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Abstract

Digital twinning of a dynamic system requires fast system state inference. Physics-
based computational models that predict future states are often too slow to be actionable,
and thus undesirable for offline scenario planning. These tasks may be performed faster if
the physics-based model is replaced by a neural network-based surrogate. Obtaining the
labels to train the surrogate can be computationally expensive, additionally, some inputs
may either be invalid for the range of applicability of the model or result in trivial outputs.
Lastly, it is sometimes necessary to generalise the performance of the surrogate across newly
deployed systems and the relative extended parameter space. Active and continual learning
may be combined to address the need to label only the most relevant experimental inputs
for a given system, while retaining knowledge of previous systems and states. Here we
propose an active-and-continual learning pipeline for digital twinning of turbulence in the
core of tokamak fusion plasmas. Our pipeline leverages an uncertainty-based acquisition
function which greatly outperforms random acquisition. We take inspiration from simple
continual learning methods found in literature and find that a surrogate can generalise
well over tokamak configurations as well as plasma confinement modes. Overall, our work
motivates further research in active and continual learning for regression tasks.

1. Introduction

Turbulent transport in Tokamak plasmas is a major roadblock to achieving fusion power (Doyle
et al., 2007). It is thus crucial to forecast expected turbulent fluxes in the operating pa-
rameter space of a given tokamak for design, validation and optimization at the pre- and
post-experiment stage. However, calculating these fluxes using fully non-linear models is
very computationally expensive.

In general, although constrained by empirical and theory-based extrapolations, the range
of plasma states achieved by a machine is strictly unknown at the outset. Therefore, a
general-purpose surrogate would be expensive to obtain, as the computational effort needed
to obtain the labels from all potentially needed realisations of the physical model would be

∗. See the author list of ‘Overview of JET results for optimising ITER operation’ by J. Mailloux et al.
published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy
Conference (Nice, France, 10-15 May 2021)
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prohibitively long. Instead, a surrogate can be trained directly on experimental inputs,
which better capture the parameter subspace of the machine. The surrogate can then be
re-evaluated and updated when new data becomes available.

Experimental data from a given machine may be redundant, and data labelling for
similar inputs would be inefficient. Moreover, by the nature of the critical threshold charac-
teristic of tokamak turbulence and measurement uncertainties, not all input plasma states
result in unstable modes. Thus, a significant proportion of the computational budget to
obtain the turbulent fluxes is spent on stable inputs, which can be wasteful. Active learning
may be used to select the inputs that would be most useful to update the surrogate.

Furthermore, plasma discharges may result in two distinct modes of confinement, high-
confinement (H) and low-confinement (L) mode, which cover distinct plasma state subspaces
with respect to the input parameters of core turbulent transport codes. Future experiments
and power plants, such as the International Thermonuclear Experimental Reactor (ITER)
and the Spherical Tokamak for Energy Production (STEP), will start operations in the
suboptimal L-mode with the final aim of producing stable, high-performing H-mode plas-
mas. Expanding the regime of applicability of a transport surrogate to H-mode and to new
machines with minimal new data points will thus be paramount. This real-world example
of continual learning under distribution shift has far-reaching implications for the future of
energy generation.

Active and continual learning for classification have received much attention in the
machine learning community (Ash et al., 2020; Kirsch et al., 2019; Fang et al., 2017; Kirk-
patrick et al., 2017; Farajtabar et al., 2020; Schwarz et al., 2018). However, applications
to regression problems remain scarce (with a few recent exceptions, e.g., Ash et al. 2021;
He and Sick 2021). In this paper, we combine active and continual learning under distribu-
tion shift to build a surrogate of plasma core turbulent transport based on the QuaLiKiz
model (Bourdelle et al., 2015; Citrin et al., 2017). Firstly, we propose a two-stage learning
paradigm that exploits the binary nature of plasma core instabilities. Our framework uses
a small initially labelled dataset to pre-train a stability classifier, and a regressor to pre-
dict the related turbulent fluxes. The initial dataset is then augmented by acquiring the
labels of candidate inputs that are classified as likely to result in a growing instability, and
would most improve the range of validity of the surrogate. Secondly, we apply this learning
paradigm in a simulated continual learning scenario, where the applicability of a surrogate
is extended from L-mode to H-mode plasmas, as well as across machine configurations, as
a proxy for learning across tokamak machines.

