset similar to the settings used on MNIST dataset. We
replicate all the samples in AL pool two times and add isotropic Gaussian noise with a
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standard deviation of 0.1 after normalizing the dataset. The BNN architecture is the same
as the one used on MNIST dataset.

EMNIST We further consider the EMNIST dataset under 3 different settings: EMNIST-
Balanced, EMNIST-ByClass, and EMNIST-ByMerge. The EMNIST-Balanced contains 47
classes with balanced digits and letters. EMNIST-ByMerge includes digits and letters for
a total of 47 unbalanced classes. EMNIST-ByClass represents the most useful organization
for classification as it contains the segmented digits and characters for 62 classes comprising
[0-9],[a-z], and [A-Z]. We randomly split the training set into Dval with 18,800 images, D̄pool

with 18,800 images and Dpool with the rest of the samples. Similar to Kirsch et al. (2019),
we do not use an initial dataset and instead perform the initial acquisition step with the
randomly initialized model. The model architecture contains three blocks of [convolution,
dropout, max-pooling, relu], with 32, 64, and 128 3x3 convolution filters and 2x2 max
pooling. We add a two-layer MLP following the three blocks. 4 dropout layers in total are
in each block and MLP with dropout probability 0.5.

Fashion-MNIST Fashion-MNIST is a dataset of Zalando’s article images that consists of
a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28
grayscale image, associated with a label from 10 classes. We randomly split Fashion-MNIST
training dataset into Dval with 10,000 samples, D̄pool with 10,000 samples, and Dpool with
the rest of samples. We obtain the initial training dataset that contains 20 samples with 2
samples in each class randomly chosen from the AL pool. The model architecture is similar
to the one used on EMNIST dataset with 10 units in the last MLP.

Appendix F. Supplemental experiments

In this section, we provide additional experimental details and supplemental results to
demonstrate the competing algorithms under an additional evaluation metric.

F.1 Experiments on other datasets

We compare different AL algorithms on tabular datasets including Human Activity Recog-
nition Using Smartphones Data Set (Anguita et al., 2013) (HAR), Gas Sensor Array Drift
(Vergara et al., 2012) (DRIFT), and Dry Bean Dataset (Koklu and Ozkan, 2020), as well
as a more difficult dataset CINIC-10 (Darlow et al., 2018).

HAR, DRIFT and Dry Bean Dataset We run 6 AL trials for each dataset and
algorithm. In each iteration, the BNNs are trained with a learning rate of 0.01 and patience
equal to 3 epochs. The BNNs all contain three-layer MLP with ReLU activation and dropout
layers in between. The datasets are all split into starting training set, validation set, testing
set, and AL pool. The AL pool is also used as D̄pool. The τ for Batch-BALanCe is set ε/4
in each AL loop. See Table 2 for more experiment details of these 3 datasets.

The learning curves of all 5 algorithms on these 3 tabular datasets are shown in Fig. 5.
Batch-BALanCe outperforms all the other algorithms for these 3 datasets. For HAR
dataset, both Batch-BALanCe and BatchBALD work better than random selection. In
Fig. 5 (b) and (c), Mean STD, Variation Ratio and BatchBALD perform worse than random
selection. We find similar effect for some other imbalanced datasets.
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dataset val set size test set size hidden unit # sample # per epoch K B

HAR 2K 2,947 (64,64) 4,096 20 10
DRIFT 2K 2K (32,32) 4,096 20 10
Dry Bean 2K 2K (8,8) 8,192 20 10

Table 2: Experment details for HAR, DRIFT and Dry Bean Dataset
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(a) HAR
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(c) Dry Bean Dataset

Figure 5: Experimental results on 3 tabular datasets. For all plots, the y-axis represents
accuracy and x-axis represents the number of queried examples.

CINIC-10 CINIC-10 is a large dataset with 270K images from two sources: CIFAR-10
(Krizhevsky et al., 2009) and ImageNet (Rasmus et al., 2015). The training set is split
into an AL pool with 120K samples, 40K D̄pool samples, 20K validation samples and 200
starting training samples with 20 samples in each class. We use VGG-11 as the BNN. The
number of sampled MC dropout pairs is 50 and the acquisition size is 10. We run 6 trials
for this experiment. The learning curves of 5 algorithms are shown in Fig. 6. We can see
from Fig. 6 that Batch-BALanCe performs better than all the other algorithms by a large
margin in this setting.

Repeated-MNIST with different amounts of repetitions In order to show the effect
of redundant data points on BathBALD and Batch-BALanCe, we ran experiments on
Repeated-MNIST with an increasing number of repetitions. The learning curves of accuracy
for Repeated-MNIST with different repetition numbers can be seen in Fig. 7. A detailed
model accuracy on the test dataset when acquired training dataset size is 130 is shown in
Table 3. Even though Batch-BALanCe can improve data efficiency (Kirsch et al., 2019),
there are still large gaps between learning curves of Batch-BALD and Batch-BALanCe
and the gaps become larger when the number of repetitions increases.

