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Abstract

Bayesian adaptive experimental design is a form of active learning, which chooses
samples to maximize the information they give about uncertain parameters. Prior work
has shown that other forms of active learning can suffer from active learning bias, where
unrepresentative sampling leads to inconsistent parameter estimates. We show that active
learning bias can also afflict Bayesian adaptive experimental design, depending on model
misspecification. We develop an information-theoretic measure of misspecification, and
show that worse misspecification implies more severe active learning bias. We also show
that model classes incorporating more “noise” — i.e., specifying higher inherent variance in
observations — suffer less from active learning bias, because their predictive distributions
are likely to overlap more with the true distribution.

Keywords: active learning, optimal experimental design, Bayesian inference, mathemat-
ical modeling, model misspecification

Adaptive sampling methods choose data points in sequence to be as informative as
possible (Cavagnaro et al., 2010; Ryan et al., 2016). In machine learning, this is called active
learning (Kanamori, 2002; Settles, 2012).1 Despite their advantages, adaptive sampling
schemes can produce training sets that are highly unrepresentative of the target distribution

1. We will use “adaptive sampling” and “active learning” interchangeably.
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(Farquhar et al., 2021), and the estimates made from adaptively-sampled data may not
generalize to the target. This phenomenon is active learning bias (Farquhar et al., 2021).

We study the presence of active learning bias in a class of active learning methods called
information theoretic active learning, where the modeler must pick an objective function
capturing the informativeness of observations (Houlsby et al., 2011). These methods have
been studied in parallel fields, such as computerized adaptive testing (Owen, 1969), clinical
research (Whitehead and Brunier, 1995) and cognitive modeling (Cavagnaro et al., 2010),
where they are referred to as Bayesian sequential (or adaptive) experimental design
(Drovandi et al., 2013; Ryan et al., 2016) or adaptive design optimization (Cavagnaro et al.,
2010).

1. Active learning bias and model misspecification

The advantages of active learning methods are usually expounded assuming that the model
class is well-specified, i.e., that the true data-generating distribution is a member of the class
(MacKay, 1992; Kanamori, 2002; Dasgupta, 2004; Sugiyama, 2005; Myung et al., 2013). Yet
in most modeling enterprises, this assumption is not credible: the exact form of the true
data-generating process is difficult if not impossible to know, and models are deliberately
simplified tractable approximations.

While sampling bias and vulnerability to model misspecification are often discussed as
two separate limitations of active learning methods, it turns out they are deeply related.
In particular, sampling bias, or covariate shift, can amplify bias when the model class is
misspecified (Sugiyama et al., 2008; Wen et al., 2014; Spencer et al., 2021). The implication
of this is that active learning methods can increase bias when the model class is misspecified
(Sugiyama, 2005; Bach, 2006).

2. Contributions of the present work

We apply insights on active learning bias from the machine learning literature to Bayesian
adaptive experimental designs, and investigate how the extent of active learning bias varies
with degree of model misspecification. We also demonstrate how the amount of observa-
tional “noise” specified by a model can mitigate active learning bias, since the former affects
the model’s degree of misspecification.

3. Preliminaries and notation

A modeler wants to predict some variable y ∈ Rm using another variable x ∈ Rd. Given x,
y always follows the same distribution, y|x ∼ f(x). We call f the true model. We assume
that x is fully observable and follows some distribution g.

The modeler specifies a hypothesized model class that predicts y|x ∼ m(x, θ), with
θ ∈ Θ; the variable θ contains the parameters of the model class, which live in the
parameter space Θ. Θ is fixed, i.e. determined in advance of the data and unchanging
in response to them. m is a probabilistic function, whose form is also presumed to be fixed
(e.g., logistic regression). The hypothesized model class m(x,Θ) is thus comprised of the
set of distributions {m(x, θ) : θ ∈ Θ}.
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The model estimation problem is to find θ∗ ∈ Θ which minimizes the risk, i.e., such that

θ∗ ≡ argmin
θ∈Θ

E [L (m(x, θ), y)] (1)

for some suitable loss function L , which takes as inputs a predictive distribution and a
realized value for y. Here, the expectation is under the true data-generating distribution,
i.e., the product of g and f . m(x, θ∗) is an instance of the hypothesized model class, the
best-fitting model.2

To estimate θ∗, the modeler gets a set of samples x ∈ Rn×d and observes outcomes y ∈
Rn×m. We consider only distributional estimates of θ∗, essentially assigning a probability
to each θ ∈ Θ that it is the risk minimizer:

p(θ) ≡ P (θ = θ∗|x,y) (2)

We refer to the corresponding predictive distribution for y|x as m(x, θ̂).3 We call m(x, θ̂)
the trained or estimated model.

