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Abstract

Optimizing expensive-to-evaluate black-box functions of discrete (and potentially continuous)
design parameters is a ubiquitous problem in scientific and engineering applications. Bayesian
optimization (BO) is a popular sample-efficient method that selects promising designs
to evaluate by optimizing an acquisition function (AF) over some domain based on a
probabilistic surrogate model. However, maximizing the AF over mixed or high-cardinality
discrete search spaces is challenging as we cannot use standard gradient-based methods or
evaluate the AF at every point in the search space. To address this issue, we propose using
probabilistic reparameterization (PR). Instead of directly optimizing the AF over the search
space containing discrete parameters, we instead maximize the expectation of the AF over
a probability distribution defined by continuous parameters. We prove that under suitable
reparameterizations, the BO policy that maximizes the probabilistic objective is the same
as that which maximizes the AF, and therefore, PR enjoys the same regret bounds as the
underlying AF. Moreover, our approach admits provably converges to a stationary point
of the probabilistic objective under gradient ascent using scalable, unbiased estimators of
both the probabilistic objective and its gradient, and therefore, as the numbers of starting
points and gradient steps increase our approach will recover of a maximizer of the AF (an
often neglected requisite for commonly-used BO regret bounds). We validate our approach
empirically and demonstrate state-of-the-art optimization performance on many real-world
applications. PR is complementary to (and benefits) recent work and naturally generalizes
to settings with multiple objectives and black-box constraints.

Keywords: Bayesian Optimization

1. Introduction

Many scientific and engineering problems involve tuning discrete and/or continuous parame-
ters to optimize an objective function. Often, the objective function is “black-box”, meaning
it has no known closed-form expression. For example, optimizing the design of an electrospun
oil sorbent—a material that can be used to absorb oil in the case of a marine oil spill to
mitigate ecological harm—can involve tuning both discrete ordinal experimental conditions
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and continuous parameters controlling the composition of the material to maximize the oil
absorption capacity, mechanical strength, and water contact angle (Wang et al., 2020a).
We consider the scenario where querying the objective function is expensive, in which case
sample-efficiency is crucial. In the case of designing the oil sorbent, evaluating the objective
function requires manufacturing the material and measuring its properties in a laboratory,
requiring significant time and resources.

Bayesian optimization (BO) is a popular technique for sample-efficient black-box opti-
mization, due to its proven performance guarantees in many settings (Srinivas et al., 2010;
Berkenkamp et al., 2019) and its strong empirical performance (Frazier, 2018). BO leverages
a probabilistic surrogate model of the unknown objective(s) and an acquisition function
(AF) that provides utility values for evaluating a new design to balance exploration and
exploitation. Typically, the maximizer of the AF is selected as the next design to evaluate.
However, maximizing the AF over mixed search spaces (i.e., those consisting of discrete and
continuous parameters) or large discrete search spaces is challenging1 because continuous (or
gradient-based) optimization routines cannot be directly applied. Theoretical performance
guarantees of BO policies require that the maximizer of the acquisition function is found
and selected as the next design to evaluate on the black-box objective function (Srinivas
et al., 2010). When the maximizer is not found, regret properties are not guaranteed, and
the performance of the BO policy may degrade.

To tackle these challenges, we propose to use probabilistic reparameterization (PR) to
improve AF optimization. Our main contributions are:

1. We use PR to optimize a probabilistic objective (PO): the expectation of the AF over
an induced distribution over the discrete parameters.

2. We prove that there is an equivalence between the maximizers of the acquisition
function and the the maximizers of the PO and hence, the policy that chooses designs
that are best with respect to the PO enjoys the same performance guarantees as the
standard BO policy.

3. We derive scalable, unbiased Monte Carlo estimators of the PO and its gradient with
respect to the parameters of the induced distribution. We show that stochastic gradient
ascent using our gradient estimator is guaranteed to converge to a stationary point
on the PO surface and will recover a global maximum of the underlying AF as the
number of starting points and gradient steps increase. This is important because many
BO regret bounds require maximizing the AF (Srinivas et al., 2010). Although the AF
is often non-convex and maximization is hard, empirically, with a modest number of
starting points, PR leads to better AF optimization than alternative methods.

4. We show that PR yields state-of-the-art optimization performance on a wide variety
of real-world design problems with discrete and mixed search spaces. Importantly,
PR is complementary to many existing approaches such as popular multi-objective,
constrained, and trust region-based approaches; in particular, PR is agnostic to the
underlying probabilistic model over discrete parameters—which is not the case for
many alternative methods.

1If the discrete search space has low enough cardinality that the AF can be evaluated at every discrete
element, then acquisition optimization can be solved trivially.
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2. Preliminaries

Bayesian Optimization We consider the problem of optimizing a black-box function
f : X ×Z → R over a compact search space X ×Z, where X = X (1)×···×X (d) is the domain
of the d ≥ 0 continuous parameters (x(i) ∈ X (i) for i = 1, ..., d) and Z = Z(1) × · · · × Z(dz)

is the domain of the dz ≥ 1 discrete parameters (z(i) ∈ Z(i) for i = 1, ..., dz).
2

When the black-box function is expensive-to-evaluate, Bayesian optimization (BO) is
popular owing to its sample efficiency. BO leverages (i) a probabilistic surrogate model—
typically a Gaussian process (GP) (Rasmussen, 2004)—fit to a data set Dn = {xi, zi, yi}ni=1 of
designs and corresponding (potentially noisy) observations yi = f(xi, zi) + εi, εi ∼ N (0, σ2),
and (ii) an acquisition function α(x, z) that uses the surrogate model’s posterior distribution
to quantify the value of evaluating a new design. Common AFs include expected improvement
(EI) (Jones et al., 1998) and upper confidence bound (UCB) (Srinivas et al., 2010)—the
latter of which enjoys no-regret guarantees in certain settings. The next design to evaluate
is chosen by maximizing the AF α(x, z) over X × Z. Although the black-box objective f is
expensive-to-evaluate, the AF is relatively cheap-to-query, and therefore, can be optimized
numerically (gradient-based optimization routines are often used to maximize the AF over
continuous domains).

