
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Sample-efficient Plasma Control by Planning for Optimal
Trajectory Information

Viraj Mehta, Ian Char, & Jeff Schneider {virajm, ichar, schneide}@cs.cmu.edu
Robotics Insitute & Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA, USA

Willie Neiswanger & Stefano Ermon {neiswanger, ermon}@cs.stanford.edu
Computer Science Department
Stanford University
Stanford, CA, USA

Joseph Abbate, Rory Conlin, & Mark D Boyer {abbatej, wconlin}@princeton.edu,
mboyer@pppl.gov

Princeton Plasma Physics Laboratory
Princeton, NJ, USA

Abstract
Many potential applications of reinforcement learning (RL) are stymied by the large num-
bers of samples required to learn an effective policy. This is especially true when applying
RL to real-world control tasks, e.g. in the sciences or robotics, where executing a policy
in the environment is costly. In popular RL algorithms, agents typically explore either by
adding stochasticity to a reward-maximizing policy or by attempting to gather maximal
information about environment dynamics without taking the given task into account. In
this work, we develop a method that allows us to plan for exploration while taking both
the task and the current knowledge about the dynamics into account. The key insight
to our approach is to plan an action sequence that maximizes the expected information
gain about the optimal trajectory for the task at hand. We demonstrate that our method
learns strong policies with 2-200x fewer samples compared to 14 baselines on a diverse set
of control tasks including 2 nuclear fusion examples in both the open-loop and closed-loop
control settings.
Keywords: Reinforcement Learning, Exploration, Model-Predictive Control

1. Introduction

The potential of reinforcement learning (RL) as a general-purpose method of learning so-
lutions to sequential decision making problems is difficult to overstate. Ideally, RL could
allow for agents that learn to accomplish all manner of tasks solely through a given reward
function and the agent’s experience; however, RL has so far broadly fallen short of this. One
major reasons for this is that typical RL methods in continuous problems require very large
numbers of samples to achieve a near-optimal policy. This is especially challenging when
samples are expensive.

Many previous state-of-the-art methods rely on cost functions that either result in behav-
ior that is too greedy—i.e. the policy simply tries to maximize returns during exploration—
or too exploratory, i.e. the policy is incentivized to explore the environment dynamics and

1

(a) (e)

Trajectory Information
Planning

Trajectory (Joint)
Information Gain

Posterior Samples of
Optimal Trajectory

(b) (c) (d)

Figure 1: A schematic depiction of Trajectory Information Planning (TIP). Suppose the agent in (a) aims
to determine where to explore next from its current state. To do so, in (b) the agent samples
dynamics models T ′ ∼ P (T | D) from its current posterior and finds approximately optimal
trajectories τ∗ ∼ P (τ∗ | T ′) for each sample. Then in (c) it pools these samples of posterior
optimal trajectories τ∗. In (d) it constructs a function that gives the joint expected information
gain about the optimal trajectory τ∗ given a planned exploration trajectory (i.e. EIGτ∗ over
the set of points visited). Finally, in (e) the agent can plan an action sequence which maximizes
this joint expected information gain.

does not consider the task at hand. We therefore present a cost function that balances out
these two extremes. In particular, our cost function captures the amount of information that
would be gained about the optimal trajectory, if the agent were to explore by following a
particular planned trajectory. As depicted in Figure 1, this involves the agent planning out
what it would hypothetically do given different realizations of the dynamics and planning
actions that are informative about those possibilities. We give a discussion of the related
work in Section E.

The contributions of this work are as follows: we develop a novel cost function for
exploration that explicitly accounts for both the specific task as well as uncertainty about
environment dynamics given past experience, a method for planning which applies the cost
function to explore in MDPs with continuous states and actions, and a thorough empirical
evaluation of our method across 5 closed-loop and 3 open-loop environments (with a focus
on expensive RL tasks in plasma physics) compared against 14 baselines. We find that our
proposed method is able to learn policies that perform as well as an agent with access to
the ground truth dynamics using 2-200x fewer samples than comparison methods.

2. Problem Setting
In this work we deal with finite-horizon discrete-time Markov decision processes (MDPs)
which consist of a sextuple 〈S,A, T, r, p0, H〉 where S is the state space, A is the action
space, T is the transition function T : S × A → P (S) (using the convention that P (X) is
the set of probability measures over X), r : S × A× S → R is a reward function, p0(s) is a
distribution over S of start states, and H ∈ N is the horizon. We always assume S,A, p0,
and H are known. We also assume the reward r is known, though our development of the
method can easily be generalized to the case where r is unknown. Our primary function
of interest is the transition function T , which we learn from data. We address both open
and closed loop control settings. In the more common closed loop setting, our aim is to

2

find a policy π : S → A that maximizes the MDP objective below. We discuss trajectories
τ ∼ p(τ | π, T) where τ = [(s0, a0), . . . , (sH−1, aH−1), sH] generated by s0 ∼ p0, ai = π(si),
and si+1 ∼ T (si, ai). We can write the return of a trajectory as R(τ) =

∑H−1
i=0 r(si, ai, si+1)

for the states and actions si, ai that make up τ . The MDP objective can then be written
as JT (π) = Eτ∼p(τ |π,T) [R(τ)]. We aim to maximize this objective while minimizing the
number of samples from the ground truth transition function T that are required to reach
good performance. We denote the optimal policy as π∗ = arg maxπ JT (π), which we can
assume to be deterministic (Sutton and Barto, 1998) but not necessarily unique. We use τ∗

to denote optimal trajectories, i.e. τ∗ ∼ p(τ | π∗, T)

3. Trajectory Information Planning

Our method consists of a generic framework for Bayesian or approximately Bayesian model-
predictive control and a novel cost function for planning that allows us to explicitly plan to
find the maximal amount of new information relevant to our task. The MPC algorithm is
given in Algorithm 1 and we give further discussion in Section A.4. Many prior methods
such as Chua et al. (2018), Deisenroth and Rasmussen (2011), and Shyam et al. (2019)
approximate this framework while using the greedy cost function corresponding to the future
negative expected rewards or the pure exploration cost function corresponding to future
information about the dynamics. In Section 3.1, we derive our new cost function and describe
how it is computed. The overall method is simply applying the planning framework with
the new cost function.
Algorithm 1 Bayesian Model-Predictive Control with Cost Function C
Inputs: transition function episode query budget b, number of posterior function samples
k, planning horizon h
Initialize D ← ∅.
for i ∈ [1, . . . , b] do
Sample start state s0 ∼ p0.
for t ∈ [0, . . . ,H − 1] do
Sample posterior functions {T ′`}k`=1 ∼ P (T ′ | D).
Approximately find arg mina0,...,ah−1

∑k
`=1 Eτ`∼p(τ |T ′` ,a0,...,ah−1) [C(τ`)] via CEM.