Random sampling or passive learning techniques draw x values IIDly from the popula-
tion distribution g. Adaptive sampling or active learning techniques actively construct x to
maximize the concentration of p. Both then get y|x ∼ f(x). We write m(x, θ̂adaptive) for

the result of an adaptive procedure, and m(x, θ̂), unmodified, for passive learning.

Note that risk, the modeler’s objective, is defined using the distribution g, the target
distribution of inputs whose consequences the modeler ultimately wants to predict. Ac-
tive learning bias (ALB) occurs when, averaging over data sets x ∼ g and corresponding

observations y|x ∼ f , E
[
L (m(x, θ̂adaptive), y)

]
> E [L (m(x, θ∗), y)].

Finally, we say that a hypothesized model class is misspecified when the true model is
not in the class, i.e., f(x) ̸= m(x, θ) for all θ ∈ Θ. Consistent with prior literature, we say
“model misspecification,” even though it is the hypothesized model class that is wrong.

4. Bayesian adaptive experimental design

A natural way to construct p is via Bayesian inference. We begin with a prior distribution
p0, and, at the tth step, where we observe xt and yt, we use Bayes’s rule to update it
recursively

pt(θ) = pt−1(θ)
m(yt|xt, θ)∫

θ m(yt|xt, θ) pt−1(θ) dθ
(3)

Here, m(yt|xt, θ) indicates the likelihood of observation yt under the distribution m(xt, θ).
pt(θ) thus implicitly involves the whole history of inputs and responses to date, xt and yt

respectively.

2. Related work writes of selecting a hypothesis from a hypothesis class (Dasgupta, 2004; Golovin et al.,
2010). Our “hypothesized model class” matches their “hypothesis class,” and selecting θ∗ from Θ
amounts to selecting a hypothesis from the hypothesis class. Our terminology is similar to Shiffrin and
Chandramouli (2016), who also distinguish between model classes and model instances in the context of
Bayesian modeling.

3. We use this notation for brevity, but note that there need not be a single θ ∈ Θ giving exactly this
distribution.
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For Bayesian adaptive designs, at every step t we define the modeler’s expected utility
of an input x over the current posterior distribution of θ:

E [ut(x)] =

∫
θ

∫
y
u(x, y, θ) m(y|x, θ) pt−1(θ) dy dθ (4)

Bayesian adaptive experimental designs pick the maximizer of E[ut(x)] as the next value of
x. We pick a u that encourages precision of parameter estimates:4

u(x, y, θ) = log
pt−1(θ|y, x)
pt−1(θ)

(5)

5. Results

We here compare the behavior of Bayesian adaptive experimental designs in the case of
a misspecified vs. well-specified class of polynomial regression models. In the extended
version of this paper (Sloman et al., 2022), we show that our findings apply to both a toy
classification problem and a preference-learning problem.

Figures 1a–1c show the results of several simulations in which f is a degree-two polyno-
mial regression model, i.e., y = β0+β1x+β2x

2+ϵ where ϵ ∼ N (0, 100). In the underparam-
eterized case (Figure 1a), m, the functional form corresponding to the hypothesized model
class, is linear in x. In the fully parameterized case (Figure 1b), m is quadratic in x. In the
overparameterized case (Figure 1c), m is cubic. In all cases, the additive noise is (correctly)
specified as ϵ ∼ N (0, 100). Thus, by our definition, only the underparameterized case is
misspecified.

Behavior in the misspecified (underparameterized) case is markedly different from the
behavior in the other two cases. Risk was measured as the negative log likelihood (NLL) of
100 observations drawn randomly from the target distribution, g = Unif(0, 100).5 For the
well-specified model classes, adaptive sampling reduces the risk more quickly than random
sampling, though both converge on the same risk as θ∗.6 However, under misspecification,
Bayesian adaptive designs lead to worse generalization than random sampling.