Discrete Parameters Typically, BO assumes that the inputs are continuous. However,
discrete parameters such as binary parameters, discrete ordinal parameters, and non-ordered
categorical parameters, which are summarized in Table 1, are ubiquitous in many applications.
In the presence of such parameters, optimizing the AF is more difficult, as standard gradient-
based approaches cannot be directly applied. Recent works have proposed various approaches
including multi-armed bandits (Nguyen et al., 2020; Ru et al., 2020) and local search (Oh et al.,
2019) for discrete domains and interleaved discrete/continuous optimization procedures for
mixed domains (Deshwal et al., 2021a; Wan et al., 2021). A simple and widely-used approach
across many popular BO packages (Balandat et al., 2020; The GPyOpt authors, 2016) is
to one-hot encode the categorical parameters, apply a continuous relaxation when solving
the optimization, and discretize (round) the resulting continuous candidates. Examples of
continuous relaxations and discretization functions are listed in Table 1.

Table 1: Different parameter types, their continuous relaxations, and discretization functions.

Type Domain Cont. Relaxation discretize(·) Function

Binary z ∈ {0, 1} z′ ∈ [0, 1] round(z′)
Ordinal z ∈ {0, ..., C − 1} z′ ∈ [0, C − 1] round(z′)
Categorical z ∈ {0, ..., C − 1} z′ ∈ [0, 1]C arg maxc z

′(c)

Although using a continuous relaxation allows for efficient optimization using standard
optimization routines in an alternate continuous domain Z ′ ⊂ Rm, the acquisition value for
an infeasible continuous value (i.e., z′ /∈ Z) does not account for the discretization that must
occur before the black-box function is evaluated. Moreover, the acquisition value for an
infeasible continuous value can be larger than the acquisition value after discretization. For

2Throughout this paper, we use a mixed search space X × Z in our derivations, theorems, and proofs,
without loss of generality with respect to the case of a purely discrete search space. If d = 0, then the
objective function f : Z → R is defined over the discrete space Z and the continuous parameters in this
exposition can simply be ignored.
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an illustration of this, see Fig. 1 (middle/right). In the worst case, BO will repeatedly select
the same infeasible continuous design due to its high acquisition value, but discretization
will result in a design that has already been evaluated and has zero acquisition value. To
mitigate this degenerate behavior, Garrido-Merchán and Hernández-Lobato (2020) propose
to discretize the candidate before evaluating the AF. While this improves performance on
small search spaces, the resulting AF and surrogate have large flat regions, which makes
it difficult to optimize the AF. The authors of (Garrido-Merchán and Hernández-Lobato,
2020) propose to approximate the gradients using finite differences, but, empirically, we find
that this approach to be suboptimal for optimizing the AF.

3. Probabilistic Reparameterization

We propose an alternative approach based on probabilistic reparameterization, a relaxation
of the original optimization problem involving discrete parameters. Rather than directly
optimizing the AF via a continuous relaxation z′ of the design z, we instead reparameterize
the optimization problem by introducing a discrete probability distribution p(Z|θ) over a
random variable Z with support exclusively over Z. This distribution is parameterized by a
vector of continuous parameters θ.

Table 2: Examples of probabilistic reparameterizations for different parameter types.
Although the distribution p(Z|θ) for an ordinal random variable Z does not come from a
standard probability distribution, the random variable B is Bernoulli and for any θ, the
distribution p(Z|θ) is simply a Bernoulli random variable with an additive offset.

Parameter Type Random Variable Continuous Parameter

Binary Z ∼ Bernoulli(θ) θ ∈ [0, 1]
Ordinal Z = bθc+B,B ∼ Bernoulli(θ − bθc) θ ∈ [0, C − 1]
Categorical Z ∼ Categorical(θ), θ = (θ(1), ..., θ(C)) θ ∈ [0, 1]C

We use z to denote the vector (z(1), ..., z(dz)), where each element is a different (possibly
vector-valued) discrete parameter). Given this reparameterization, the probabilistic objective
(PO) is defined as EZ∼p(Z|θ)[α(x,Z)]. PR enables optimizing θ and x over a continuous
space to maximize the PO instead of optimizing x, z to maximize α directly over the mixed
search space X × Z. As we will show later, maximizing the PO allows us to recover a
maximizer of α over the space X × Z. As we will show later, the maxima of the PO (when
discretized via Table 1) recovers the true optimizers of the AF that would be obtained if the
search over X × Z were to converge globally. Choosing p(Z|θ) to be a discrete distribution
over Z means the realizations of Z are feasible values in Z. Hence, the AF is only evaluated
for feasible discrete designs. Since p(Z|θ) is a discrete probability distribution, we can
express EZ∼p(Z|θ)[α(x,Z)] as a linear combination where each discrete design is weighted
by its probability mass:EZ∼p(Z|θ)[α(x,Z)] =

∑
z∈Z p(z|θ)α(x, z). Example distributions

for binary, ordinal, and categorical parameters are provided in Table 2. Multiple discrete
parameters can be handled using an independent random variable Z(i) ∼ p(Z(i)|θ(i)) for
each parameter z(i) for i = 1, ..., dz.