Execute action a0 by sampling st+1 ∼ T (st, a0).
Update dataset D ← D ∪ {(st, a0, st+1}.

end for
end for
return πg for the posterior P (T ′ | D).

3.1 A Task-Specific Cost Function based on Trajectory Information

In this work, we aim to explore by choosing actions that maximize the conditional expected
information gain (EIG) about the optimal trajectory τ∗. This is the same overall goal as
that of Mehta et al. (2022), where the EIGτ∗ acquisition function was introduced for this
purpose. However, in this paper we generalize this acquisition function in order to allow for
sequential information collection that accounts for the redundant information that could be
collected between timesteps. As discussed at length in Osband et al. (2019), it is essential
to reason about how an action taken at the current timestep will affect the possibility of

3

learning something useful in future timesteps. In other words, exploration must be deep and
not greedy. Explicit examples are given in Osband et al. (2019) where the time to find an
ε-optimal policy in a tabular MDP is exponential in the state size unless exploration can be
coordinated over large numbers of timesteps rather than being conducted independently at
each action. As the EIGτ∗ acquisition function is only defined over a single state-action pair
and mutual information is submodular, we cannot naively use the acquisition function as is
(or sum it over many datapoints) to choose actions that lead to good long-term exploration.
As an illustrative example, this is clear in navigation tasks, where the nearby points visited
over trajectories will provide redundant information about the local environment.

We therefore give a cost function that generalizes EIGτ∗ by taking a set of points to
query and computing the joint expected information gain from observing the set. Our
cost function is non-Markovian in the state space of the MDP, but it is Markovian in the
dataset, which represents a point in the belief space of the agent about the dynamics. Let
S̃ = {x : x ⊆ S × A, |x| < ∞}, the set of finite subsets of the set of all state-action pairs.
Our cost function Cτ∗ : S̃ → R is defined below to be the negative joint expected information
gain about the optimal trajectory τ∗ for a subset S ∈ S̃. In particular, assuming an existing
dataset D, a set of h query points S = {(si, ai)}i∈[h], and a random set of next states
S′ = {s′i ∼ T (si, ai), i ∈ [h]},

Cτ∗(S) = ES′∼p(S′|S,D)

[
H
[
τ∗ | D ∪ S′

]]
−H [τ∗ | D] . (1)

This formulation of Cτ∗ forces our method to handle the redundant information among
queries—it is likely that there will be some information about τ∗ that is duplicated between
members of the set and our method of computing this cost function must avoid ‘double-
counting’ it. However, as written, this function relies on computing entropies on high-
dimensional trajectories where the form of the joint distribution of the elements is unknown.
To tractably estimate this quantity, we use the fact that Cτ∗(S) = −I(S′, τ∗) = −I(τ∗, S′)
for the mutual information I. This allows us to exchange τ∗ and our set of queries so that τ∗

is giving information about the posterior predictive distribution of our set. In other words,

Cτ∗(S) = Eτ∗∼p(τ∗|D)

[
H
[
S′ | D ∪ τ∗

]]
−H

[
S′ | D

]
. (2)

In order to compute the right-hand term, we must take samples τ∗ij ∼ P (τ∗ | D), i =

1, . . . ,m, j = 1, . . . , n. To do this, we first sample m start states s(i)0 from p0 (we always set
m = 1 in experiments but derive the procedure in general) and for each start state inde-
pendently sample n posterior functions T ′ij ∼ P (T ′ | D) from our posterior over dynamics
models. We then run a planning procedure using iCEM (Pinneri et al., 2020) on each of the
posterior functions from s

(i)
0 using T ′ij for T (using our assumption that planning can gen-

erate approximately optimal trajectories given ground-truth dynamics), giving our sampled
τ∗ij . Formally, we can approximate Cτ∗ via Monte-Carlo as

Cτ∗(S) ≈ 1

mn

∑
i∈[m]

∑
j∈[n]

H[S′|D ∪ τ∗ij]

−H[S′ | D]. (3)

Assuming the dynamics are modelled with a Gaussian process, we can compute the joint
Gaussian probability of the next states S′ (Rasmussen, 2003). As the entropy of a mul-
tivariate Gaussian depends only on the log-determinant of the covariance, log |Σ|, we can

4

tractably compute the joint entropy of the model predictions H [S′ | D] and optimize it with
a zeroth order optimization algorithm. Finally, we must calculate the entropy H[S′|D∪ τ∗ij].
For this, we follow a similar strategy as Neiswanger et al. (2021): since τ∗i is a set of states
output from the transition model, we can treat them as additional noiseless datapoints for
our dynamics model and condition on them before computing the joint covariance matrix
for S′. Given this newly generalized acquisition function, we can instantiate a method of
planning in order to maximize future information gained. We give the concrete procedure
for computing our acquisition function in Algorithm 2, noting that trajectories τ∗ij do not
depend on the query set S and can be cached for various values of S as long as the dataset
D does not change.

Our ultimate procedure, which we name Trajectory Information Planning (TIP), is quite
simple: run model-based RL using MPC as in Algorithm 1 but set the cost function to be
Cτ∗(τ) instead of Cg or Ce and compute this cost function using Algorithm 2. At test time,
we simply return to planning with Cg as the cost function and greedily attempt to maximize
returns over exploration. We can also formulate an open-loop variant of our method, oTIP,
which simply involves planning once and then executing the entire action sequence.

Algorithm 2 Computation of Cτ∗
Inputs: dataset D = {(sk, ak, s′k)}, query set S, number of start state samplesm, number
of posterior function samples n.
Sample m start states {s(i)0 }mi=1 ∼ p0.
for i ∈ [m] do
Sample n posterior functions {T ′j}nj=1 ∼ P (T ′ | D).
for j ∈ [n] do
Set π∗j ← πMPC using Cg and singleton posterior P (T | D) = δ(T ′j) via Algorithm 1.

