
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Gaussian Processes for Episodic Experimental Design

Ari Fiorino afiorino@alumni.cmu.edu
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Ojash Neopane oneopane@cs.cmu.edu
Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Aarti Singh aarti@cs.cmu.edu

Machine Learning Department

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Abstract

We present a method of finding the optimal series of actions in an experimental episode.
An episode consists of a series of contexts, a series of actions, and a series of rewards.
Within an episode, the rewards are only shown after the actions have been made. It is
assumed there is a delayed effect where an action will only affect a certain amount of
rewards that come after it. Our algorithm approaches this problem setup using Gaussian
Processes. We present experiments on synthetic data that show our algorithm has much
higher performance than suboptimal algorithms with weaker assumptions. We also present
two greedy versions of our algorithm with much lower runtime asymptotically, and near
optimal performance. Finally our algorithm was tested on a COVID-19 dataset to predict
future Coronavirus deaths from current Coronavirus cases, and it still performed optimally.

Keywords: Gaussian Processes, Additive Manufacturing, Coronavirus, Time Series
Optimization, Delayed Rewards

1. Introduction

When performing real world experiments, one first chooses a set of experimental parameters,
then performs the experiment, then observes the results. We call this three step process an
experimental “episode”. When trying to acheive a desired experimental result, one often
goes through several episodes. In automating the episodes, the conceptually difficult step
is the first one: which experimental parameters do we choose next given the data from past
episodes? Our goal is to be as data efficient as possible: we want to achieve the best results
in the fewest episodes.

There is a special case of experimental episode that has not been explored before, which
is the focus of this paper. In this setup, the experimental parameters are a time sequence
of actions to be performed by a robot. The experimental result is a corresponding time
sequence of rewards observed by the robot after the actions have been made. There is a
relationship between the time sequence of actions and the time sequence of rewards. Each

1

reward depends on the corresponding action performed at that time step and the previous
k actions performed, for some k.

This type of experimental episode is intuitive. If the robot makes a certain action at
a given time step, it should affect the rewards for the next k time steps, nothing before
or after that. This type of episode assumes the robot has no sensors that can be used
while it is performing the experiment. This is often the case in practice, for example when
observing the result can change the result itself. Also, there are often separate machines
for performing the experiment and observing the results.

There are many problems in the real world that follow this framework. In an additive
manufacturing setting, the robot extrudes a sequence of amounts of a certain material.
Once the object has been created, a sensor scans the resulting object and determines how
well each section was made. Using the time sequence of extrusion amounts and the time
series of rewards, the robot decides the next sequence of extrusion amounts to pick.

In this paper, we explore this episodic problem formulation and approach it using
Gaussian Processes. We give an optimal algorithm, compare it to non-optimal algorithms,
and give a time efficient approximation to the optimal algorithm. We show experiments
performed on synthetic data and a COVID-19 dataset. Our algorithm is used to predict
future Coronavirus deaths based on current Coronavirus cases.

Related Work. There are several papers using Gaussian Processes that are similar to
our problem formulation but differ in major ways. In the batch GP method described by
Kathuria et al. (2016), there is a function we want to optimize. We can pass several actions
to that function at once, in a batch. Then we receive the rewards corresponding to each
action. In batch GP, the rewards only depend on the corresponding action. But in our
definition of an episode, each reward depends on the previous k actions as well.

Bogunovic et al. (2016) describes a method of using Gaussian processes to optimize a
time varying function. They optimize this function continually as it changes and have no
opportunity to go back and try again from the beginning. By contrast, our formulation
has multiple opportunities to optimize the same time varying function. Our formulation
optimizes the time varying function at every episode and learns from past episodes as well.

Our problem formulation is the combination of both of these papers. The actions are
sent in a batch, but the actions taken can have a delayed effect on the subsequent k rewards
as well.

The area of Reinforcement Learning (RL) as outlined in Sutton and Barto (2018) is
different from our setting as well. In RL there is a state announced at each round. An
action is made for the state and then a reward is returned for that state-action pair. The
state in RL is similar to the context in an episode. But in our case, the rewards are not
announced instanteneously after each action is made. They are only announced after T
rounds. One could have the sum of all the rewards announced every T rounds. But this
would be suboptimal as it would not have the time dependencies included.

2

2. Background

2.1 GP-UCB

Say we want to maximize a function f : Rn → R by iteratively making guesses. For this
we use the Gaussian Process upper confidence bound (GP-UCB) algorithm from Srinivas
et al. (2009). First, a Gaussian Process will input training points for f , and output two
functions. fµ : Rn → R is the approximation of f , and fσ : Rn → R is the uncertainty of its
prediction. Using these two functions, the GP-UCB algorithm will choose this as its next
point:

x̂ = argmax
x

fµ(x) + βfσ(x)

This method picks a point with a high expected label, but also one with a high variance,
as it might yield a high label. β is the exploration-exploitation tradeoff parameter.