One important benefit of PR is that the PO is differentiable with respect to θ (and x, if
the gradient of α with respect to x exists), whereas α(x, z) is not differentiable with respect
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Figure 1: (Left) A comparison of AF optimization using different methods over a mixed
search space shows that PR outperforms alternative methods for AF optimization and has
much lower variance across replications. For each method, the best candidate across 20
restarts is selected (after discretization) and the acquisition value of the resulting feasible
candidate is recorded. (Middle/Right) AF values with a continuous relaxation (middle)
and the PO (right) for the Branin function over a mixed domain with one continuous
parameter (x0) and one binary parameter (z0) (see Appendix E for details on Branin).
(Middle) Under a continuous relaxation, the maximizer of the AF is an infeasible point
in the domain (grey circle), which results in suboptimal AF value when rounded (black
star); the optimality gap with respect to the true AF maximizer is 1.9. The maximal
AF across the feasible search space is shown in white, so red regions indicated that the
continuous relaxation overestimates the AF value. (Right) The PO is maximized at the AF
unique maximizer within the valid search domain. These contours show that PR avoids the
overestimation issue with a continuous relaxation.

to z. See Appendix A for details. This enables optimizing the PO (line 4 of Algorithm 1)
efficiently and effectively using gradient-based methods over discrete or mixed search spaces.

Theoretical Properties Here, we highlight important theoretical properties of PR. For-
mal statements and proofs are provided in Appendix D. Algorithm 1 outlines BO with
probabilistic reparameterization. Importantly, Theorem 1 states that sampling from the
distribution parameterized by a maximizer of the PO yields a maximizer of α, and therefore,
Algorithm 1 enjoys the regret bounds as the BO policy that optimizes α(·) (Corollary 3).Al-
though the BO policy selects a maximizer of α is equivalent to the BO policy in Algorithm 1,
maximizing the AF over mixed or high-dimensional discrete search spaces is challenging
because commonly used gradient-based methods cannot directly be applied. The key ad-
vantage of our approach is that maximizers of the AF can be identified efficiently and
effectively by optimizing the PO using gradient information instead of directly optimizing
the AF. We find that optimizing PR yields significantly better results than directly op-
timizing α or other common relaxations as shown in Figure 1(Left), where we compare
AF optimization methods on the chemical synthesis problem (Shields et al., 2021) (see
Appendix E for details). The violin plots show the distribution of final AF values and
the mean. “Cont. Relax.” denotes optimizing a continuous relaxation of the categoricals
with exact gradients. “Exact Round” refers to optimizing a continuous relaxation with
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approximate gradients (via finite difference), but discretizes the relaxation before evaluating
the surrogate (Garrido-Merchán and Hernández-Lobato, 2020). ”Interleaved” alternates
between one step of local search on the discrete parameters and one step of gradient ascent
on the continuous parameters (used in Casmopolitan (Wan et al., 2021)). All methods
except interleaved use L-BFGS-B and the expected improvement AF (Jones et al., 1998).

Algorithm 1 BO with PR

1: Input: black-box objective f : X ×Z → R
2: Initialize D0 ← ∅, GP0 ← GP(0, k)
3: for n = 1 to N do
4: (xn,θn)← arg max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)]
5: Sample zn ∼ p(Z|θn)
6: Evaluate f(xn, zn)
7: Dn ← Dn−1 ∪ {(xn, zn,f(xn, zn))}
8: Update posterior GPn given Dn
9: end for

4. Practical Computation
and Optimization

Unbiased Monte Carlo Es-
timators As the number of
discrete configurations (|Z|) in-
creases, the PO and its gradient
may become computationally ex-
pensive to evaluate analytically
because both require a summa-
tion of |Z| terms. Therefore, we
propose to estimate the PO and
its gradient using Monte Carlo (MC) sampling. We opt for using a score function gradient
estimator (Kleijnen and Rubinstein, 1996) (also known as REINFORCE (Williams, 1992))
and the likelihood ratio estimator (Glynn, 1990)) because it is simple, scalable, and can be
computed simply using the acquisition values {α(x, z̃i)}Ni=1 that are already required for the
MC estimator of the PO. See Appendix B for details.

Convergence Guarantee using Stochastic Gradient Ascent Since the score function
gradient estimator is unbiased, we can leverage previous work on convergence in probability
under stochastic gradient ascent (Robbins and Monro, 1951) to arrive at our main convergence
result for acquisition optimization: namely, that optimizing the PO is guaranteed to converge
in probability to a stationary point, and as the number of starting points and gradient steps
increase, our approach will recover a maximizer of the (Theorem 2).

The implication is that the intended BO policy is followed and the underlying regret
bounds of the AF are recovered (provided that the other conditions of the regret bound are
met). Although global convergence is only guaranteed as m→∞, we observe in Figure 1(left)
that PR yields stable, convergent acquisition optimization with only m = 20 starting points
and outperforms alternative optimization approaches.

5. Summary of Empirical Results

In Appendix C, we perform an empirical analysis of PR against alternative state-of-the-art
methods (see Appendix N for review of related work) on 3 synthetic and 5 real world problems.
We find PR consistently delivers strong empirical performance and we demonstrate that
PR is complementary to existing trust region-based approaches (Eriksson et al., 2019).
Although PR is computationally intensive (due to MC integration), the computation is
embarrassingly parallel and therefore exploiting GPU acceleration yields competitive wall
times. See Appendix O for further discussion.
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Appendix A. Analytic Gradients

Recall that the PO is given by

EZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

p(z|θ)α(x, z). (1)

The gradients of the PO with respect to θ and x can be obtained by differentiating Equation 1:

∇θEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

α(x, z)∇θp(z|θ) (2)

∇xEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

p(z|θ)∇xα(x, z) (3)

Appendix B. Practical Monte Carlo Estimators

B.1 Unbiased estimators of the Probabilistic Reparameterization and its
Gradient

As the number of discrete configurations (|Z|) increases, the PO and its gradient may become
computationally expensive to evaluate analytically because both require a summation of |Z|
terms. Therefore, we propose to estimate the PO and its gradient using Monte Carlo (MC)
sampling. The MC estimator of the PO is given by

EZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, z̃i), (4)

where z̃1, ..., z̃N are samples from p(Z|θ). This estimator is unbiased and can be computed
for a large number of samples by evaluating the AF independently (or in chunks) for each
input (x, z̃n).