Compute τ∗ij by executing π∗j on T ′j starting from s
(i)
0 .

end for
end for
Compute joint posterior covariance ΣS′ | D across all points in S.
Compute joint posterior covariances ΣS′

ij | D ∪ τij ∀i ∈ [n], j ∈ [m] across all points in S.
return log |ΣS′ | − 1

nm

∑
i∈[n],j∈[m] log |ΣS′

ij |.

4. Experiments

The aim of our development of the TIP algorithm and the Cτ∗ acquisition function for RL
is to reduce the sample complexity of learning effective policies in continuous MDPs given
limited access to expensive dynamics. In this section we demonstrate the effectiveness of
TIP in quickly learning a good policy by comparing against a variety of state-of-the-art
reinforcement learning algorithms and strong baselines (including some that use the TQRL
setting from (Mehta et al., 2022), which is also known as RL with a generative model in
Kakade (2003) and other works (Azar et al., 2013; Agarwal et al., 2020)). In particular, we
compare the average return across five evaluation episodes across five random seeds of each
algorithm on 5 closed-loop control problems. We also assess the median amount of data
taken by each algorithm to ‘solve’ the problem across five seeds, which we take to mean
performing as well as an MPC controller using the ground truth dynamics.

5

Environment TIP sTIP DIP MPC PETS SAC TD3 PPO HUCRL TS BARL EIGT

Pendulum 21 36 36 46 5.6k 7k 26k 14k >50k >50k 21 56
Cartpole 131 141 161 201 1.63k 32k 18k >1M >6k >6k 111 121
β Tracking 46 76 276 76 330 12k 17k 39k 480 420 186 >1k
β + Rotation 201 >500 >500 >500 400 30k >50k >50k >5k >5k >500 >1k
Reacher 251 >400 >1k 751 700 23k 13k >100k 6.6k 4.5k 251 >1.5k

Table 1: Sample Complexity: Median number of samples across 5 seeds required to reach ‘solved’
performance, averaged across 5 trials. We determine ‘solved’ performance by running an MPC
policy (similar to the one used for evaluation) on the ground truth dynamics to predict actions.
We record > n when the median run is unable to solve the problem by the end of training after
collecting n datapoints. The methods in the rightmost section operate in the TQRL setting and
therefore have more flexible access to the MDP dynamics for data collection. The full set of
methods are shown in Section D.

We evaluate the open-loop variant of our method, oTIP, against three comparison meth-
ods on three control problems we see as suitable for open-loop control. In particular, to be
suitable for open-loop control, the problem cannot be dynamically unstable (as Pendulum
and Cartpole famously are) and must have a relatively short control horizon and fixed start
state. Here too, we assess the average return as open-loop trials are conducted as well as
the number of timesteps required to achieve ‘solved’ performance.

We give a description of each of our comparison methods including the ablations and
relationship to our TIP and oTIP methods in Section B.

We give full descriptions of our non-plasma control problems in Section C.

4.1 Plasma Control Problems

The plasma control problems (β Tracking and β + Rotation) are based on controlling a
tokamak, a toroidally shaped device for confining a thermonuclear plasma using magnetic
fields. Achieving net positive energy from fusion requires confining a plasma at high enough
temperature and density long enough for hydrogen isotopes to collide and fuse. However, as
the temperature and density are increased, a wide variety of instabilities can occur which
degrade confinement, leading to a loss of energy. Full physics simulation of tokamak plasmas
requires 10s-1000s of CPU hours to simulate a single trajectory, and often require hand
tuning of different parameters to achieve accurate results. Following the work of Abbate
et al. (2021), each of our plasma control problems used neural networks trained on data as
the ground truth dynamics models. We used the MDSPlus tool (Stillerman et al., 1997) to
fetch historical discharges from the DIII-D tokamak in San Diego. In total, we trained our
models on 1,479 historical discharges. The data was pre-processed following the procedure
outlined in Abbate et al. (2021). We describe how each environment was constructed in
more detail in Sections C.1 and C.2.

Environment oTIP oMPC oDIP BO

Nonlinear Gain 1 41 91 51 210
Nonlinear Gain 2 51 61 >200 60
Lava Path 41 101 101 >2k

Table 2: Open Loop Sample Complexity: Same
protocol as in Table 1 for open-loop actions.

Results As can be seen in Table 1, TIP
is able to reach solved performance more
quickly across the board than the model-
based and model-free external baselines, of-
ten using a fraction or even orders of magni-
tude less data than other methods. We give
further results and discussions in Section D.

6

References

Joseph Abbate, R Conlin, and E Kolemen. Data-driven profile prediction for diii-d. Nuclear
Fusion, 61(4):046027, 2021.

Jan Achterhold and Joerg Stueckler. Explore the context: Optimal data collection for
context-conditional dynamics models. In Arindam Banerjee and Kenji Fukumizu, editors,
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pages 3529–3537. PMLR, 13–15
Apr 2021. URL https://proceedings.mlr.press/v130/achterhold21a.html.

Alekh Agarwal, Sham Kakade, and Lin F. Yang. Model-based reinforcement learning with a
generative model is minimax optimal. In Jacob Abernethy and Shivani Agarwal, editors,
Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings
of Machine Learning Research, pages 67–83. PMLR, 09–12 Jul 2020. URL https://
proceedings.mlr.press/v125/agarwal20b.html.

Jordan T. Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, and Sham M. Kakade.
Anti-concentrated confidence bonuses for scalable exploration. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?id=
RXQ-FPbQYVn.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds
on the sample complexity of reinforcement learning with a generative model. Machine
learning, 91(3):325–349, 2013.

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen
Roberts. Ready policy one: World building through active learning. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine Learning Research, pages 591–601.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/ball20a.html.

A. Bondeson and D.J. Ward. Stabilization of external modes in tokamaks by resistive walls
and plasma rotation. Physical Review Letters, 72(17):2709–2712, 1994.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1lJJnR5Ym.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statis-
tical Science, pages 273–304, 1995.

Richard Y. Chen, Szymon Sidor, Pieter Abbeel, and John Schulman. UCB and infogain
exploration via q-ensembles. CoRR, abs/1706.01502, 2017. URL http://arxiv.org/
abs/1706.01502.

