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Abstract
Asymptotically unbounded regret bounds, of the form O(log T ), O(

√
T ) or O(

√
T log T )),

have been proven to be the lowest possible regret upper bounds that can be achieved when
an agent explores multiple arms in various bandit settings. What if there are multiple
heterogeneous agents, i.e., agents who experience different rewards for the same arm
according to the latent reward structure? In this paper, we show that a bounded, i.e.,
O(1), expected regret can be achieved when there is a large number of agents who play
a relatively small number of arms according to Counterfactual UCB (UFUCB) under the
typical assumptions made in contextual bandits: 1) linear latent reward structure and 2)
knowledge of contextual feature vector for each agent.
Keywords: Multi-agent bandit, Linear contextual rewards, Bounded regret

1. Introduction

The contextual bandits framework has been a popular theoretical tool for the analysis of
the exploration-exploitation trade-off under the assumption that each agent’s characteristics,
usually modeled as a feature vector called context, are known a priori [Auer (2002); Chu et al.
(2011); Abbasi-Yadkori et al. (2011); Krause and Ong (2011)]. This framework’s potential
usefulness for adaptive experimentation has been increasingly highlighted [Bouneffouf and
Rish (2019); Dimakopoulou et al. (2021); Jourdan et al. (2021); Srinivas et al. (2009)].
However, when an expert in contextual bandits tries to claim the usefulness of her algorithm
to the practitioners of real-world experiments, it becomes an issue of concern that the regret
bounds of the contextual bandit framework increase unboundedly over time. To understand
this, think of marketing campaigns shown to users in the advertisement platforms. Many
of marketing campaign’s needs, such as the ones for new movies or election candidates, are
only ephemeral; they quickly lose their timeliness before they get old. In such cases, the
theoretical claims based on asymptotic analysis may be limitedly persuasive.

In this paper, we suggest another bandit framework for which we can show bounded
expected regret in the large. While similar in most parts, its problem setting differs from
that of typical linear contextual bandit problems in that 1) we specify the set of agents
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A and keep track of each individual’s repeated arrivals, and 2) the result becomes highly
probable as the number of agents gets relatively larger than the number of arms1.

The main idea that enables the bounded expected regret result is as follows. An agent
searching for the optimal arm alone under a typical UCB (Upper confidence bound) policy
[Lai et al. (1985)] cannot utilize the linear latent structure and therefore suffers O(log T )
regret due to the exploration requirements for all non-optimal arms. However, if there
are enough number of agents, the linear latent structure can be utilized; this is done by
additionally employing the counterfactual UCBs that are computed mainly from other agents’
exploitation. Each agent is then fully exempt from the exploration requirements after finite
time, achieving bounded expected regret.

2. The problem setting

Denote the set of agents’ indices as A and the set of arms’ indices as M . The feature of agent
j is represented by a d-dimensional vector α(j) ∈ Rd and the feature of arm m is represented
by a d-dimensional vector βm ∈ Rd.2 For the feature vectors associated with the agents, we
further assume that any d-sized subset of A is linearly independent (note that this is justified
by the fact that fullness of rank is generic). We assume that each agent’s feature vector is
known a priori. On the other hand, there is no prior information on arm feature vectors.

An agent receives a random reward when it pulls an arm. Denote the kth reward of
agent j from arm m as X

(j)
m,k. We assume that the reward is noisily determined by the inner

product of agent feature vector and arm feature vector. That is, X(j)
m,k = α(j)βm + ϵ

(j)
m (k)

where ϵ
(j)
m (k) follows a sub-Gaussian distribution with E[ϵ

(j)
m (k)] = 0 and proxy variance σ2

[Rivasplata (2012)]. We denote E[X
(j)
m,k] = α(j)βm by µ

(j)
m .

We assume that µ
(j)
m ̸= µ

(j)
n ∀j ∈ A, ∀m,n ∈ M . This implies that each agent will

have a unique optimal arm. We denote the set of agents with m as their optimal arm by
Am := {j ∈ A : µ

(j)
m > µ

(j)
n ∀n ∈ M,n ̸= m}. Note that {Am}m∈M partitions A.

We suppose that agents independently arrive according to identical renewal processes,
i.e., agent inter-arrival times are i.i.d. (independent and identically distributed). Specifically,
two cases are considered: when all inter-arrival times are 1) i.i.d. subgaussian with a density
on the real line, and 2) i.i.d. exponential. An agent gets to pull an arm when it arrives.
Denote the time of the nth arrival of agent j by S

(j)
n , and the associated inter-arrival time by

Y
(j)
n := S

(j)
n − Sj

n−1. We denote the associated counting process of agent j’s arrival process
by N (j)(t). That is, {S(j)

n ≤ t} = {N (j)(t) ≥ n}. Note that N (j)(t) is also the total number
of pulls over all arms of agent j until time t. We further denote N

(j)
m (t) as the number of

agent j’s pulls of arm m until time t.

1. This condition fits particularly well for the experimentation design problems as the size of the population
is much larger than the number of treatments in typical experimentation settings.