2.2 CGP-UCB

There is a modification of GP-UCB described in Krause and Ong (2011). At every round,
a context c ∈ C is announced, and the algorithm needs to optimize f(c, ·). The proposed
solution is very similar to GP-UCB but incorporates the context as well. We use past
training data to approximate f : C × Rn → R with fµ : C × Rn → R as the mean and
fσ : C ×Rn → R as the variance of our prediction. Then our best guess to maximize f(c, ·)
is

x̂ = argmax
x

fµ(c, x) + βfσ(c, x)

3. Problem Statement

Here we formalize our episodic problem setup. At each episode,

1. A series of contexts c0, . . . , cT ∈ C are announced.

2. A series of actions a0, . . . , aT ∈ A are decided upon based on the contexts.

3. A series of rewards rk, . . . , rT ∈ R are measured.

Each of these steps happens one after another, i.e. there is no overlap between steps 2
and 3. k is the time dependency parameter. Our assumption is that ri only depends on
ai, . . . , ai−k and ci, . . . , ci−k.

4. Algorithms

We propose several algorithms that solve the problem statement from section 3. The first
one, Episodic CGP-UCB is the most intuitive, and the optimal solution from our problem
statement.

E-CGP-UCB We assume there is a function f : Ck+1 ×Ak+1 → R and that
ri = f(ci, . . . , ci−k, ai, . . . , ai−k). We approximate f using a GP on past data with fµ and

3

fσ. Then our update rule is

â0, . . . , âT = argmax
a0,...,aT∈A

T∑
i=k

fµ(ci, . . . , ci−k, ai, . . . , ai−k) + βfσ(ci, . . . , ci−k, ai, . . . , ai−k)

Next, there are several algorithms that make weaker assumptions than our problem formulation.
These are described in CGP-UCB-ONE, CGP-UCB-ALL, and E-GP-UCB .

CGP-UCB-ONE We assume there is a function f : C × A → R and that ri = f(ci, ai).
We approximate f using a GP on past data with fµ and fσ. Then our update rule is

âi = argmax
a∈A

fµ(ci, , ai) + βfσ(ci, ai)

CGP-UCB-ALL We assume there is a function f : CT+1×AT+1 → R and that
∑T

i=k ri =
f(c0, . . . , cT , a0, . . . , aT). We approximate f using a GP on past data with fµ and fσ. Then
our update rule is

â0, . . . , âT = argmax
a0,...,aT∈A

fµ(c0, . . . , cT , a0, . . . , aT) + βfσ(c0, . . . , cT , a0, . . . , aT)

E-GP-UCB This algorithm is the same asE-CGP-UCB, but it ignores context. Therefore
We assume there is a function f : Ak+1 → R and that ri = f(ai, . . . , ai−k). We approximate
f using a GP on past data with fµ and fσ. Then our update rule is

â0, . . . , âT = argmax
a0,...,aT∈A

T∑
i=k

fµ(ai, . . . , ai−k) + βfσ(ai, . . . , ai−k)

An issue with E-CGP-UCB is that it has a O
(
|A|T

)
runtime. Therefore we present greedy

approximation algorithms E-CGP-UCB-G1 and E-CGP-UCB-G2.

E-CGP-UCB-G1 In order to reduce the runtime of E-CGP-UCB, we greedily optimize
the first element of the summation, and then each subsequent element. That is we first find

â0, . . . , âk = argmax
a0,...,ak∈A

fµ(ck, . . . , c0, ak, . . . , a0) + βfσ(ck, . . . , c0, ak, . . . , a0)

Then we find

âk+1 = argmax
ak+1∈A

fµ(ck+1, . . . , c1, ak+1, âk, . . . , â1) + βfσ(ck+1, . . . , c1, ak+1, âk, . . . , â1)

Then so on for âk+2, This reduces the runtime to O
(
|A|k

)
.

E-CGP-UCB-G2 We first runE-CGP-UCB-G1 and then we try changing each individual
action to increase the overall UCB. We check if we can replace â0 with a different value and
increase the overall UCB. Then we check â1, â2, and so on. We run multiple passes from
â0 to âT to increase the overall UCB. Overall, we still have a runtime of O

(
|A|k

)
.

4

Figure 1: Comparing all algorithms on synthetic data. Algorithms designated by the grey
bracket are new algorithms we have designed.