7

https://proceedings.mlr.press/v130/achterhold21a.html
https://proceedings.mlr.press/v125/agarwal20b.html
https://proceedings.mlr.press/v125/agarwal20b.html
https://openreview.net/forum?id=RXQ-FPbQYVn
https://openreview.net/forum?id=RXQ-FPbQYVn
https://proceedings.mlr.press/v119/ball20a.html
https://openreview.net/forum?id=H1lJJnR5Ym
http://arxiv.org/abs/1706.01502
http://arxiv.org/abs/1706.01502

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep re-
inforcement learning in a handful of trials using probabilistic dynamics models. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based
reinforcement learning through optimistic policy search and planning. In
NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a36b598abb934e4528412e5a2127b931-Abstract.html.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial
on the cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In Aaai/iaai,
pages 761–768, 1998.

Richard Dearden, Nir Friedman, and David Andre. Model-based bayesian exploration.
CoRR, abs/1301.6690, 1999. URL http://arxiv.org/abs/1301.6690.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11, page 465–472, Madison, WI,
USA, 2011. Omnipress. ISBN 9781450306195.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1587–1596. PMLR, 10–15 Jul 2018. URL https:
//proceedings.mlr.press/v80/fujimoto18a.html.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian rein-
forcement learning: A survey. CoRR, abs/1609.04436, 2016. URL http://arxiv.org/
abs/1609.04436.

R. J. Groebner, K. H. Burrell, and R. P. Seraydarian. Role of edge electric field and poloidal
rotation in the l-h transition. Physical Review Letters, 64(25):3015–3018, 1990. ISSN
00319007. doi: 10.1103/PhysRevLett.64.3015.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learning
using sample-based search. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’12, page 1025–1033, Red Hook, NY,
USA, 2012. Curran Associates Inc.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861–1870. PMLR, 2018.

8

https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html
http://arxiv.org/abs/1301.6690
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/1609.04436
http://arxiv.org/abs/1609.04436

Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13(6), 2012.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. Advances in neural
information processing systems, 27, 2014.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in Neural Information Processing Systems,
32, 2019.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. Uni-
versity of London, University College London (United Kingdom), 2003.

Sanket Kamthe and Marc Deisenroth. Data-efficient reinforcement learning with probabilis-
tic model predictive control. In Amos Storkey and Fernando Perez-Cruz, editors, Proceed-
ings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 1701–1710. PMLR, 09–11
Apr 2018. URL https://proceedings.mlr.press/v84/kamthe18a.html.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Pro-
ceedings of the 26th annual international conference on machine learning, pages 513–520,
2009.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple uni-
fied framework for ensemble learning in deep reinforcement learning. In International
Conference on Machine Learning, pages 6131–6141. PMLR, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

David JC MacKay et al. Bayesian nonlinear modeling for the prediction competition.
ASHRAE transactions, 100(2):1053–1062, 1994.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Willie Neiswanger, and Stefano Ermon. An
experimental design perspective on model-based reinforcement learning. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=0no8Motr-zO.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
1995.

Willie Neiswanger, Ke Alexander Wang, and Stefano Ermon. Bayesian algorithm execution:
Estimating computable properties of black-box functions using mutual information. In
International Conference on Machine Learning. PMLR, 2021.

9

https://proceedings.mlr.press/v84/kamthe18a.html
https://openreview.net/forum?id=0no8Motr-zO
https://openreview.net/forum?id=0no8Motr-zO

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Byx83s09Km.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-
ration via bootstrapped dqn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
8d8818c8e140c64c743113f563cf750f-Paper.pdf.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.
URL http://jmlr.org/papers/v20/18-339.html.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787. PMLR, 2017.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler,
Michal Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time
planning. arXiv preprint arXiv:2008.06389, 2020.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer, 2003.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive pomdps. In NIPS,
pages 1225–1232, 2007.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed
sampling. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A
tutorial on thompson sampling. Foundations and Trends® in Machine Learning, 11(1):
1–96, 2018.

Ilya O Ryzhov andWarren B Powell. Information collection on a graph. Operations Research,
59(1):188–201, 2011.

Ilya O Ryzhov, Martijn RK Mes, Warren B Powell, and Gerald van den Berg. Bayesian
exploration for approximate dynamic programming. Operations research, 67(1):198–214,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

10

https://openreview.net/forum?id=Byx83s09Km
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
http://jmlr.org/papers/v20/18-339.html
https://proceedings.neurips.cc/paper/2014/file/301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/301ad0e3bd5cb1627a2044908a42fdc2-Paper.pdf

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference
on Machine Learning, pages 8583–8592. PMLR, 2020.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active explo-
ration. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5779–5788. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/shyam19a.html.

JA Stillerman, TW Fredian, KA Klare, and G Manduchi. Mdsplus data acquisition system.
Review of Scientific Instruments, 68(1):939–942, 1997.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000,
pages 943–950, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA, 1998. ISBN 0-262-19398-1. URL http://www.cs.ualberta.
ca/%7Esutton/book/ebook/the-book.html.

Matthew Tesch, Jeff Schneider, and Howie Choset. Expensive function optimization with
stochastic binary outcomes. In Sanjoy Dasgupta and David McAllester, editors, Proceed-
ings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 1283–1291, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v28/tesch13.html.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for regression.
1996.

James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc
Deisenroth. Efficiently sampling functions from gaussian process posteriors. In Inter-
national Conference on Machine Learning, pages 10292–10302. PMLR, 2020.

11

https://proceedings.mlr.press/v97/shyam19a.html
https://proceedings.mlr.press/v97/shyam19a.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
https://proceedings.mlr.press/v28/tesch13.html

Control Problem Pendulum Cartpole β Tracking β + Rotation Reacher

Sample τ∗ mn times 24 31 7 25 130
Plan actions that minimize Cτ∗ 16 15 15 50 295
Total for TIP Iteration 40 46 22 75 425

Evaluation for one episode 5-20 2-10 2-5 3 - 18 100-500

Table 3: Runtime in seconds for the phases of the TIP algorithm on all problems when
run on the authors’ CPU machines. The ranges given show the runtime for the
operation at the beginning and at the end of training, as some operations run
longer as more data is added.