2. Note that the existence of arm feature vectors is not assumed in the typical linear contextual bandit
problems. In such problems, a prior knowledge on the feature mapping that takes an agent (=context)
and an arm as the input elements and outputs a vector is assumed instead. The inner product of this
output vector and an unknown common fixed vector forms the reward. Comparison between this setting
and ours on the usefulness and the applicability of representation learning is left as an open problem.
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We observe which agents have pulled a specific arm the most until time T . Specifically,
let Am(n, T ) := {j ∈ A : |{i ∈ A : N

(i)
m (T ) > N

(j)
m (T )}| < n}. This set includes the n agents

most pulling arm m with all ties at the bottom being included. That is, |Am(n, T )| ≥ n
unless |A| < n. For each agent j, we arbitrarily choose one d-size subset of Am(d+ 1, T ) \ j
(or more precisely Am(d+ 1, T ) \ {j}), and fix it as E

(j)
m (T ).

Denote agent j’s optimal arm by m∗
j . and the arm pulled at agent j’s nth arrival

as mj(n). Then we consider the finite time regret of agent j until time T defined as

Regret(j)(T ) :=
∑N(j)(T )

n=1 (µ
(j)
m∗

j
− µ

(j)
mj(n)

). Our objective is to upper bound E[Regret(j)(T )]

by a constant for all j ∈ A.
In the following sections, we will show that E[Regret(j)(T )] is upper bounded by a

constant under the following condition that intuitively holds when |A| is large enough:

|Am| ≥ d+ 1, ∀m ∈ M. (1)

If this condition does not hold, then there will be some agents who suffer O(log T ) expected
regret instead of enjoying bounded expected regret. For the rest of the paper, we will assume
that the condition (1) holds.

How large the number of agents should be to make this condition as probable as we
want? This is an unproved different version of Double Dixie cup problem [Newman (1960)].
Theorem 1 answers this question.

Theorem 1. Suppose that the optimal arms associated with agents {m∗
j : j ∈ A} are

independently and uniformly distributed over A. If

|A| ≥ |M |d+max{η|M |d, 2(1 + η)

η

(
|M | ln |M |+ |M | ln 1

ϵ
+ d

)
}, (2)

then
P (|Am| ≥ d+ 1 ∀m ∈ M) ≥ 1− ϵ.

The proof of Theorem 1 is provided in Appendix A. It shows that at least a multiple
of (|M | ln |M |+ |M |d) number of agents is required, and an additional multiple of |M | ln 1

ϵ
agents is needed if we want (1− ϵ) probability assurance.

3. Construction of the Upper Confidence Bounds (UCBs)

Assuming that the condition (1) holds, we can form the counterfactual means and coun-
terfactual confidence bounds, by which mean those obtained from outside an individual
agent’s experience. Recall that we defined N

(j)
m (t) as the number of agent j’s pulls of arm

m until time t. We first denote by X
(j)
m (t) =

∑N
(j)
m (t)

k=1 X
(j)
m,k

N
(j)
m (t)

the empirical mean reward of
agent j on arm m. Before defining the counterfactual mean of agent j for arm m, recall
that Am(d, t) := {j ∈ A : |{i ∈ A : N

(i)
m (t) > N

(j)
m (t)}| < d}. This set includes top d

agents for arm m with all ties at the bottom being included. Taking into account Theorem
1, suppose that |A| ≥ d + 1. Note that this implies |Am(d + 1, t)| ≥ d + 1. Recall that
we arbitrarily chose a d-size subset of Am(d + 1, t) \ j and fixed it as E

(j)
m (t). Since the
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feature vectors of the d-size subset of A are linearly independent as we assumed earlier, we
can express α(j) =

∑
i∈E(j)

m (t)
a
(j)
i α(i) for some coefficients {a(j)i } , and subsequently µ

(j)
m as∑

i∈E(j)
m (t)

a
(j)
i µ

(i)
m . We define X̂

(j)
m (t) :=

∑
i∈E(j)

m (t)
a
(j)
i X

(i)
m (t) and call it the counterfactual

mean of agent j for arm m.
In choosing the confidence intervals, we follow the spirit of [Auer (2002)] - that is, we

bound the violation probability by the inverse square of the total number of pulls at time t.
Lemmas 2 and 3 describe this confidence interval choice.

Lemma 2 (Auer (2002)). For ϵ ≥
√

logN(j)(t)

N
(j)
m (t)

, P (|X(j)
m (t)− µ

(j)
m | > ϵ) ≤ N (j)(t)−2.

Proof This follows from Hoeffding’s inequality, P (|X(j)
m (t)− µ

(j)
m | > ϵ) ≤ exp(−2N

(i)
m (t)ϵ2).

Since we want to upper bound P (|X(j)
m (t)− µ

(j)
m | > ϵ) ≤ by N (j)(t)−2, The value of ϵ that

makes exp(−2N
(i)
m (t)ϵ2) ≤ N (j)(t)−2 will do it. This gives us ϵ ≥

√
logN(j)(t)

N
(j)
m (t)

.