MC can also be used to estimate the gradient of the PO with respect to θ. We opt for
using a score function gradient estimator (Kleijnen and Rubinstein, 1996) (also known as
REINFORCE (Williams, 1992)) and the likelihood ratio estimator (Glynn, 1990)) because
it is simple, scalable, and can be computed simply using the acquisition values {α(x, z̃i)}Ni=1

that are already required for the MC estimator of the PO. Many alternative lower variance
estimators (e.g. Yin et al. (2020); Yin et al. (2019)) would require many additional AF
evaluations (see Mohamed et al. (2020) for a review of MC gradient estimation). The
score function is the gradient of the log probability with respect to the parameters of the
distribution: ∇θ log p(Z|θ) = ∇θp(Z|θ)

p(Z|θ) . Using this score function, we can express the analytic
gradient as

∇θEZ∼p(Z|θ)[α(x,Z)] =
∑
z∈Z

α(x, z)p(z|θ)∇θ log p(z|θ) = EZ∼p(Z|θ)[α(x,Z)∇θ log p(Z|θ)].

The unbiased MC estimator of the gradient of the PO with respect to θ is given by

∇θEZ∼p(Z|θ)[α(x,Z)] ≈ 1

N

N∑
i=1

α(x, z̃i)∇θ log p(z̃i|θ). (5)
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Since the score function gradient is only defined when p(z|θ) > 0, we reparameterize θ
to ensure p(z|θ) > 0 for all z and θ by using the softmax transformations provided in
Table 3, which are commonly used for computational convenience and stability in probablistic
reparameterization (Yin et al., 2020; Yin et al., 2019). Although θ can only be 0 or 1 when
τ → 0, for any ε > 0, there exists some τ such that the approximation error is less than ε.

Parameter Type Transformation (θ = g(φ))

Binary θ = σ((φ− 1
2 )/τ)

Ordinal θ = bφc+ σ((φ− bφc − 1
2 )/τ)

Categorical θ(c) = softmax((φ− 0.5)/τ)(c)

Table 3: Transformations where τ ∈ R+ and φ, θ ∈ Θ.

Moreover, even though p(z|θ) > 0,
when p(z|θ) is small, a small num-
ber N of MC samples are unlikely
to produce any samples where z̃ =
z. Instead of optimizing θ directly,
we instead optimize φ. Since the
transformations g(·) are differen-
tiable with respect to φ, the gradi-
ent (and MC gradient estimator) of the PO with respect to φ are easily obtained using the
gradient of the PO with respect to θ and a simple application the chain rule (multiplying by
∇φθ).

B.2 Deterministic Optimization via Sample Average Approximation

Although multi-start stochastic ascent is provably convergent (Theorem 2), we opt instead
to use lower variance deterministic MC estimators using common random numbers. In order
maintain valid samples z̃i ∼ p(Z|θ) for i = 1, ..., N as θ changes over the course of the
acquisition optimization, we reparameterize Z as a deterministic function h(·, ·) that operates
component-wise on θ and the random variable U = (u(1), ..., u(dz)), u(i) ∼ Uniform(0, 1):
Z = h(θ,U). Descriptions of h(·, ·) for provided for each parameter type in Appendix E.3.
Using a fixed a set of base samples {ũi}Ni=1, the sample average approximation estimators
are obtained by substituting zi = h(θ, ũi) into (4) and (5). Although biased, sample average
approximation estimators are deterministic, enabling the use of second-order numerical
methods for efficient acquisition optimization (Balandat et al., 2020). We reduce the variance
further by leveraging quasi-MC sampling (Owen, 2003) instead of i.i.d. sampling.

Appendix C. Experiments

In this section, we provide an empirical evaluation of PR using SAA estimators on a suite of
synthetic problems and real world applications. We use N = 1, 024 MC samples in our exper-
iments and demonstrate that PR is robust with respect to the number of MC samples (and
compare against analytic PR, where computationally feasible) in Appendix H. We compare
PR against two alternative acquisition optimization strategies: using a continuous relaxation
(Cont. Relax.) and using exact discretization and approximate gradients (Exact Round)
(Garrido-Merchán and Hernández-Lobato, 2020). In addition, we compare against two
state-of-the-art methods for discrete/mixed BO: a modified version of Casmopolitan (Wan
et al., 2021) that additionally supports ordinal variables introduced in Wan et al. (2022)
and HyBO (Deshwal et al., 2021a), both of which are shown to outperform the other
related works discussed in Section N. In addition, we showcase how PR is complementary
to existing methods such as trust region methods (Eriksson et al., 2019). We demonstrate
this by using PR with a trust region for the continuous and discrete ordinal parameters
and optimize PR within this trust region. In Appendix I, we provide comparison of TR
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methods with alterative optimizers and find that PR is the best optimizer for TR on 6 of
the 7 benchmark problems. See Appendix E for additional discussion of PR + TR. For PR,
Exact Round, and PR + TR we use the sum of a product kernel and a sum kernel of a
categorical kernel (Ru et al., 2020) for the categorical parameters and Matérn-5/2 kernel for
all other parameters.3