5.1 ALB depends on degree of misspecification

We now investigate how the extent of ALB varies with the degree of misspecification. There
is a natural information-theoretic way to measure the latter, using the Kullback-Leibler
divergence (KLD). Concretely, we define the degree of misspecification as the expectation,
under g, of the KLD between the true f and the best-fitting model:

Dmodel ≡
∫
x
KLD(f(x),m(x, θ∗)) g(x) dx (6)

4. With this choice of u, E [ut] is the mutual information between the next observation and the parameter
θ, regarded as a random variable distributed according to p (Bernardo, 1979; Myung et al., 2013; Ryan
et al., 2016).

5. When using adaptive sampling, we identified the optimal design at each time step t using the iminuit

package (Dembinski et al., 2020) and numerically integrating the expected utility function shown in
equation 4 for 4,000 samples from the parameter distribution at t− 1.

6. We found θ∗ by taking the OLS solution to a regression of 1,001 evenly spaced points across the domain
and their expectation under the true model.
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(a) m is linear, with additive noise ϵ ∼
N(0, 100).

(b) m is quadratic, with additive noise ϵ ∼
N(0, 100).

(c)m is cubic, with additive noise ϵ ∼ N(0, 100). (d) m is linear, with additive noise ϵ ∼
N(0, 1000).

Figure 1: Risk incurred across 100 steps of Bayesian updating. Risk is approximated
as the negative log likelihood (NLL) of 100 observations from the target distribution.
The generating model is always a degree-two polynomial with parameters drawn from a
N ([0, 0, 0],diag(100, 10, .1)) distribution. Lines are means across 1,000 simulated experi-
ments, with error bars showing ±1 standard error around the mean. Horizontal lines show
the risk achievable by m(x, θ∗). Green lines ( ) show results using Bayesian adaptive de-
sign optimization during model estimation. Orange lines ( ) show results using random
sampling from the target distribution.

We define ALB as

ALB ≡
E
[
L (m(x, θ̂adaptive), y)

]
E [L (m(x, θ∗), y)]

− 1 (7)

ALB is thus proportion of expected risk in excess of what the best parameter value would
deliver.

We analyzed the ALB values from the simulated experiments shown in Figure 1a as
a function of the corresponding Dmodel values. (To calculate ALB, we approximated the

risk by the NLL of 100 observations from the target distribution. E
[
L (m(x, θ̂adaptive), y)

]
was calculated as the NLL assigned by the estimated model after 100 steps of Bayesian
adaptive design optimization — the same values shown as the rightmost point of the green
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line in Figure 1a.) We found a very strong correlation between the two of .95 (p = .00). In
other words, more misspecification predicted more ALB.

One way to adjust Dmodel is by specifying a “noisier” model class, i.e., to force m to
predict more inherent variation in its outputs. As the predictive distribution corresponding
to the hypothesized model class becomes more dispersed, it will overlap more with the
data-generating distribution, leading to a lower divergence from f to the hypothesized
model class, and thus to lower misspecification. This suggests that if the degree of ALB
depends on Dmodel, then ALB should be reduced, or even eliminated, by specifying noisier
models.

Figure 1d shows the evolution of risk for the misspecified model class of the form shown
in Figure 1a. However, instead of additive noise distributed N (0, 100), the hypothesized
model class incorporates additive noise distributed N (0, 1000). Figure 1d shows that the
incorporation of this additional noise nearly eliminates the ALB, which is reminiscent of
theoretical results in Sugiyama (2005) that active learning is robust to model classes that
are only slightly misspecified.7

6. Discussion

We demonstrated that active learning bias can afflict Bayesian adaptive experimental de-
signs, that the extent of active learning bias varies with the degree of model misspecification,
and that the amount of observational noise specified by the model class mitigates the extent
of active learning bias. Subsequent work should investigate the existence of mathematical
bounds on the amount of noise needed for a model class to be tolerant to active learning
bias,8 as well as the applicability of our findings in more realistic modeling scenarios.

Author note

The extended version of this paper is under review at NeurIPS 2022.
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