Lemma 3. Denote cm,t :=
∑

i∈E(j)
m (t)

|a(j)i |, and define N
(min)
m (d, t, j) := min

i∈E(j)
m (t)

N
(i)
m (t).

Then, for ϵ ≥
√

log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

, P (|X̂(j)
m (t)− µ

(j)
m | > ϵ) ≤ N (j)(t)−2.

Proof. P (|X̂(j)
m (t)−µ

(j)
m | > ϵ) = 1−P (|X̂(j)

m (t)−µ
(j)
m | ≤ ϵ) ≤ 1−Π

i∈E(j)
m (t)

P (|a(j)i ||X(i)
m (t)−

µ
(i)
m | ≤ |a(j)i | ϵ

cm,t
) = 1 − Π

i∈E(j)
m (t)

(1 − P (|X(i)
m (t) − µ

(i)
m | > ϵ

cm,t
)) ≤ 1 − Π

i∈E(j)
m (t)

((1 −

exp(−2N
(i)
m (t)ϵ2

c2m,t
))) ≤ 1−Π

i∈E(j)
m (t)

(1−exp(−2N
(min)
m (d,t,j)ϵ2

c2m,t
)) = 1−(1−exp(−2N

(min)
m (d,t,j)ϵ2

c2m,t
))d ≤

d exp(−2N
(min)
m (d,t,j)ϵ2

c2m,t
). Therefore, d exp(−2N

(min)
m (d,t,j)ϵ2

c2m,t
) ≤ N (j)(t)−2, i.e., ϵ ≥

√
log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

implies P (|X̂(j)
m (t)− µ

(j)
m | > ϵ) ≤ N (j)(t)−2.

The original confidence interval’s width for agent j’s arm m reward, denoted by w
(j)
m (t),

is chosen as the minimum ϵ that suffices, i.e.,
√

logN(j)(t)

N
(j)
m (t)

from Lemma 2. The width of

counterfactual confidence interval, denoted by ŵ
(j)
m (t), is chosen as

√
log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

in the

same manner. We define

ucb(j)m (t) := X
(j)
m (t) + w(j)

m (t), ûcb
(j)

m (t) := X̂(j)
m (t) + ŵ(j)

m (t). (3)

4. Counterfactual UCB Algorithm (CFUCB)

Before describing the main algorithm we call Counterfactual UCB (CFUCB), we introduce
a concept of epoch and some related notations. Define S := ∪i∈A{S(i)

n }n∈N, the set of all
arrival times of all agents. Note that S is a totally ordered set with order structure ≤. We
can sequentially order the elements of S as a monotone increasing sequence {sk}k∈N, with sk
denoting the time of the kth arrival, irrespective of agent identity. From now on, we call
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sk as the time of the kth arrival epoch, or simply the kth epoch. We define a sequence of
agent indices {ak}k∈N such that ak = i ∈ A if sk = S

(i)
n for some n ∈ N. That is, {ak}k∈N

indicates which agent arrives at each epoch. Ties between agents arriving at the same time
is broken arbitrarily.Given {ak}k∈N, we denote the the index of the arm pulled by agent ak
at epoch k by mk, and the corresponding reward accrued by rk, where mk ∈ M and rk ∈ R+

( rk = α(ak)βmk
+ ϵk, where ϵk is “noise"). Recall that X

(j)
m (n) denotes the nth reward of

agent j from arm m. Algorithm 1 describes the pseudocode for the CFUCB Algorithm.
Algorithm 1: CFUCB Algorithm

Input: {α(j)}j∈A where α(j) denotes the feature vector of agent j
1 for k = 1, 2, . . . do
2 Observe sk and ak
3 for m = 1, 2, . . . , |M | do
4 Compute ucb

(ak)
m (sk) (the original UCB) according to the Equation (3)

5 Compute ûcb
(ak)

m (sk) (the counterfactual UCB) according to the Equation (3)

6 ũcb
(ak)

m (sk) = min(ucb
(ak)
m (sk), ûcb

(ak)

m (sk))

7 Set mk = argminm∈M{ũcb
(ak)

m (sk)}
8 Let agent ak pull the arm mk and obtain rk

9 Store X
(ak)
mk (N

(ak)
mk (sk)) = rk for the future use in later loop’s line 4 and line 5

4.1 Analysis of CFUCB

We start the analysis of Algorithm 1 from Lemma 4, which suggests the condition for the
agent j to pull a non-optimal arm m. Lemma 4 is the key result of this paper in that it gives
the intuition about why bounded regret will be achieved if the arrival rates of the agents are
not too much different.

Note that as a consequence of Lemmas 2 and 3, at time t, for every arm n and every
agent i, the original confidence interval CI

(i)
n (t) := (X

(i)
n (t)− w

(i)
n (t), X

(i)
n (t) + w

(i)
n (t)) and

the counterfactual confidence interval ĈI
(i)

n (t) := (X̂
(i)
n (t)− ŵ

(i)
n (t), X̂

(i)
n (t) + ŵ

(i)
n (t)) both

include the true mean µ
(i)
n with high probability.