Cont. Relax., Exact Round, PR, and PR + TR use expected improvement (Jones
et al., 1998; Gardner et al., 2014) for single objective (constrained problems) and expected
hypervolume improvement (Emmerich et al., 2006) for the multi-objective oil sorbent problem
(where exact gradients with respect to continuous parameters are computed using auto-
differentiation (Daulton et al., 2020)). We report the mean for each method ± 2 standard
errors across 20 replications. Performance is evaluated in terms of regret (feasible regret for
constrained problems and hypervolume regret for multi-objective problems). Casmopolitan
and HyBO are not run on Welded Beam and Oil Sorbent as they do not support constrained
and multi-objective optimization. We also leave the multi-objective extension of PR+TR
to future work because it would add additional complexity (Daulton et al., 2022). For
HyBO, we only run 60 BO iterations on SVM due to the large wall time (see Figure 4)
and only report partial results on Cellular Network due to a singular covariance matrix
error. See Appendix E for details on the experiment setup, regret metrics, benchmark
problems, and methodological details. We leverage existing open source implementations of
Casmopolitan and HyBO (see Appendix E for links). Our implementations of all of other
methods are available at github.com/facebookresearch/bo_pr.

C.1 Synthetic Problems

We evaluate all methods on 3 synthetic problems: Ackley is a 13-dimensional function
with 10 binary and 3 continuous parameters (a modified version of the problem in Bliek
et al. (2021)). Mixed Int F1 is a 16-dimensional variant of the F1 function from Tušar
et al. (2019) with 2 binary, 6 discrete ordinal parameters, and 8 continuous parameters. The
discrete ordinal parameters have following cardinalities: 2 parameters with 3 values, 2 with
5 values, and 2 with 7 values. Rosenbrock is a 10-dimensional Rosenbrock function with 6
discrete ordinal parameters with 4 values each and 4 continuous parameters.

C.2 Real World Problems

We consider 5 real world applications including a problem with 5 black-box outcome
constraints and a 3-objective problem (see Appendix F for details on constrained and
multi-objective BO).

Welded Beam Optimizing the design of a welded steel beam is a classical engineering
optimization. In this problem, the goal is to minimize manufacturing cost subject to 5
black-box constraints on structural properties of the beam (including shear stress, bending
stress, and buckling load) my tuning 6 parameters: the welding configuration (binary), the
metal material type (categorical with 4 options), and 4 ordinal parameters controlling the
dimensions of the beam (Tran et al., 2019).

SVM Feature Selection This problem involves jointly performing feature selection
and hyperparameter optimization for a Support Vector Machine (SVM) trained on the
CTSlice UCI data set (Dua and Graff, 2017; Liu et al., 2022). This design space for this

3Cont. Relax. is incompatible with a categorical kernel so we use Matérn-5/2 with one-hot encoding.
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problem involves 50 binary parameters controlling whether a particular feature is included
or not, and 3 continuous hyperparameters of the SVM.

Cellular Network Optimization In this 30-dimensional problem, the goal is to tune
the tilt (ordinal with 6 values) and transmission power (continuous) for a set of 15 antennas
(Samal et al., 2021) to maximize a coverage quality metric that is a function of signal power
and interference (Maddox et al., 2021) over a geographic region of interest. We use the
simulator from Dreifuerst et al. (2021).

Direct Arylation Chemical Synthesis Palladium-catalysed direct arylation has
generating significant interest in pharamceutical development (Davies and Morton, 2016).
In this problem, the goal is maximize yield for a direct arylation chemical reaction by
tuning the 3 categorical parameters corresponding to the choice of solvent, base, and ligand,
as well 2 continuous parameters controlling the temperature and concentration. We fit a
surrogate model to the direct arylation dataset from Shields et al. (2021) in order to facilitate
continuous optimization of temperature and concentration.

Electrospun Oil Sorbent Marine oil spills can cause ecological catastrophe. One
avenue for mitigating environmental harm is to design and deploy absorbent materials to
capture the spilled oil. In this problem, we tune 5 ordinal parameters (3 parameters with 5
values and 2 with 4 values) and 2 continuous parameters controlling the composition and
manufacturing conditions for an electrospun oil sorbent material to maximize 3 competing
objectives: the oil absorbing capacity, the mechanical strength, and the water contact angle
(Wang et al., 2020a).
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Appendix D. Theoretical Results and Proofs

D.1 Results

Let P(i)
Z := P(Z(i)) denote the set of probability measures on Z(i) for each i = 1, ..., dz, and

let PZ :=
∏dz
i=1 P

(i)
Z . For any α : X × Z → R, define α̃ : X × P → R as

α̃(x, p) =

∫
Z
α(x, z)dp(z) =

∑
z∈Z

α(x, z)p({z}). (6)

Let Θ be a compact metric space, and consider the set of functionals Φ = {ϕ s.t. ϕ : Θ→ PZ}.
Let

α̂(x,θ) := α̃(x,ϕ(θ)) =

∫
Z
α(x, z)dpϕ(θ)(z) =

∑
z∈Z

α(x, z)pϕ(θ)({z}) (7)

Since Z is finite, each element of ϕ ∈ Φ can be expressed as a mapping from Θ to R|Z|.
Namely, each ϕ(θ) corresponds to a vector with |Z| elements containing the probability
mass for each element of Z under pϕ(θ). Thus (PZ , ‖ · ‖) is a metric space under any norm
‖ · ‖ on R|Z|. Let α∗ := max(x,z)∈(X×Z) α(x, z) and let H∗ := arg max(x,z)∈(X×Z) α(x, z)
denote the set of maximizers of α.

Lemma 1 Suppose α is continuous in x for every z ∈ Z and that ϕ : Θ 7→ (PZ , ‖ · ‖) is
continuous with ϕ(Θ) = PZ . Let J ∗ := arg max(x,θ)∈X×Θ α̂(x,θ). Then for any (x∗,θ∗) ∈
J ∗, it holds that (x∗, z) ∈ H∗ for all z ∈ supp pϕ(θ∗).