5. Synthetic Evaluation

We ran all the algorithms on synthetic data to compare their performance. We created
our target function by sampling from a GP which follows our problem statement. For our
experimental parameters we had T = 4 , k = 2 ,A = [5] , C = {0, 5}. For our GP we used
an RBF kernel with σ = 2. At each episode, we pick a random context. We run each of the
algorithms on 100 random initialization points and plot the average reward per iteration.
In Figure 1, we plot our results. The performance of the algorithms is explained below.

E-CGP-UCB This algorithm has optimal performance.

CGP-UCB-ONE has low performance because it only uses data for an individual day
rather than the past k days. It will never find the optimal solution.

CGP-UCB-ALL has low performance because it is trying to optimize over a very large
function. This makes it slow to find the optimal solution.

E-GP-UCB This algorithm has very low performance because it doesn’t take context
into account. Because knowledge of the context is necessary to solve the problem, it will
never find the optimal solution.

E-CGP-UCB-G1 This algorithm approximates the optimal algorithm. It approaches
optimal performance but doesn’t match it since it is a greedy version.

E-CGP-UCB-G2 This algorithm is even closer to the optimal solution. It is very close
to optimal and has much smaller runtime asymptotically.

6. COVID-19 Evaluation

Next, we tested our algorithms on a dataset of Coronavirus cases and deaths over time.
We chose this dataset because it has a time dependency associated with it. The deaths lag
behind cases by 8.053 ± 4.116 days as shown by Jin (2021). We used official Coronavirus
data from the CDC. Let p0, p1, . . . be the cases and q0, q1, . . . be the deaths. At each episode,

5

Figure 2: Comparing all algorithms on COVID-19 data. Algorithms designated by the grey
bracket are new algorithms we have designed.

a random day d is chosen. The context announced is c0 = pd, . . . , cT = pd+T . Then the
algorithm chooses a0, . . . , aT . Then the rewards rk, . . . , rT are calculated as follows:

ri = −

∣∣∣∣∣∣
i∑

j=i−k

aj − qj+8

∣∣∣∣∣∣
This encourages the algorithm to pick the correct deaths qd+8, . . . , qd+8+T . Therefore the
algorithm ends up predicting future deaths. The results are shown in Figure 2.

For this experiment, E-GP-UCB is off of the graph. It has very bad performance
because it ignores context, in this case ignoring the number of COVID cases. As is the case
with the synthetic experiments, CGP-UCB-ALL is very slow as it is optimizing over a
large function. CGP-UCB-ONE performed suboptimally because it only takes one case
into account when predicting one death. The greedy approximations perform optimally.

7. Conclusion

We have presented a method of optimizing a series of actions over a series of rewards,
where the actions have an unknown, delayed effect on the rewards. We showed our optimal
algorithm has much higher performance on synthetic and real world data when compared
with suboptimal algorithms with weaker assumptions. The optimal algorithm has a large
runtime asymptotically, so we created two greedy approximations. These approximations
perform close to optimal and are much faster to run. For future work, we would like to
compare the algorithms in an active learning scenario.

Acknowledgments

This research is supported in part by the AFRL Data-Driven Discovery of Optimized
Multifunctional Material Systems Center of Excellence (D3OM2S CoE) grant.

6

Appendix A.

The full implementation is available here: https://github.com/arifiorino/Modified-GP

References

Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. Time-varying gaussian process
bandit optimization. In Arthur Gretton and Christian C. Robert, editors, Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, volume 51
of Proceedings of Machine Learning Research, pages 314–323, Cadiz, Spain, 09–11 May
2016. PMLR. URL https://proceedings.mlr.press/v51/bogunovic16.html.

Raymond Jin. The lag between daily reported covid-19 cases and deaths and its relationship
to age. Journal of Public Health Research, 10(3):jphr.2021.2049, 2021. doi: 10.4081/jphr.
2021.2049. URL https://doi.org/10.4081/jphr.2021.2049. PMID: 33709641.

Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. Batched gaussian process bandit
optimization via determinantal point processes. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/

paper/2016/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf.

Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 24. Curran
Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/

f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian
process bandits without regret: An experimental design approach. CoRR, abs/0912.3995,
2009. URL http://arxiv.org/abs/0912.3995.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

7

https://github.com/arifiorino/Modified-GP
https://proceedings.mlr.press/v51/bogunovic16.html
https://doi.org/10.4081/jphr.2021.2049
https://proceedings.neurips.cc/paper/2016/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a1d7311f2a312426d710e1c617fcbc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
http://arxiv.org/abs/0912.3995

	Introduction
	Background
	GP-UCB
	CGP-UCB

	Problem Statement
	Algorithms
	Synthetic Evaluation
	COVID-19 Evaluation
	Conclusion