Lemma 4. If CI
(i)
n (t) and ĈI

(i)

n (t) both include the true mean µ
(i)
n , then an agent j who

arrives at time t pulls a non-optimal arm m, i.e., one with ∆
(j)
m > 0, only if

min
i∈Am

{N (i)(t)− (
∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t)} ≤

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 . (4)

The proof of Lemma 4 is deferred to Appendix A. One may note that the LHS of (4)
will increase far faster than the RHS of (4) unless some agent i ∈ Am arrives far slower than
agent j. Soon, therefore, the inequality will cease to hold for all non-optimal arms, and only
the optimal arm will be pulled afterwards.

Now we are ready to discuss how the bounded regret is achieved. Lemma 5 draws a
connection between the expected regret and the probability of agent j arriving at time t
pulling a non-optimal arm m. The proof is deferred to Appendix A.

5



Lemma 5. Denote the event {Agent j arrives at time t and pulls a non-optimal arm m} by

G
(j)
m (t), and the event {µ(j)

m ∈ CI
(j)
m (t) ∩ ĈI

(j)

m (t)} as V
(j)
m (t). Suppose that there is a func-

tion g
(j)
m (t) such that P (G

(j)
m (t)|V (j)

m (t)) ≤ g
(j)
m (t). Then E[Regret(j)(T )] ≤

∑
m∈M\m∗

j
∆m(

π2

6 +
∑∞

n=1

∫ +∞
0 g

(j)
m (t)dF

(j)
n (t)

)
holds, where F

(j)
n (t) := P (S

(j)
n ≤ t).

Finding g
(j)
m (t) such that

∑∞
n=1

∫ +∞
0 g

(j)
m (t)dF

(j)
n (t) < ∞ will bring us the bounded

expected regret result. We show this for the two most representative settings: agents arriving
according to 1) sub-Gaussian inter-arrival times (Theorem 6) and 2) exponential inter-arrival
times (Theorem 7). The proofs are deferred to the Appendix A.

Theorem 6. Suppose that each agent of i ∈ A arrives independently with i.i.d. 1-subgaussian
inter-arrival times with mean θi. Then we can find g

(j)
m (t) of Lemma 5 such that

∫ +∞
0 g

(j)
m (t)dF

(j)
n (t)

= O( 1
n2 ) holds and thus E[Regret(j)(T )] < ∞ holds under CFUCB.

Theorem 7. Suppose that each agent i of A arrive independently with iid exponentially
distributed inter-arrival times with λi. Then we can find g

(j)
m (t) of Lemma 5 such that∫ +∞

0 g
(j)
m (t)dF

(j)
n (t) = O( 1

n2 ) holds and thus E[Regret(j)(T )] < ∞ under CFUCB.

5. Concluding remarks

This paper suggests a multi-armed bandit framework that shares the assumptions of typical
contextual bandit problems such as 1) linear latent reward structure, and 2) knowledge of
contextual feature vector for each agent. For this framework, which works in the large, the
UCB policy we call Counterfactual-UCB (CFUCB) guarantees bounded expected regret.
The key idea enabling this result is to gather together exploitation results of a set of agents
to give another agent an exemption from exploration requirement.

The closest literature in terms of problem settings is on the linear contextual bandit
problems [Auer (2002); Chu et al. (2011); Abbasi-Yadkori et al. (2011); Bogunovic et al.
(2021)]. There has been progress in relaxing linear latent reward structure assumption
Simchi-Levi and Xu (2021); Krishnamurthy et al. (2021); Foster et al. (2020); Foster and
Rakhlin (2020), and it would be an interesting direction to see whether such progress can
be extended to the framework suggested in this paper. Interestingly, Xu and Zeevi (2020)
explores how the concept of counterfactuals can be used to address the UCB algorithm’s
weakness for non-linear contextual bandits with large context space.

On the idea of gathering information from multiple agents, there has been an enormous
amount of previous works on cooperative multi-armed bandit problems [Shih et al. (2022);
Sankararaman et al. (2019); Landgren et al. (2016); Martínez-Rubio et al. (2019); Wang
et al. (2020); Chawla et al. (2020), as well as heterogeneous but non-cooperative multi-agent
multi-armed bandit settings Immorlica et al. (2019); Chen et al. (2018)].

For the real-world applications, future works may consider relaxing the problem objective
(e.g., finding a near-optimal arm instead of finding the true optimal arm) to address uncertainty
in the knowledge of each agent’s contextual feature vector.
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Appendix A. Proof of Lemmas and Theorems

Proof [Proof of Theorem 2.] For simplicity, we denote |A| = a and |M | = b. Let Im be
the indicator random variable for the event {|Am| < d+ 1}, and I :=

∑
m∈M Im. What we

want is to upper bound P (I > 0) by ϵ. Note that

P (I > 0) = P (I ≥ 1)

≤ E[I] (because of Markov’s inequality)
= bE[I1]

= bP (I1 = 1)

= b
d∑

k=0

(
a

k

)(
1− 1

b

)a−k (1

b

)k

≤ b
d∑

k=0

(
a

k

)(
1− 1

b

)a−d(1

b

)k

≤ b
d∑

k=0

ak

k!
exp(−a− d

b
)

(
1

b

)k

(because
(
a

k

)
≤ ak

k!
, and 1 + x ≤ ex)

= exp

(
d

b

) d∑
k=0

1

k!