Appendix A. Implementation Details

A.1 Wall Times

Though TIP and oTIP are designed for applications where samples are expensive and com-
putation is relatively inexpensive, we present in this section data on the running time of
these methods. We ran all experiments on a shared research cluster available to us on large
machines with hundreds of GB of memory and between 24 and 88 CPU cores. In general
our implementation did not make use of more than 20 CPU cores concurrently. In Table 3,
we give the running time of the phases of the TIP algorithm. We note that the bulk of the
computation in the planning procedure actually goes towards the just-in-time compilation
of the JAX code that computes the cost function Cτ∗ on sampled future trajectories. In
order to allow for this compilation cost, we modified the iCEM algorithm from (Pinneri
et al., 2020) to take fixed batch sizes as the compilation (e.g. for the β tracking problem)
takes approximately 90% of the time required for planning. Unfortunately this compilation
process must be repeated at every iteration due to the limitations of the JAX compiler. We
believe that a similarly JIT-compiled implementation of the planning algorithm for sampling
τ∗ on posterior samples could lead to a substantial speedup and a more flexible compiler
could do more still.

A.2 GP Model Details

For all of our experiments, we use a squared exponential kernel with automatic relevance
determination (MacKay et al., 1994; Neal, 1995). The parameters of the kernel were esti-
mated by maximizing the likelihood of the parameters after marginalizing over the posterior
GP (Williams and Rasmussen, 1996).

To optimize the transition function, we simply sampled a set of points from the domain,
evaluated the acquisition function, and chose the maximum of the set. This set was chosed
uniformly for every problem but β + Rotation and Reacher, for which we chose a random
subset of ∪i∪j τ∗ij (the posterior samples of the optimal trajectory) since the space of samples
is 10-dimensional and uniform random sampling will not get good coverage of interesting
regions of the state space.

12

A.3 Cost Function Details

We set n = 15 andm = 1 for our Monte Carlo estimate of the cost function for each problem.

A.4 Model-Predictive Control in Bayesian Model-Based RL
In this section, we give a formulation of Bayesian planning for control that generalizes ideas
from methods such as PILCO (Deisenroth and Rasmussen, 2011) and PETS (Chua et al.,
2018). This formulation highlights these methods’ inherently greedy nature and hints at a
possible solution. The objective of Bayesian planning is simply to find the h-step action
sequence that maximizes the expected future returns under model uncertainty. That is,

argmin
a0,...,ah−1

ET ′∼P (T |D),τe∼P (τ |s0=s,a0:h−1,T ′) [C(τe)] (4)

for some cost function C over trajectories and some start state s. If in the open-loop control
setting, the agent simply executes the sequence of actions found. This procedure can also be
extended to closed-loop control via model-predictive control (MPC). This procedure simply
involves re-planning (4) at every state the agent visits and playing the first action from the
optimal sequence. Concretely, the MPC policy for our Bayesian setting is as follows:

πMPC(s) = arg min
a0

min
a1,...,ah−1

ET ′∼P (T |D),τe∼P (τ |s0=s,a0:h−1,T ′) [C(τe)] (5)

Whether we do open-loop control or closed-loop control via MPC, the cost function, C,
is integral to how the agent will behave. Prior work has predominantly focused on two types
of cost function:

Cg(τ) = −R (τ)︸ ︷︷ ︸
Greedy Exploration

Ce(τ) = −
h∑
i=0

H [T (si, ai) | D]︸ ︷︷ ︸
Task-Agnostic Exploration

(6)

Previous works such as Kamthe and Deisenroth (2018) and PETS (Chua et al., 2018) use
the greedy exploration cost function, Cg. This cost function simply plans trajectories that
achieve high rewards over the next h transitions on average. In works that focus on task-
agnostic exploration such as Sekar et al. (2020) and Shyam et al. (2019), the cost function
Ce (or similar) is used to encourage the agent to find areas of the state space in which the
model is maximally uncertain.

The optimization problem in (5) is typically approximately solved in one of 3 ways:
Deisenroth and Rasmussen (2011) and Curi et al. (2020) directly backpropagate through
the estimated dynamics and reward functions to find policy parameters that would generate
good actions, Janner et al. (2019) use an actor-critic method trained via rollouts in the model
alongside the data collected to find a policy, and Chua et al. (2018) and Mehta et al. (2022)
use the cross-entropy method (De Boer et al., 2005) to find action sequences which directly
maximize the reward over the estimated dynamics. In this work we use a version of the last
method given in Pinneri et al. (2020) to directly find action sequences that optimize the cost
function being used. We approximate the expectation by playing the actions on multiple
samples from the posterior P (T | D). We give the hyperparameters used in planning in
Section A.5.

13

Control Problem Pendulum Cartpole β Tracking β + Rotation Reacher

Number of samples 25 30 25 50 100
Number of elites 3 6 3 8 15
Planning horizon 20 15 5 5 15
Number of iCEM iterations 3 5 3 5 5
Replanning Period 6 1 2 1 1

Table 4: Hyperparameters used for optimization in MPC procedure for closed-loop control
problems.

Control Problem Nonlinear Gain 1 Nonlinear Gain 2 Lava Path

Number of samples 50 50 25
Number of elites 6 6 4
Planning horizon 10 10 20
Number of iCEM iterations 6 8 6

Table 5: Hyperparameters used for optimization in MPC procedure for open-loop control
problems.

A.5 Details on Planning Method

As mentioned in the main text, we use the iCEM method from Pinneri et al. (2020) with
one major modification: a fixed sample batch size. This is in order to take advantage of the
JIT compilation features of JAX and avoid recompiling code for each new batch size.

In Tables 4 and 5, we present the hyperparameters used for the planning algorithm across
each problem. The same hyperparameters were used for the TIP, MPC, EIGT , DIP, sDIP,
and sTIP methods. As recommended by the original paper, we use β = 3 for the scaling
exponent of the power spectrum density of sampled noise for action sequences, γ = 1.25 for
the exponential decay of population size, and ξ = 0.3 for the amount of caching.