Proof First, note that α̂ : X ×Θ→ R is continuous (using that ϕ is continuous and α is
bounded). Since both X and Θ are compact α̂ attains its maximum, i.e., J ∗ exists. Let
(x∗,θ∗) ∈ J ∗. Clearly, there exists z∗ ∈ arg maxz∈Z α(x∗, z) such that α(x∗, z∗) = α∗.
Suppose there exists z′ ∈ supp pϕ(θ∗) such that (x∗, z′) /∈ H∗. Then α(x∗, z′) < α∗ and,
since Z is finite, pϕ(θ∗)({z′}) > 0. Consider the probability measure p′ given by

p′({z}) =

{ 0 if z = z′

pϕ(θ∗)({z∗}) + pϕ(θ∗)({z′}) if z = z∗

pϕ(θ∗)({z}) otherwise

Then

α̃(x∗, p′)− α̂(x∗,θ∗) =
∑
z∈Z

α(x∗, z)p′({z})− α̂(x∗,θ∗)

=
∑
z∈Z

α(x∗, z)pϕ(θ∗)({z}) + pϕ(θ∗)({z′})(α(x∗, z∗)− α(x∗, z′))

− α̂(x∗,θ∗)

= pϕ(θ∗)({z′})(α(x∗, z∗)− α(x∗, z′))

> 0

Now p′ ∈ PZ , and so p′ = ϕ(θ′) for some θ′ ∈ Θ. But then α̂(x∗,θ′) > α̂(x∗,θ∗). This is a
contradiction.
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Corollary 1 Suppose the optimizer of g is unique, i.e., that H∗ = {(x∗, z∗)} is a singleton.
Then the optimizer of α̂ is also unique and J ∗ = {(x∗,θ∗)}, with pϕ(θ∗)({z∗}) = 1.

Corollary 2 Consider the following mappings:

• Binary: ϕ : [0, 1]→ P{0,1} with pϕ(θ)({1}) = θ and pϕ(θ)({0}) = 1− θ.

• Ordinal: ϕ : [0, C − 1]→ P{0,1,...,C} with pϕ(θ)({i}) = (1− |i− θ|) 1{|i− θ| ≤ 1} for
i = 1, . . . , C.

• Categorical: ϕ : [0, 1]C → P{0,1,...,C} with pϕ(θ)({i}) = θi∑C
i=1 θi

.

These mappings satisfy the conditions for Lemma 1. In the setting with multiple discrete
parameters where the above mappings are applied in component-wise fashion for each discrete
parameter, the component-wise mappings also satisfy the conditions for Lemma 1.

Clearly, the mappings given in Corollary 2 are continuous functions of θ. In the setting with
multiple discrete parameters , the component-wise function is also continuous with respect
to the distribution parameters for each discrete parameter. Hence, the mappings satisfy the
conditions for Lemma 1.

Lemma 2 If (x∗, z∗) ∈ H∗ = arg max(x,z)∈X×Z α(x, z), then

α(x∗, z∗) = max
θ

EZ∼p(Z|θ)[α(x∗,Z)].

Proof For any z∗, let θ∗ be the parameters such that p(z∗|θ∗) = 1 (i.e. a point mass on
z∗). From Equation (1),

EZ∼p(Z|θ∗)[α(x∗,Z)] =
∑
z∈Z

α(x∗, z)p(z|θ∗) = α(x∗, z∗).

Claim: EZ∼p(Z|θ∗)[α(x∗,Z)] = maxθ EZ∼p(Z|θ)[α(x∗,Z)].
Suppose there exists θ′ such that EZ∼p(Z|θ′)[α(x∗,Z)] > EZ∼p(Z|θ∗)[α(x∗,Z)]. Since

(x∗, z∗) ∈ H∗, α(x∗, z∗) = max(x,z)∈X×Z α(x, z). Hence, there is no convex combination of
values of α that is greater than α(x∗, z∗). This is a contradiction.

Theorem 1 (Consistent Maximizers) Suppose that α is continuous in x for every z ∈
Z. Let H∗ be the maximizers of α(x, z): H∗ = {(x, z) ∈ arg max(x,z)∈X×Z α(x, z)}. Let
J ∗ ⊆ X ×Θ be defined as: J ∗ = {(x,θ) ∈ arg max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)]}, where Θ

is the domain of θ. Let Ĥ∗ ⊆ X ×Z be defined as: Ĥ∗ = {(x, z̃) : (x,θ) ∈ J ∗, z̃ ∼ p(Z|θ)}.
Then, Ĥ∗ = H∗.

Proof From Lemma 1, we have that for any (x∗,θ∗) ∈ J ∗, it holds that (x∗, z) ∈ H∗ for
all z ∈ supp pϕ(θ∗). Hence, Ĥ∗ ⊆ H∗.

Now, let (x∗, z∗) ∈ H∗. Let θ∗ ∈ Θ such that p(z∗|θ∗) = 1. From the proof of
Lemma 2, we have that EZ∼p(Z|θ∗)[α(x∗,Z)] = α(x∗, z∗). As in the proof of Lemma 2, there
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is no convex combination of values of α greater than α(x∗, z∗). So EZ∼p(Z|θ∗)[α(x∗,Z)] =

max(x,θ)∈X×Θ EZ∼p(Z|θ)[α(x,Z)], and therefore, x∗,θ∗ ∈ J ∗. Hence (x∗, z∗) ∈ Ĥ∗. So

H∗ ⊆ Ĥ∗, and hence, Ĥ∗ = H∗.