2. Data, methods and related work

2.1 Data

We use an experimentally-based dataset from the JET (Joint European Torus) tokamak,
which contains the turbulent transport calculation inputs and related QuaLiKiz outputs
needed to make a surrogate model. This dataset was originally used in Ho et al. (2021) to
train neural network ensembles, without active or continual learning.

The dataset includes both data for the H- and L- modes of confinement, as well as data
spanning from the original carbon wall (C-wall) configuration to the current ITER-like
beryllium wall (ILW) with tungsten divertor plates. See Ho et al. (2021) for a description
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of the 15-dimensional input space. Here we focus on predicting the ion heat flux of the Ion
Temperature Gradient turbulence (Horton, 1999), qi,ITG in the GyroBohm units [GB], for
which only approximately 25% of inputs will develop turbulent transport. The methods
employed in this work can be extend to multiple outputs as explored in Appendix A.

2.2 Methods

Active Learning Given an unlabelled pool of experimental inputs, a classifier and a
regressor are pretrained on a small random sample of data whose labels were obtained by
running QuaLiKiz in Ho et al. (2021). Hereafter, the networks and the labelled dataset
are updated following a two-stage active learning pipeline shown in Figure 1. The classifier
is tasked with screening a sample of candidate points of size CandidateSize from the
unlabelled pool. CandidateSize is chosen to be 10,000, which reflects the number of distinct
inputs obtained from a single JET plasma discharge. An acquisition function selects which
of the candidates should be labelled, and those inputs are then appended to the training
data, to retrain the regressor. Specifically, we select TopUncertain% (set to 25%) of the
inputs with the highest regressor variance. The points that were wrongly classified as
unstable are stored in a buffer of size ClassifierBuffer (set to 200) which, when filled, is
used to retrain the classifier along with the previous training data. Both the regressor and
the classifiers are equipped with Dropout layers (Srivastava et al., 2014). We use Monte
Carlo Dropout (Gal and Ghahramani, 2016) to estimate the uncertainty of the NN regressor.
Although the classifier achieved an actionable performance in the pre-trained phase, more
advanced acquisition functions based on both the regressor and classifier uncertainties will
need to be explored.

Figure 1: Schematic diagram of active learning framework. Each continual learning task
consists of multiple iterations of the steps in the blue box.

Continual Learning It has been shown that retaining some data from previous tasks
(i.e., a ‘memory buffer’) in the training set is beneficial for reducing forgetting (Rolnick et al.,
2019). We generalise across tasks sequentially by retaining a fraction α of the training set
at the end of each task. It has also been shown that warm starting neural networks by
applying a ‘shrink-perturb-repeat’ technique may improve generalisation across tasks (Ash
and Adams, 2020). Model weights, θ, are updated at the start of each new task using the
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update rule θti = λθt−1
i + pt where pt ∼ N (0, σ2) and 0 < λ < 1. The case where no

shrink-perturb is used is labelled as λ = 1 in the following. We combine both memory
replay and the shrink-perturb technique in our experiments. The surrogate trained at task
N is evaluated on holdout data that also includes the entire test sets of the previous tasks.
We compute the average forgetting after the Nth task as

AvgForgettingN =
1

N − 1

N−1∑
i

(
MSE(taski,modelN )−MSE(taski,modeli)

)
, (1)

wheremodeli represents the model trained for the ith task in the sequential learning pipeline.
The quantity in eq. 1 is expected to be negative, as performance on the updated model on
either of the N-1 previous only is expected to somewhat degrade.

3. Experiments

Active Learning We conducted various experiments to investigate the effectiveness of an
uncertainty-based acquisition function and the effect of the stability classifier on the pipeline
performance. An initial training dataset size of 5,000 was used. Classifier performance
across iterations was observed to be relatively unchanged, achieving a constant F1 score of
87%.

Two acquisition methods were evaluated using the trained models’ MSE on the holdout
set. In addition to the baseline random acquisition, we investigated the use of sampling
based on the regressor’s uncertainty. As shown in Figure 2, uncertainty-based sampling
provides significantly improved performance compared to random sampling. Figure 2 shows
that the combination of the classifier and the use of uncertainty-based acquisition provides a
much greater decrease in MSE than using either individually. As only 25% of inputs result
in a growing turbulence, only a minority of data informs the regressor about the unstable
region and as such the classifier stage of the pipeline proves very beneficial. The classifier
aids the regressor in promoting a diversity of inputs.