Appendix B. Description of Comparison Methods

We compare against 14 different methods across open and closed-loop problems. Of these, 7
used the same model and planning algorithm (including hyperparameters) as TIP and oTIP.
DIP and oDIP use the cost function C(τ) = −H [T (S′) | D] and sDIP (summed DIP) uses
the cost function C(τ) = −∑h

i=0H [T (si, ai) | D]. These are all pure exploration methods,
but DIP and oDIP are more sophisticated in that they plan for future observations with a
large amount of joint information as opposed to sTIP which sums the individual information
expected at each timestep. oDIP is simply the open loop variant of DIP. EIGT uses the same
objective as sDIP but operates in the TQRL setting, querying points that approximately
maximize the predictive entropy of the dynamics model. BARL similarly operates in the
TQRL setting but uses the EIGτ∗ acquisition function from Mehta et al. (2022). We use the

14

authors’ implementation of that work for comparison. MPC uses Cg from (6) and plans to
directly maximize expected rewards. This method can be seen as quite similar to Kamthe
and Deisenroth (2018) and a close cousin of Deisenroth and Rasmussen (2011) in that it
optimizes the same objective with a similar model. oMPC is simply the open loop variant
of MPC.

Besides these methods which directly compare cost functions, we include 8 additional
baselines from published work. PETS is a method given in Chua et al. (2018) which uses a
similar cross-entropy based planner and a probabilistic ensemble of neural networks for an
uncertainty-aware estimate of the dynamics. PETS also plans to minimize Cg. HUCRL
(Curi et al., 2020) learns a policy via backpropagation through time using a hallucinated
perturbation to the dynamics that maximizes discounted rewards subject to the one-step
confidence interval of the dynamics. HUCRL also uses a probabilistic ensemble of neural
networks. Using the same implementation we also tested Thompson Sampling (TS), which
acts optimally according to a network drawn from the posterior over models, and BPTT
which plans to minimize Cg using a neural network policy and backpropagation through
time. BPTT can also be viewed as a cousin of PILCO (Deisenroth and Rasmussen, 2011) as
it attempts to take stochastic gradients of the expected cost. We also compare against SAC
(Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018), andPPO (Schulman et al., 2017). SAC
uses entropy bonuses to approximate Boltzmann exploration in an actor-critic framework.
TD3 and PPO include various tricks for stable learning and add Ornstein-Uhlenbeck noise
in order to explore.

Appendix C. Description of Control Problems

C.1 β Tracking

In this environment the goal is to adjust the total injected power (PINJ) of the neutral
beams so that the normalized plasma pressure, βN (defined as the ratio of thermal energy in
the plasma to energy in the confining magnetic fields), reaches a target value of 2%. Reliably
controlling plasmas to sustain high performance is a major goal of research efforts for fusion
energy, so even this simple scenario is of interest. The ground-truth dynamics model takes
in the current βN and PINJ, the βN and PINJ at some ∆t time in the past, and the PINJ
at some ∆t time in the future (we assume that we have complete control over the values of
PINJ at all times). Given these inputs, the model was trained to output what βN will be
∆t time into the future. In total, the state space is 4D and the action space is 1D. For this
environment, we set ∆t = 200ms, and we specify the reward function to be the negative
absolute difference between the next βN and the target βN = 2%.

C.2 β + Rotation Tracking

This environment is a more complicated version of the β tracking environment in several
ways. First of all, the controller now must simultaneously track both βN and the core
toroidal rotation of the plasma. To do so, the controller is also allowed to set the total
torque injected (TINJ) of the neutral beams (DIII-D has eight neutral beam injectors at
different positions around the tokamak, so it is generally possible to control both total
power and total torque independently). Controlling both of these quantities simultaneously

15

is of interest since rotation shear often results in better confinement and less chance of
instabilities in the plasma (Bondeson and Ward, 1994; Groebner et al., 1990). In addition,
we assume a multi-task setting where the requested targets for βN and rotation can be set
every trajectory. Specifically, the βN target is drawn from U(1.5%, 2.5%) and the rotation
target is drawn from U(25, 125) krad/s every trajectory. These targets are appended to the
state space.

The learned, ground-truth dynamics model is also more sophisticated here. In addition
to the inputs and outputs used by the β tracking environment model, the inputs for this
model also include rotation and TINJ at times t, t − ∆t, and t + ∆t for TINJ only. This
model receives additional information about the plasma (e.g. the shape of the plasma);
however, we have assumed these inputs are fixed to reasonable values in order to avoid
partial observability problems. In total, the state space of this problem is 10D (targets plus
current and past observations for βN , rotation, PINJ, and TINJ) and the action space is 2D
(next PINJ and TINJ settings).

C.3 Robotics Problems

Pendulum The pendulum swing-up problem is the standard one found in the OpenAI
gym (Brockman et al., 2016). The state space contains the angle of the pendulum and
its first derivative and action space simply the scalar torque applied by the motor on the
pendulum. The challenge in this problem is that the motor doesn’t have enough torque to
simply rotate the pendulum up from all positions and often requires a back-and-forth swing
to achieve a vertically balanced position. The reward function here penalizes deviation from
an upright pole and squared torque.

Cartpole The cartpole swing-up problem has 4-dimensional state (position of the cart and
its velocity, angle of the pole and its angular velocity) and a 1-dimensional action (horizontal
force applied to the cart). Here, the difficulty lies in translating the horizontal motion of the
cart into effective torque on the pole. The reward function is a negative sigmoid function
penalizing the distance betweent the tip of the pole and a centered upright goal position.

Reacher The reacher problem simulates a 2-DOF robot arm aiming to move the end
effector to a randomly resampled target provided. The problem requires joint angles and
velocities as well as an indication of the direction of the goal, giving an 8-dimensional state
space along with the 2-dimensional control space.

Appendix D. Additional Results

Due to space constraints in the main paper, we omitted results for the methods sDIP and
BPTT. The are included alongside the rest in Table 6. They are outperformed across the
board by TIP. For many of our ablation methods we see failures to solve some of the problems
even though the model is demonstrated by TIP to be able to sufficiently predict the dy-
namics. This is especially apparent on the harder plasma control environment, β+Rotation,
where TIP is the only method using our GP which is able to solve the problem. We believe
that this is because the data acquired through exploration by the ablation methods is less
useful for control than the data TIP collects. This is underscored by the second column of
Figure 2, where it is clear that TIP achieves the lowest modeling error on the points actu-