Lemma 3 Suppose that α : (x, z) 7→ R is differentiable with respect to x for all z ∈ Z, and
that the mapping ϕ : θ 7→ PZ is such that pϕ(θ)({z}) is differentiable with respect to θ for
all z ∈ Z. Then the probabilistic objective EZ∼p(Z|θ)[α(x,Z)] is differentiable with respect
to (x,θ).

Proof For any z ∈ Z, the function p(z,θ)α(x, z) = pϕ(θ)({z})α(x, z) is the product of
two differentiable functions, hence differentiable. Therefore the probabilistic objective is a
(finite) linear combination of differentiable functions, hence differentiable.

Theorem 2 (Convergence Guarantee) Let α : X × Z → R be differentiable in x for
every z ∈ Z. Let (x̂t,m, θ̂t,m) be the best solution after running stochastic gradient ascent
for t time steps on the probabilistic objective EZ∼p(Z|θ)[α(x,Z)] from m starting points
with its unbiased MC estimators proposed above. Let {at}∞t=1 be a sequence of positive
step sizes such that 0 <

∑∞
t a2

t = A < ∞, where at is the step size used in stochastic

gradient ascent at time step t. Let ẑt,m ∼ p(Z|θ̂t,m). Then as t → ∞ and m → ∞,
(x̂t,m, ẑt,m)→ (x∗, z∗) ∈ arg max(x,z)∈X×Z α(x, z) in probability.

Proof The binary and categorical mappings in Corollary 2 are differentiable in θ (the ordinal
mapping is differentiable almost everywhere4). Since the acquisition function α : X × Z → R
is differentiable in x for every z ∈ Z, this means that the PO is differentiable. Using the
prescribed sequence of step sizes, optimizing the PO using stochastic gradient ascent will
converge almost surely to a local maximum after a sufficient number of steps (Robbins
and Monro, 1951). As we increase the number of randomly distributed starting points, the
probability of not finding the global maximum of the PO will converge to zero (Wang et al.,
2020b). From Theorem 1, the PO and the AF have the same set of maximizers. Hence,
convergence in probability to a global maximizer of the PO means convergence in probability
to a global maximizer of the AF.

Corollary 3 (Regret Bounds) Let α(x, z) be an acquisition function with bounded regret
over a search space X ×Z. If the conditions for the regret bounds of α(x, z) are satisfied,
then Algorithm 1 with α enjoys the same regret bound.

4Technically, the arguments presented here do not prove convergence under the ordinal mapping, but we
have found this to work well and reliably in practice. Alternatively, ordinal parameters could also just be
treated as categorical ones in which case the convergence results hold. In practice, however, this introduces
additional optimization variables that make the problem unnecessarily hard by removing the ordered structure
from the problem.
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Appendix E. Experiment Details

For each BO optimization replicate, we use Ninit = min(20, 2 ∗ deff) points from a scrambled
sobol sequence, where deff is the “effective dimensionality” after one-hot encoding categorical
parameters. Unless otherwise noted, all experiments use 20 replications and confidence
intervals represent 2 standard errors of the mean. The same initial points are used for
all methods for that replicate and different initial points are used for each replicate. For
each method we report the log10 regret. Since the optimal value is unknown for many
problems, we set the optimal value to be max(1.001 · f∗, f∗ + 0.1) where f∗ is the best
observed value across all methods and all replications. For constrained optimization f∗ is
the best feasible observed value and for multi-objective optimization f∗ is the maximum
hypervolume across all methods and replications. In total, the experiments in the main text
(excluding HyBO and Casmopolitan) ran for an equivalent of 2,009.82 hours on a single
Tesla V100-SXM2-16GB GPU. The baseline experiments (HyBO and Casmopolitan) ran for
an equivalent of 745.10 hours on a single Intel Xeon Gold 6252N CPU.

E.1 Additional Problem Details

In this section, we describe the details of each synthetic problem considered in the experiments
(the details of the remaining real-world problems are already described in Section C.2).

Ackley. We use an adapted version of the 13-dimensional Ackley function modified from
Bliek et al. (2021). The function is given by:

f(x) = −a exp
(
− b

√√√√1

d

d∑
i=1

x2
i )
)
− exp

(1

d

d∑
i=1

cos(cxi)
)

+ a+ exp(1), (8)

where in this case a = 20, n = 0.2, c = 2π and d = 13 and x ∈ [−1, 1]13. We discretize the
first 10 dimensions to be binary with the choice {−1, 1}, and the final 3 dimensions are
unmodified with the original bounds.

Mixed Int F1. Mixed Int F1 is a partially discretized version of the 16-dimensional Sphere
optimization problem (Hansen et al., 2019), given by:

f(x) =
d∑
i=1

(xi − xopt,i)
2 + fopt, (9)

where fopt is sampled from a Cauchy distribution with median = 0 and roughly 50% of the
values between −100 and 100. The sampled fopt is then clamped to be between [−1000, 1000]
and rounded to the nearest integer. xopt is sampled uniformly in [−4, 4]d, and in this case
d = 16. We discretize the first 8 dimensions as follows: the first 2 dimensions are binary with
2 choices {−5, 5}; the next 2 dimensions are ordinal with 3 choices {−5, 0, 5}; the next 2
dimensions are ordinal with 5 choices {−5,−2.5, 0, 2.5, 5}; the final 2 dimensions are ordinal
with 7 choices {−5,−10

3 ,−
5
3 , 0,

5
3 ,

10
3 , 5}. The remaining 8 dimensions are continuous with

bounds [−5, 5]8.
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Rosenbrock. We use an adapted version of the Rosenbrock function, given by:

f(x) =
( d−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

))
, (10)

where in this case d = 10. The first 6 dimensions are discretized to be ordinal variables, with
4 possible values each xi ∈ {−5, 0, 5, 10}∀i ∈ [1, 6]. The final 4 dimensions are continuous
with bounds [−5, 10]4.