Table 1 summarises the final test loss after 25 pipeline iterations. The combined classifier
and uncertainty acquisition model significantly outperforms a regressor trained on the entire
dataset and has comparable performance to a model trained using the subset of the data that
is unstable. This is done using 16,000 training data points which represent only 0.1% (0.4%)
of the full (unstable only) dataset. Appendix C shows results for experiments conducted
using various initial training set sizes that are then evaluated at the same final training set
size. It was found that initially using 5,000 points had a better final performance than when
starting with 1,000 points.

We note that the MSE is correlated with, but not necessarily fully reflective of, the
surrogate quality in the final tokamak modelling application. Subtle features of the input-
output mapping must also be captured, as shown in van de Plassche et al. (2020). Future
work will include more domain-specific metrics.

Active-and-Continual Learning For the continual learning task we learn the heat flux
of ions for the ITG turbulence sequentially from the JET C-wall (first in L-mode and then
in H-mode) and then similarly for the JET-ILW configuration.
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Figure 2: Test losses for qi,ITG[GB] using different acquisition methods. Bottom plots show
the number of points sampled from the unlabelled pool at each iteration. An initial training
dataset of 5 K points was used. The lines and shaded areas are the means and one standard
deviation of 10 random realisations.

Data Acquisition Method
qi,ITG[GB]

MSE

No Classifier - Uncertainty 52.9± 3.2
Classifier - Random 48.5± 2.0
Classifier - Uncertainty 37.9 ± 1.6

Full Dataset 50.8± 0.6
Full Dataset - Unstable Values Only 38.6± 0.5

Table 1: The average test MSE and one standard deviation after 25 active learning pipeline
iterations trained on the ion temperature gradient flux. This is compared to a model trained
using the entire dataset (17M points) and using turbulent subset of points (4M points).

We ran a series of experiments where we combine different memory buffer sizes, α,
shrink-perturb hyperparameters, λ, and sampling. Specifically, we use all permutations of
the following: α = {0.5, 1}, λ ={0.5,1}, acquisition={random, uncertainty}. The test
MSE for these experiments are shown in Figure 3a.

We find that random acquisition also performs worse in the continual learning setting.
A much larger increase in MSE is observed when switching from the C-walls to the ILW
configuration than when switching from L-mode to H-mode. This is expected as the distri-
bution shift is larger for different tokamak walls compared to different confinement modes.
Furthermore, the performance of the uncertainty-based acquisition is improved by using a
shrink-perturb λ of 0.5 and a small memory buffer. This result is quantified by the better
average forgetting shown in Figure 3b.
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(a) (b)

Figure 3: Left: the MSE test loss for the continual learning pipeline experiments. The test
MSE is reported for test data including the current and previous tasks. Lines are the means
of 10 random realisations (variance is not shown for clarity). In the legends, rand refers to
random acquisition and idv to the uncertainty acquisition. Right: the performance of the
experiments in terms of average forgetting (higher is better).

4. Conclusion

This paper investigates the use of a two-stage active learning pipeline for the modelling of
turbulent transport in tokamak reactors that may be extended to other digital twinning
applications. The inclusion of a classifier stage to identify regions of the input space that
lead to growing turbulence modes greatly improves the surrogate model performance. Ad-
ditionally, when used in combination with an uncertainty-based acquisition function the
performance of the pipeline matches that of full-dataset training but with only 0.4% of the
data, which would have resulted in a significant reduction in computational time spent gen-
erating labels. This acquisition strategy was then deployed in a continual learning setting,
wherein data pertaining to different machine conditions and plasma confinement states are
learned sequentially by the surrogate. A shrink-perturb trick and a limited memory buffer
of previous tasks provides less forgetting. However, the performance of the surrogate in
the continual learning scenario for a large distribution shift is still suboptimal. Our work
shows the potential of active and continual learning for regression tasks and calls for more
research on these topics.
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Appendix A: Experiments with Multiple Fluxes

In this section we present some further experiments where the pipeline has been extended to
include multiple fluxes, in a multi agent set-up. In addition to the ion heat flux, a surrogate
model to predict the electron heat flux, qe,ITG [GB] is also constructed. When considering
multiple fluxes, how to best sample points that will best improve the performance of all
regressors need to be considered. The simplest approach is to train each model indepen-
dently but this approach can be wasteful and require the labelling of more data than if the
models are trained concurrently. In this work, we sample points for which the sum of the
uncertainties of individual fluxes was greatest. We use TopUncertain=25% as in the main
text.