16

Environment TIP sTIP DIP sDIP MPC PETS SAC TD3 PPO HUCRL TS BPTT BARL EIGT

Pendulum 21 36 36 46 46 5.6k 7k 26k 14k >50k >50k >50k 21 56
Cartpole 131 141 161 141 201 1.63k 32k 18k >1M >6k >6k >6k 111 121
β Tracking 46 76 276 131 76 330 12k 17k 39k 480 420 450 186 >1k
β + Rotation 201 >500 >500 >500 >500 400 30k >50k >50k >5k >5k >5k >500 >1k
Reacher 251 >400 >1k >1k 751 700 23k 13k >100k 6.6k 4.5k 3.7k 251 >1.5k

Table 6: Sample Complexity Comparison of All Methods: Median number of samples across
5 seeds required to reach ‘solved’ performance, averaged across 5 trials. We determine
‘solved’ performance by running an MPC policy (similar to the one used for evaluation)
on the ground truth dynamics to predict actions. We record > n when the median run
is unable to solve the problem by the end of training after collecting n datapoints. The
methods in the rightmost section operate in the TQRL setting and therefore have more
flexible access to the MDP dynamics for data collection.

ally needed during the execution of the policy but not on the uniform test set. In particular
we find it interesting that TIP outperforms BARL on the β + Rotation environment, as
BARL should in principle have a strictly stronger access to the problem and is optimizing
the same quantity with fewer constraints. We hypothesis that this may be due to the fact
that BARL optimizes the acquisition function EIGτ∗ by simply uniformly sampling a set
of points and choosing the one that evaluates to the largest value. Our more sophisticated
optimization algorithm and forced initialization at the start state distribution seems to al-
low us to collect more information in this case. This interpretation is bolstered by the fact
that on the problems where TIP outperforms BARL, we see that TIP is actually collecting
more information per action than BARL as evidenced by larger EIG values. We also see
clearly that there is value in computing the Cτ∗ function rather than summing over EIGτ∗

values, as TIP outperforms sTIP across the board. Additionally, there is clear evidence for
the value of task-specific exploration as the task-agnostic exploration methods (EIGT , DIP,
sDIP) underperform both in terms of returns and model error on the trajectories visited.

For the open-loop experiments (Table 2), we see similarly strong performance from oTIP.
As the model-based methods benefit hugely from the fact that they observe many model
transitions for each open-loop trial, it is unsurprising that they are more sample-efficient
than the model-free BO method. Within the model-based techniques, oTIP is the most
sample efficient. We believe that this is for much the same reasons as in the closed-loop
case—exciting evidence that the Cτ∗ cost function can be applied in a variety of settings.

Appendix E. Related Work

E.1 Bayesian Experimental Design: BOED, BO, BAX, and BARL

There is a large literature on Bayesian optimal experiment design (BOED) (Chaloner and
Verdinelli, 1995) which focuses on efficiently querying a process or function to get maximal
information about some quantity of interest. When the quantity of interest is the location of
a function optimum, related strategies have been proposed as the predictive entropy search
family of Bayesian optimization (BO) algorithms (Hennig and Schuler, 2012; Hernández-
Lobato et al., 2014). Recently, a flexible framework known as Bayesian algorithm execution
(BAX) (Neiswanger et al., 2021) has been proposed to efficiently estimate properties of

17

0 100 200 300 400 500

Number of Queries

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

R
et

u
rn

s

0 100 200 300 400 500

Number of Queries

10−4

10−3

10−2

10−1

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 100 200 300 400 500

Number of Queries

10−1

100

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 100 200 300 400 500

Number of Queries

10−1

100

101

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on β + Rotation

0 200 400 600 800 1000

Number of Queries

−14

−12

−10

−8

−6

−4

R
et

u
rn

s

0 200 400 600 800 1000

Number of Queries

10−4

10−3

10−2

10−1

100

101

102

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 200 400 600 800 1000

Number of Queries

10−1

100

101

102

103

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 200 400 600 800 1000

Number of Queries

10−2

10−1

100

101

102

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on Reacher

0 25 50 75 100 125 150 175 200

Number of Queries

−1400

−1200

−1000

−800

−600

−400

−200

0

R
et

u
rn

s

0 25 50 75 100 125 150 175 200

Number of Queries

10−5

10−4

10−3

10−2

10−1

M
o
d

el
M

S
E

on
C

u
rr

en
t

M
P

C

0 25 50 75 100 125 150 175 200

Number of Queries

10−4

10−3

10−2

M
o
d

el
M

S
E

on
R

an
d

om
S

et

0 25 50 75 100 125 150 175 200

Number of Queries

10−1

100

101

E
IG

τ
∗

(b
it

s/
ac

ti
on

)

TIP

sTIP

BARL

DIP

sDIP

EIGT

MPC

Control Performance on Pendulum

Figure 2: Control and Modeling Details for TIP and Ablations. Column 1: Learning
curves for our ablation methods, all of which use the same planner and model. Column
2: Dynamics model accuracy on the points used by the planner to choose actions during
MPC. Column 3: Dynamics model accuracy on a uniformly random test set in S̃. Column
4: EIGτ∗ values normalized by the number of actions planned.

expensive black-box functions; this framework gives a general procedure for sampling points
which are informative about the future execution of a given algorithm that computes the
property of interest, thereby allowing the function property to be estimated with far less
data.

A subsequent related work (Mehta et al., 2022), known as Bayesian Active Reinforcement
Learning (BARL), uses ideas from BOED and BAX to sample points that are maximally
informative about the optimal trajectory in an MDP. However, BARL relies on a setting
the authors call Transition Query Reinforcement Learning (TQRL), which assumes that the
environment dynamics can be iteratively queried at an arbitrary sequence of state-action
pairs chosen by the agent. TQRL is thus a highly restrictive setting which is not suitable
when data can only be accessed via a trajectory (rollout) of environment dynamics; it
typically relies on an accurate environment simulator of sufficient expense to warrant its use.
Even then, there will likely be differences between simulators and ground truth dynamics
for complex systems. Thus, one would ideally like to collect data in real environments.
However, this often requires leaving the TQRL setting, and instead collecting data via
trajectories only.

18

In this paper, we aim to apply similar information-theoretic ideas, but extend them to
the general MDP setting, as well as learning open loop model-based controllers. The typical
method for learning to solve open-loop control problems was demonstrated successfully in
Tesch et al. (2013), where a value function was learned from action sequences to task suc-
cess. Our method takes a model-based approach to this problem, using similar exploration
strategies to Bayesian optimization but benefitting from the more substantial supervision
that is typical in dynamics model learning.