(a
b

)k
exp

(
−a

b

)
= bexp

(
d

b

)
P (Z ≤ d) , where Z ∼ Poi(

a

b
)

(a)

≤ bexp

(
d

b

)
exp

(
−1

2

b

a

(a− bd)2

b2

)
(5)

= bexp

(
1

b

(
d− (a− bd)2

2a

))

= exp

(
ln b− 1

b

(
(a− bd)2

2a
− d

))
. (6)

Above, the inequality (a) of (5) holds because Z ∼ Poi(λ), Pr[Z ≤ λ − x] ≤ e−
x2

2λ for
0 ≤ x ≤ λ Pollard (2015), where in our case a

b ≥ d as assumed, λ = a
b , λ − x = d and

x = a
b − d = a−bd

b ).

Let us further assume that a ≥ (1 + η)bd. Then

a ≥ (1 + η)bd

(⇔) (1 + η)(a− bd) ≥ (1 + η)a− a = ηa

(⇔) a ≤ (a− bd)
(1 + η)

η
. (7)

9



Then,

P (I > 0) ≤ ϵ

(⇐) exp

(
ln b− 1

b

(
(a− bd)2

2a
− d

))
≤ ϵ (because of (6))

(⇔) exp

(
−
( (a−bd)2

2a − d)− b ln b

b

)
≤ ϵ

(⇔)
(a− bd)2

2a
≥ b ln b+ b ln

1

ϵ
+ d

(⇐) a− bd ≥ 2(1 + η)

η

(
b ln b+ b ln

1

ϵ
+ d

)
(because of (7)) (8)

Proof [Proof of Lemma 4.] Lemma 4 is based on the following Lemma 8:

Lemma 8. Under the same conditions as in Lemma 4, agent j pulls arm m only if

min

(
2

√
logN(j)(t)

N
(j)
m (t)

, 2

√
log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

)
≥ ∆

(j)
m . That is, both N

(j)
m (t) ≤ 4 logN(j)(t)

∆
(j)
m

2 and

N
(min)
m (d, t, j) ≤ 4c2m,t log(N

(j)(t)/d)

∆
(j)
m

2 must hold for agent j to pull arm m.

Proof [Proof of Lemma 8] Denote the optimal arm for agent j as arm m∗
j . Agent j pulls arm

m only when the event {argmaxq∈M ucb(j)
q (t) = m} happens. This means that ucb(j)

m (t) ≥
ucb(i)

m∗
j
(t). Recall that we assume as in Lemma 4 that µ

(j)
m ∈ CI

(j)
m (t) ∩ ĈI

(j)

m (t) and µ
(j)
m∗

j
∈

CI
(j)
m∗

j
(t)∩ĈI

(j)

m∗
j
(t). Now we make an observation that ucb(j)

m (t) ≥ ucb(j)
m∗

j
(t), µ

(j)
m ≤ µ

(j)
m∗

j
, µ

(j)
m ∈

CI
(j)
m (t)∩ ĈI

(j)

m (t) and µ
(j)
m∗

j
∈ CI

(j)
m∗

j
(t)∩ ĈI

(j)

m∗
j
(t) jointly imply µ

(j)
m , µ

(j)
m∗

j
∈ CI

(j)
m (t)∩ ĈI

(j)

m (t).

This means that min(2w
(j)
m (t), 2ŵ

(j)
m (t)) ≥ ∆

(j)
m holds. Combining this with Lemma 2 and 3,

yields the result.

We can now prove Lemma 4, starting as follows:
Fix an arm j. Now note that for any arm i, N (i)

m (t) = N (i)(t) −
∑

n∈M\mN
(i)
n (t). Let

tn be the last time prior to t at which a non-optimal arm n is played by agent i. Then
N

(i)
n (t) = N

(i)
n (tn) ≤ 4 logN(i)(tn)

∆
(i)
n

2 ≤ 4 logN(i)(t)

∆
(i)
n

2 holds by Lemma 8. Therefore, for agent

i ∈ Am, N (i)
m (t) ≥ N (i)(t)− (

∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t). By the assumption (1), |Am| ≥ d+ 1,

and Nmin
m (d, t, j) ≥ N

(i)
m (t) for some i ∈ Am. Therefore, Nmin

m (d, t, j) ≥ N
(i)
m (t) ≥ N (i)(t)−

(
∑

n̸=m
4

∆
(i)
n

2 ) logN
(i)(t) for some i ∈ Am. That is, Nmin

m (d, t, j) ≥ mini∈Am{N (i)(t) −

(
∑

n̸=m
4

∆
(i)
n

2 ) logN
(i)(t)}. Substituting this into N

(min)
m (d, t, j) ≤ 4c2m,t log(N

(j)(t)/d)

∆
(j)
m

2 from

Lemma 8, we see that arm m is pulled by agent j only when mini∈Am{N (i)(t)−(
∑

n̸=m
4

∆
(i)
n

2 ) logN
(i)(t)} ≤

10



4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 .