F.2 Additional evaluation metrics

Besides accuracy, we compared macro-average AUC, macro-average F1, and NLL for 5
different methods on EMNIST-Balanced and EMNIST-ByMerge datasets in Fig. 8. The
acquisition size for all the AL algorithms is 5. Batch-BALanCe is annealed by setting
τ = ε/4. A macro-average AUC computes the AUC independently for each class and then
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Figure 6: Accuracy vs. # queries on the CINIC-10 dataset.

takes the average. Both macro-average AUC and macro-average F1 take class imbalance
into account. As shown in Fig. 8, Batch-BALanCe attains better data efficiency compared
with baseline models on both balanced and imbalanced datasets.

We also evaluated the negative log-likelihood (NLL) for different AL algorithms. NLL is
a popular metric for evaluating predictive uncertainty (Quinonero-Candela et al., 2005). As
shown in Fig. 8, Batch-BALanCe maintains a better or comparable quality of predictive
uncertainty over test data.

F.3 BALanCe through explicit partitioning over the hypothesis samples
(BALanCe-Partition)

Another way of estimating the acquisition function is to construct the equivalence classes ex-
plicitly first (e.g. by partitioning the hypothesis spaces into k Voronoi cells via max-diameter
clustering and calculate the weight discounts of edges that connect different equivalence
classes. Intuitively, explicitly constructing equivalence classes may introduce unnecessary
edges as two closeby hypotheses can be partitioned into different equivalence classes; there-
fore leading to an overestimate of the edge weight discounted. We call this algorithm
BALanCe-Partition.

In order to compare with BALanCe and Batch-BALanCe, we sampled K pairs of MC
dropouts to estimate the acquisition function of BALanCe-Partition. All the represen-
tations of 2K MC dropouts on D̄pool are generated. We run FFT (Gonzalez, 1985) with
Hamming distances and threshold τ on these representations to get approximated ECs.
Each data point has at most τ Hamming distance to the corresponding cluster center. FFT
is a 2-approx algorithm and the optimal solution with the same cluster number has cluster
diameter ≥ τ

2 . After equivalence classes are returned, BALanCe-Partition calculates the
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(b) repeat 1 times
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(c) repeat 2 times
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(d) repeat 3 times

Figure 7: Performance of Random selection, BatchBALD, and Batch-BALanCe on
Repeated-MNIST for an increasing number of repetitions. We can see that BatchBALD also
performs worse as the number of repetitions is increased. Batch-BALanCe outperforms
BatchBALD with large margins and remains similar performance across different numbers
of repetitions.

edges discounts of all edges that connect different equivalence classes and estimates the
acquisition function values of each data sample in the AL pool.

Although a faster method that utilizes complete homogeneous symmetric polynomials
(Javdani et al., 2014) can be implemented to estimate the acquisition function values for
BALanCe-Partition, experiments in Fig. 9 show that BALanCe-Partition can not achieve
better performance than BALanCe and increasing the MC dropout number does not im-
prove performance significantly.

F.4 Coefficient of variation

To gain more insight into why BALanCe and Batch-BALanCe work consistently bet-
ter than BALD and BatchBALD, we further investigate the dispersion of the estimated
acquisition function values for those methods. Since Batch-BALanCe and BatchBALD
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(a) Macro-average AUC (b) Macro-average F1 (c) NLL

Figure 8: Compare different metrics for EMNIST-Balanced and EMNIST-Bymerge
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Figure 9: Accuracy vs. # queries for BALanCe-Partition and BALanCe.

extend their fully sequential algorithms similarly in a greedy manner, we only compare the
acquisition functions of BALanCe and BALD.

The coefficient of variation (CV) is chosen for the comparison of dispersion. It is defined
as the ratio of the standard deviation to the mean. CV is a standardized measure of
the dispersion of a probability distribution or frequency distribution. The value of CV is
independent of the unit in which it is taken.
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Method repeat 0 time repeat 1 times repeat 2 times repeat 3 times

Random 0.887± 0.017 0.883± 0.012 0.881± 0.013 0.895± 0.009
BatchBALD 0.917± 0.005 0.892± 0.023 0.883± 0.025 0.881± 0.014

Batch-BALanCe 0.926± 0.008 0.923± 0.008 0.929± 0.004 0.927± 0.010

Table 3: Mean±STD of test accuracies when acquired training set size is 130

We conduct the experiment on the imbalanced MNIST dataset in §A.2. We estimate the
acquisition function values of BALanCe and BALD 5 times with 5 sets of K MC dropouts
for each sample in the AL pool. Then, the CVs are calculated for these estimations. In
Fig. 10, we show histograms of CVs for both methods. The estimated acquisition function
values of BALanCe are less dispersed, which shows potential for better performance.
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Figure 10: Histograms for coefficient of variation.
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