We give a discussion of methods for exploration in reinforcement as well as background
on Bayesian exploration in RL and the use of Gaussian Processes in RL in section E.

E.2 Exploration in Reinforcement Learning

The most common strategy for exploration in RL is to execute a greedy policy with some
form of added stochasticity. The simplest strategy, ε-greedy exploration as used in Mnih
et al. (2013), simply takes the current action thought to be best with probability 1 − ε
and a random action with probability ε. Other methods use added Ornstein-Uhlenbeck
action noise (Lillicrap et al., 2015) to the greedy policy, or entropy bonuses (Haarnoja et al.,
2018) to the policy or value function objecties to add noise to a policy which is otherwise
optimizing the RL objective.

Tabular RL is often solved by choosing actions based on upper confidence bounds on the
value function (Chen et al., 2017; Lee et al., 2021), but explicitly computing and optimizing
these bounds in the continuous setting is substantially more challenging. Recent work (Curi
et al., 2020) approximates this method by computing one-step confidence bounds on the
dynamics and training a ‘hallucinated’ policy which chooses perturbations within these
bound to maximize expected policy performance. Another recent work (Ash et al., 2022)
uses anti-concentration inequalities to approximate upper confidence bounds in MDPs with
discrete actions.

Thompson sampling (TS) (Russo et al., 2018), which samples a realization of the MDP
from the posterior and acts optimally as if the realization was the true model, can be
applied for exploration in a model-free manner as in (Osband et al., 2016) or in a model-
based manner as in Strens (2000). As the posterior over MDP dynamics or value functions
can be high-dimensional and difficult to represent, the performance of TS can be hindered
by approximation errors using both Gaussian processes and ensembles of neural networks.
Curi et al. (2020) recently investigated this and found that this was potentially due to an
insufficiently expressive posterior over entire transition functions, implying that it may be
quite difficult to solve tasks using sampled models. Similarly, the posterior over action-value
functions in Osband et al. (2016) is only roughly approximated by training a bootstrapped
ensemble of neural networks.

There is also a rich literature of Bayesian methods for exploration, which are typically
computationally expensive and hard to use, though they have attractive theoretical prop-
erties. These methods build upon the fundamental idea of the Bayes-adaptive MDP (Ross
et al., 2007), which we detail in Section E.3 alongside a discussion of this literature.

Additionally, a broad set of methods explore to learn about the environment without a
task in mind. This line of work is characterized by Pathak et al. (2017), which synthesizes
a task-agnostic reward function from model errors. Other techniques include MAX (Shyam

19

et al., 2019), which optimizes the information gain about the environment dynamics, Ran-
dom Network Distillation (Burda et al., 2019), which forces the agent to learn about a
random neural network across the state space, and Plan2Explore (Sekar et al., 2020), which
prospectively plans to find areas of novelty where the dynamics are uncertain.

E.3 Bayesian Exploration Techniques

Given unlimited computation and an accurate prior, solving the Bayes-adaptive MDP (Ross
et al., 2007) gives an optimal tradeoff between exploration and exploitation by explicitly
accounting for the updated beliefs that would result from future observations and planning
to find actions that result in high rewards as quickly as can be managed given the cur-
rent posterior. However, this is computationally expensive even in small finite MDPs and
totally intractable in continuous settings. Kolter and Ng (2009) and Guez et al. (2012)
show that even approximating these techniques can result in substantial theoretical reduc-
tions in sample complexity compared to frequentist PAC-MDP bounds as in Kakade (2003).
Another line of work (Dearden et al., 1998, 1999) uses the myopic value of perfect infor-
mation as a heuristic for similar Bayesian exploration in the tabular MDP setting. Further
techniques for exploration include knowledge gradient policies (Ryzhov et al., 2019; Ryzhov
and Powell, 2011), which approximate the value function of the Bayes-adaptive MDP and
information-directed sampling (IDS) (Russo and Van Roy, 2014), which takes actions based
on minimizing the ratio between squared regret and information gain over dynamics. This
was extended to continuous-state finite-action settings using neural networks in Nikolov
et al. (2019). Another very relevant recent paper (Ball et al., 2020) gives an acquisition
strategy in policy space that iteratively trains a data-collection policy in the model that
trades off exploration against exploitation using methods from active learning. Achterhold
and Stueckler (2021) use techniques from BOED to efficiently calibrate a Neural Process
representation of a distribution of dynamics to a particular instance, but this calibration
doesn’t include information about the task. A tutorial on Bayesian RL methods can be
found in Ghavamzadeh et al. (2016) for further reference.

E.4 Gaussian Processes (GPs) in Reinforcement Learning

There has been substantial prior work using GPs (Rasmussen, 2003) in reinforcement learn-
ing. Most well-known is PILCO (Deisenroth and Rasmussen, 2011), which computes ap-
proximate analytic gradients of policy parameters through the GP dynamics model while
accounting for uncertainty. The original work is able to propagate the first 2 moments of
the occupancy distribution through time using the GP dynamics and backpropagate gradi-
ents of the rewards to policy parameters. In Wilson et al. (2020), a method is developed
for efficiently sampling functions from a GP posterior with high accuracy. One application
show in their work is a method of using these samples to backpropagate gradients of rewards
through time to policy paramters, which can be interpreted as a different sort of PILCO im-
plementation. Most related to our eventual MPC-based method is (Kamthe and Deisenroth,
2018), which gives a principled probabilistic model-predictive control algorithm for GPs. We
combine ideas from this paper, PETS (Chua et al., 2018), and the ability to sample posterior
functions discussed above to give our eventual MPC component as discussed in Section A.4.

20

	Introduction
	Problem Setting
	Trajectory Information Planning
	A Task-Specific Cost Function based on Trajectory Information
	Experiments
	Plasma Control Problems

	Implementation Details
	Wall Times
	GP Model Details
	Cost Function Details
	Model-Predictive Control in Bayesian Model-Based RL
	Details on Planning Method

	Description of Comparison Methods

	Description of Control Problems
	 Tracking
	 + Rotation Tracking
	Robotics Problems
	Additional Results
	Related Work
	Bayesian Experimental Design: BOED, BO, BAX, and BARL
	Exploration in Reinforcement Learning
	Bayesian Exploration Techniques
	Gaussian Processes (GPs) in Reinforcement Learning