Proof [Proof of Lemma 5.]
E[Regret(j)(T )] =

∑
m∈M\m∗

j
∆mE[# of agent j’s non-optimal arm m pulls before T ]

=
∑

m∈M\m∗
j
∆m

∑∞
n=1E[1

G
(j)
m (S

(j)
n )

1
S
(j)
n ≤T

]

=
∑

m∈M\m∗
j
∆m

∑∞
n=1E[E[1

G
(j)
m (S

(j)
n )

1
S
(j)
n ≤T

|S(j)
n ]]

=
∑

m∈M\m∗
j
∆m(

∑∞
n=1E[E[1

G
(j)
m (S

(j)
n )

1
S
(j)
n ≤T

|V (j)
m (S

(j)
n )c, S

(j)
n ]P (V

(j)
m (S

(j)
n )c|S(j)

n )+

E[1
G

(j)
m (S

(j)
n )

1
S
(j)
n ≤T

|V (j)
m (S

(j)
n ), S

(j)
n ]P (V

(j)
m (S

(j)
n )|S(j)

n )])

≤
∑

m∈M\m∗
j
∆m

(∑∞
n=1E[P (V

(j)
m (S

(j)
n )c|S(j)

n )] +
∑∞

n=1E[E[1
G

(j)
m (S

(j)
n )

1
S
(j)
n ≤T

|V (j)
m (S

(j)
n ), S

(j)
n ]]

)
≤
∑

m∈M\m∗
j
∆m

(
π2

6 +
∑∞

n=1E[E[1
G

(j)
m (S

(j)
n )

|V (j)
m (S

(j)
n ), S

(j)
n ]
)

=
∑

m∈M\m∗
j
∆m

(
π2

6 +
∑∞

n=1E[P (G
(j)
m (S

(j)
n )|V (j)

m (S
(j)
n ), S

(j)
n ]
)

≤
∑

m∈M\m∗
j
∆m

(
π2

6 +
∑∞

n=1

∫ +∞
0 g

(j)
m (t)dF

(j)
n (t)

)
.

Lemma 9. For A,B,C > 0, Ay−B ln y < C ln(xd ) is satisfied only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
where W−1 denotes the lower branch Lambert W -function.

Proof [Proof of Lemma 9] For A,B,C > 0, A
C y − B

C ln y < ln(xd ) ⇐⇒ y−
B
C e

A
C
y <

(xd ) ⇐⇒ ye−
A
B
y > (xd )

−C
B ⇐⇒ −A

Bye−
A
B
y < −A

B (xd )
−C

B ⇐⇒ −B
AW0

(
−A

B (xd )
−C

B

)
< y <

−B
AW−1

(
−A

B (xd )
−C

B

)
where W0 denotes the principal branch of the Lambert W -function.

Therefore, Ay −B ln y < C ln(xd ) holds only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
.

In our case, for Lemma 9, y = N (i)(t), x = N (j)(t), A = 1, B =
∑

n̸=m
4

∆
(i)
n

2 and

C =
4c2m,t

∆
(j)
m

2 . We define qij as qij(x) = −B
AW−1

(
−A

B (xd )
−C

B

)
where we use above parameter

values. One can easily check that B
AW−1

(
−A

Bx−
C
B

)
is a function growing faster than log x

and slower than x.
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Proof [Proof of Theorem 6.] Before proving Theorem 6, we show Lemma 10 first.

Lemma 10. Suppose that each agent of i ∈ A arrives independently with i.i.d. 1-subgaussian
inter-arrival times with mean θi. Every time an agent arrives, it plays according to CFUCB.

Then P (G
(j)
m (t)|V (j)

m (t)) ≤ g
(j)
m (t) holds, where g

(j)
m (t) = |A|(exp(−2

(t−qij(⌈ t

θj−ϵj
⌉)θmin)

2

qij(⌈ t

θj−ϵj
⌉) ) +

exp(−2 ϵj
2

θj−ϵj
t)), with θmin =: mini∈A θi and ϵj is a parameter to be tuned later.

Proof [Proof of Lemma 10.]