Figure 4 shows the performance across the two investigated fluxes. It is observed that
combining the uncertainties provides competitive performance to training each flux inde-
pendently. Table 2 summarises the pipeline performance after 25 iterations.

(a) (b)

Figure 4: Test losses for qi,ITG[GB] (top left) and qe,ITG[GB] (top right) fluxes using
different acquisition methods. Bottom plots show the number of points sampled from the
unlabelled pool at each iteration. An initial training dataset of 5K points was used.
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Data Acquisition Method
qi,ITG[GB]

MSE
qe,ITG[GB]

MSE

No Classifier - Uncertainty Acquisition 52.9± 3.2 6.9± 0.8
Classifier - Random Sampling 48.5± 2.0 9.2± 0.9
Classifier - Individual Uncertainty 37.9± 1.6 5.4± 0.6
Classifier - Sum of Uncertainties 36.7 ± 1.7 4.8 ± 0.5

Full Dataset 50.8± 0.6 6.0± 0.5
Full Dataset - Unstable Values Only 38.6± 0.5 6.0± 0.5

Table 2: The average test MSE and one standard deviation after 25 iterations of the active
learning pipeline trained concurrently on two different fluxes. This is compared to training
a model using the entire dataset (17M points) and using only the subset of points that are
turbulent (4M points).

Appendix B: Architecture and Training Loss Comparisons

The architecture for the classifier and regressors consists of a simple feed-forward neural
network consisting of an input size of 15 and 5 hidden layers with sizes [128, 256, 512,
256, 128]. A dropout rate of 0.1 was employed in each layer along with ReLU activation
functions. We used the Adam optimiser with a learning rate of 0.001, and a weight decay of
0.0001.

Figure 5 shows the training losses for the different acquisition functions that were ex-
plored (including the electron heat flux discussed in Appendix A). It is observed that random
sampling with the classifier and uncertainty sampling without the classifier both achieve a
lower training loss than using both uncertainty sampling and the classifier. This appears to
show that the combination of both methods assists the regressor in avoiding local minima
that do not generalise well to the unseen data. The amplitude of the oscillations at each
new iteration of the pipeline decrease with further iterations.
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(a) (b)

Figure 5: Training losses for qi,ITG[GB] (top left) and qe,ITG[GB] (top right) fluxes using
different acquisition methods. Bottom plots show the number of points sampled from the
unlabelled pool at each iteration.

Appendix C: Initial Training Set Size

Table 3 compares the pipeline performance starting from a labelled pool 1 thousand data
points and starting from 5 thousand but evaluated at the same final training set size. The
1,000 data points pipeline runs had a final training dataset size of 8,500 after 25 iterations,
the 5,000 runs had an equivalent amount of data after 7 iterations. As seen in table 3,
starting with a larger training set size gives better performance for a given final dataset
size. Further studies with larger initial training dataset sizes need to be conducted but
preliminary experiments (not included here for brevity) suggest that further increases in
the initial training set size provide increasingly marginal gains.

When using a very small initial dataset size the surrogate is expected to be a poor
approximation of the true model but this may also be true of the estimates of the regressor
uncertainty. If the regressor uncertainty is not well calibrated to measure the ability to
predict the true flux, then the new data sampled may be sub-optimal for improving regressor
performance.
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Data Acquisition Method
Initial Training

Set Size
qi,ITG[GB]

Unscaled MSE
qe,ITG[GB]

Unscaled MSE

No Classifier - Uncertainty Acquisition 1K 64.3± 4.8 8.3± 1.3
5K 57.3± 3.5 8.3± 0.9

Classifier - Random Sampling 1K 57.0± 4.3 11.5± 2.8
5K 53.0± 1.7 9.5± 0.8

Classifier - Individual Uncertainty 1K 51.0± 4.4 6.9± 1.6
5K 40.5± 1.0 6.3± 0.4

Classifier - Addition of Uncertainties 1K 48.6± 4.1 5.9± 1.5
5K 40.5± 1.1 5.6± 0.5

Full Dataset 17M 50.8± 0.6 6.0± 0.5
Full Dataset - Unstable Values Only 4M 38.6± 0.5 6.0± 0.5

Table 3: Comparison of the acquisition methods for different initial starting training points.
The 1K runs were performed for 25 iterations and the 5K runs were terminated once they
reached the same training set size as the 1K runs.
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