P (G(j)
m (t)|V (j)

m (t))

= P ({Agent j pulls arm m when it arrives at time t}|V (j)
m (t))

(b)

≤ P (min
i∈Am

{N (i)(t)− (
∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t)} <

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 ) (9)

≤
∑
i∈Am

P (N (i)(t)− (
∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t) <

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 )

≤
∑
i∈Am

P (N (i)(t) < qij(N
(j)(t))) (because of Lemma 9) (10)

=
∑
i∈Am

∫
P (N (i)(t) < qij(n)) dFN(j)(t)(n)

≤
∑
i∈A

∫
P (N (i)(t) < qij(n)) dFN(j)(t)(n)

=
∑
i∈A

∫
P (S

(i)
⌈qij(n)⌉) > t) dFN(j)(t)(n)

=
∑
i∈A

(

∫
[0, t

θj−ϵj
]
P (S

(i)
⌈qij(n)⌉) > t) dFN(j)(t)(n)

+

∫
( t

θj−ϵj
,∞)

P (S
(i)
⌈qij(n)⌉) > t) dFN(j)(t)(n))

(c)

≤
∑
i∈A

(
P (S

(i)

⌈qij( t

θj−ϵj
)⌉) > t)× 1 + 1× exp(−2

ϵj
2

θj − ϵj
t)

)
(11)

=
∑
i∈A

(
exp(−2

(t− ⌈qij( t
θj−ϵj

)⌉θi)2

⌈qij( t
θj−ϵj

)⌉
) + exp(−2

ϵj
2

θj − ϵj
t)

)
(d)

≤ exp(−2
(t− ⌈qij( t

θj−ϵj
)⌉θi)2

⌈qij( t
θj−ϵj

)⌉
) (12)

≤ |A|

(
exp(−2

(t− ⌈qij( t
θj−ϵj

)⌉θmax)
2

⌈qij( t
θj−ϵj

)⌉
) + exp(−2

ϵj
2

θj − ϵj
t)

)
. (13)

Above, θmax := maxi∈A θi and

• The inequality (b) of (9) follows from Lemma 4.
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• The inequality (c) of (11) holds because we apply left tail Hoeffding inequality, i.e.,

P
(
S(j)
n ≤ n(θj − ϵj)

)
= P

(
N (j)(n(θj − ϵj)) ≥ n

)
≤ e−2nϵj2

⇔ P

(
N (j)(t) ≥ t

θj − ϵj

)
≤ e

−2 ϵj2

θj−ϵj
t

and ⌈qij(n)⌉ is a increasing function of n.

• The inequality (d) of (12) holds by applying an another version of right tail Hoeffding
inequality P {Sn ≥ nθ + a} ≤ e−2a2/n for

P (S
(i)

⌈qij( t

θj−ϵj
)⌉ > t) = P (S

(i)

⌈qij( t

θj−ϵj
)⌉ − ⌈qij(

t

θj − ϵj
)⌉θi > t− ⌈qij(

t

θj − ϵj
)⌉θi)).

Now we can prove Theorem 6, starting as follows:∫
g(j)m F

S
(j)
n

=

∫
[0,n(θj−ϵ))

g(j)m F
S
(j)
n

+

∫
[n(θj−ϵ),∞)

g(j)m F
S
(j)
n

≤ g(j)m (0+)× e−2nϵ2 + g(j)m (n(θj − ϵ))× 1 (14)

= 2|A|e−2nϵ2 + g(j)m (n(θj − ϵ))

= 2|A|(exp(−2nϵ2) + exp(−2
(n(θj − ϵ)− ⌈qij(n(θ

j−ϵ)
θj−ϵj

)⌉θmax)
2

⌈qij(n(θ
j−ϵ)

θj−ϵj
)⌉

)

+ exp(−2
ϵj

2

θj − ϵj
n(θj − ϵ)))

= 2|A|
(
2 exp(−2nϵ2) + exp(−2

(n(θj − ϵ)− ⌈qij(n)⌉θmax)
2

⌈qij(n)⌉
)

)
(for simplicity, we fix ϵj = ϵ)

= O(
1

n2
) (15)

Above, (14) holds because P (S
(j)
n ≤ n(θj−ϵ)) ≤ e−2nϵ2 and that g

(j)
m is decreasing function),

(15) holds because(
n(θj − ϵ))− ⌈qij(n)⌉θmax

)2 ≥ ⌈qij(n)⌉2 for all n ≥ N for some N (16)

(⇒)(n(θj − ϵ))− ⌈qij(n)⌉θmax)
2 ≥ log(n)⌈qij(n)⌉ for all n ≥ N (17)

(⇒) exp(−2
(n(θj − ϵ)− ⌈qij(n)⌉θmax)

2

⌈qij(n)⌉
) = O(

1

n2
)

where (16) follows from ⌈qij(n)⌉ = o(n)) and (17) follows from log(n) = o(qij(n))
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Proof [Proof of Theorem 7.] Before proving Theorem 7, we prove the Lemma 11.

Lemma 11. Suppose that each agent i of A arrive independently with iid exponentially
distributed inter-arrival times with λi. Every time an agent arrives, we play CFUCB.
Then P (G

(j)
m (t)|V (j)

m (t)) ≤ g
(j)
m (t) holds, where g

(j)
m (t) = |A|(exp(− (λmint−qij((λj+ϵj)t))

2

2λmint
) +

exp(− ϵj
2

2λj
t)) and λmin = mini∈A λi and ϵj is a parameter to be tuned later.

Proof [Proof of Lemma 11.] Again, as in Lemma 10,

P (G(j)
m (t)|V (j)

m (t))

= P ({ Agent j pulls arm m when it arrives at time t}|V (j)
m (t))

≤ P (min
i∈Am

{N (i)(t)− (
∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t)} <

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 ) (18)

≤
∑
i∈Am

P (N (i)(t)− (
∑
n̸=m

4

∆
(i)
n

2 ) logN
(i)(t) <

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 )

=
∑
i∈Am

P (N (i)(t) < qij(N
(j)(t)))(becauseofLemma9) (19)

=
∑
i∈Am

∫
P (N (i)(t) < qij(n)) dFN(j)(t)(n)

≤
∑
i∈A

∫
P (N (i)(t) < qij(n)) dFN(j)(t)(n)

=
∑
i∈A

(

∫
[0,(λj+ϵj)t]

P (N (i)(t) < qij(n)) dFN(j)(t)(n)

+

∫
((λj+ϵj)t,∞)

P (N (i)(t) < qij(n)) dFN(j)(t)(n))

≤
∑
i∈A

(
P (N (i)(t) < qij((λj + ϵj)t))× 1 + 1× e

− ϵj
2

2λj
t

)
(20)

≤
∑
i∈A

(
exp(−(λit− qij((λj + ϵj)t))

2

2λit
) + exp(− ϵj

2

2λj
t)

)
(21)

≤ |A|

(
exp(−(λmint− qij((λj + ϵj)t))

2

2λmint
) + exp(− ϵj

2

2λj
t)

)
(22)

Above, λmin = mini∈A λi and

• (18) follows from Lemma 4.

• (20) holds because P
(
N (j)(t) ≥ (λj + ϵj)t

)
≤ e

− ϵj
2

2λj
t
from the Poisson concentration

right tail bound P (X ≥ λ+ x) ≤ e−
x2

2λ Pollard (2015) and qij(n) being an increasing
function of n
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• (21) holds because P (X ≤ λ−x) ≤ e−
x2

2λ from the Poisson concentration left tail bound Pollard (2015)

Now we can show Thoerem 7, starting as follows:

∫
g(j)m F

S
(j)
n

=

∫
[0, n−1

λj+ϵj
)
g(j)m F

S
(j)
n

+

∫
[ n−1
λj+ϵj

,∞)
g(j)m F

S
(j)
n

≤ g(j)m (0+)× exp(−
ϵ2j
2λj

n− 1

λj + ϵj
) + g(j)m (

n− 1

λj + ϵj
)× 1 (23)

= 2|A| exp(−
ϵ2j
2λj

n− 1

λj + ϵj
) + g(j)m (

n− 1

λj + ϵj
)

= 3|A| exp(−
ϵ2j
2λj

n− 1

λj + ϵj
) + |A| exp(−

(λmin
n−1
λj+ϵj

− qij(n− 1))2

2λmin
n−1
λj+ϵj

)

= O(
1

n2
) (24)

Above, λmin = mini∈A λi and

• (23) holds because P (S
(j)
n < n−1

λj+ϵj
)

≤ P (S
(j)
⌈(λj+ϵj)T ⌉ ≤ T ) = P (N (j)(T ) ≥ ⌈(λj + ϵj)T ⌉) = P (N (j)(T ) ≥ (λj + ϵj)T )

≤ exp
(
− ϵj

2

2λj
T
)
≤ exp

(
− ϵ2j

2λj

n−1
λj+ϵj

)
and g

(j)
m (t) is a decreasing function of t.

• (24) holds because of the following:

We want to find N such that
(λmin

n−1
λj+ϵj

−qij(n−1))2

2λmin
n−1

λj+ϵj

≥ 2 ln(n) for all n ≥ N , i.e.,

( λmin
λj+ϵj

(n− 1)− qij(n− 1))2 ≥ 4 λmin
λj+ϵj

(n− 1) ln(n) for all n ≥ N . We can show this by

instead showing λmin
λj+ϵj

((n− 1)− qij(n− 1))2 ≥ 4n ln(n), or ((n−1)−qij(n−1))2

n ln(n) ≥ 4
λj+ϵj
λmin

for all n ≥ N . Note that for some β > 1, β(n− 1) > n holds for all n ≥ N1 for some
N1. Therefore showing (n−qij(n))

2

βn ln(βn) ≥ 4
λj+ϵj
λmin

for all n ≥ N ′ is what we want. Now note

that d
dn

(
(n+W−1(− 1

n))
2

βn log(βn)

)
=((

W−1

(
− 1

n

)
+ n

) (
W−1

(
− 1

n

)2
(−(log(nβ) + 1)) +W−1

(
− 1

n

)
((n− 3) log(nβ)− n− 1)+

n(log(nβ) − 1))/
(
n2β

(
W−1

(
− 1

n

)
+ 1
)
log2(nβ)

)
> 0 for n > 5. This means that

(n−qij(n))
2

βn ln(βn) is monotone strictly increasing, and therefore there exists some N ′ such that

(n−qij(n))
2

βn ln(βn) ≥ 4
λj+ϵj
λmin

for all n ≥ N ′. We achieve exp(−
(λmin

n−1
λj+ϵj

−qij(n−1))2

2λmin
n−1

λj+ϵj

) = O( 1
n2 ).
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