Chemical Reaction (Direct Arylation Chemical Synthesis). For this problem, we
fit a GP surrogate (with the same kernel used by the BO methods) to the dataset from
Shields et al. (2021) (available at https://github.com/b-shields/edbo/tree/master/

experiments/data/direct_arylation under the MIT license) in order to facilitate contin-
uous optimization of temperature and concentration. The surrogate is included with our
source code.

Oil Sorbent. We set the reference point for this problem to be [−125.3865,−57.8292, 43.2665],
which we choose using a commonly used heuristic to scale the nadir point (component-wise
worst objective values across the Pareto frontier) (Wang et al., 2017).

E.2 Method details

PR, Cont. Relax., Exact Round, PR + TR, and Exact Round + STE. We
implemented all of these methods using BoTorch (Balandat et al., 2020), which is available
under the MIT license at https://github.com/pytorch/botorch. All AFs are optimized
via L-BFGS-B with 20 random restarts, run for a maximum of 200 iterations. We follow
the default initialization heuristic in BoTorch (Balandat et al., 2020), which initializes the
optimizer by evaluating the acquisition function at a large number of starting points (here,
1024, chosen from a scrambled Sobol sequence), and selecting (20) points using Botlzmann
sampling (Duchon et al., 2004) of the 1024 initial points, according to their acquisition
function utilities.

Combining PR with trust regions: When combining PR with the trust regions used
in TuRBO we only use a trust region over the continuous parameters and discrete ordinals
with at least 3 values. While methods like Casmopolitan uses a Hamming distance for the
trust regions over the categorical parameters, we choose not to do so as there is no natural
way of efficiently optimizing PR using gradient-based methods. Finally, we do not use a
trust region over the Boolean parameters as the trust region will quickly shrink to only
include one possible value. We use the same hyperparameters as TuRBO (Eriksson et al.,
2019) for unconstrained problems and SCBO (Eriksson and Poloczek, 2021) in the presence
of outcome constraints, including default trust region update settings.

Casmopolitan: We use the official implementation of Casmopolitan—which is avail-
able at https://github.com/xingchenwan/Casmopolitan under the MIT licence—but
modify it where appropriate to additionally handle the ordinal variables. Specifically, the
ordinal variables are treated as continuous when computing the kernel. However, during
interleaved search, ordinal variables are searched via local search similar to the categorical
variables. We use a set of Casmopolitan hyperparameters (i.e. success/failure sensitivity,
initial trust region sizes and expansion factor) recommended by the authors.
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HyBO: We use the official implementation of HyBO at https://github.com/aryandeshwal/
HyBO, which is licensed by the University of Amsterdam. We use the default hyperparameters
recommended by the authors in all the experiments, and we use the full HyBO method with
marginalization treatment of the hyperparameters as it has been shown to perform stronger
empirically (Deshwal and Doppa, 2021).

E.3 Gaussian process regression

When there are no categorical variables we use kordinal which is a product of an isotropic
Matern-5/2 kernel for the binary parameters and a Matern-5/2 kernel with ARD for the
remaining ordinal parameters. In the presence of categorical parameters, this kernel is
combined with a categorical kernel (Ru et al., 2020) kcat as kcat × kordinal + kcat + kordinal.
We use a constant mean function. The GP hyperparameters are fitted using L-BFGS-B by
optimizing the log-marginal likelihood. The ranges for the ordinal parameters are rescaled
to [0, 1] and the outcomes are standardized before fitting the GP.

Table 4: Discrete random variables and their reparameterizations in terms of a Uniform
random variable U ∼ Uniform(0, 1) and θ via a deterministic function h(·, ·).

Type Random Variable Reparameterization (Z = h(θ, U))

Binary Z ∼ Bernoulli(θ) h(θ, U) = 1(U < θ)
Ordinal Z = bθc+B, h(θ, U) = bθc+ 1(U < θ − bθc)

B ∼ Bernoulli(θ − bθc)
Categorical Z ∼ Categorical(θ) h(θ, U) = min(arg maxC−1

i=0 1(U <
∑i

c θ
(c)))

Appendix F. Constrained and Multi-Objective Bayesian Optimization

In many practical problems, the black-box objective must be maximized subject to V > 0

black-box outcome constraints f
(v)
c (x, z) ≥ 0 for v = 1, ..., V . See Gardner et al. (2014)

for a more in depth review of black-box optimization with black-box constraints and BO
techniques for this class of problems.

In the multi-objective setting, the goal is to maximize (without loss of generality) a set
of M objectives f (1), ..., f (M). Typically there is no single best solution, and hence the goal
is to learn the Pareto frontier (i.e. the set of optimal trade-offs between objectives). In the
multi-objective setting, the hypervolume indicator is a common metric for evaluating the
quality of a Pareto frontier. See (Emmerich et al., 2006) for a review of multi-objective
optimization.

Appendix G. Wall times

In this section, we reported the AF optimization wall times for the experiments in the main
text.
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Figure 3: Wall time for candidate generation at each BO iteration in seconds. Cont.
Relax., Exact Round, PR, and PR + TR are run on a single Tesla V100-SXM2-16GB
GPU and other methods are run on an Intel Xeon Gold 6252N CPU.
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Figure 4: Wall time for candidate generation at each BO iteration in seconds. Cont.
Relax., Exact Round, PR, and PR + TR are run on a single Tesla V100-SXM2-16GB
GPU and other methods are run on an Intel Xeon Gold 6252N CPU.

Appendix H. Probabilistic Reparameterization Sensitivity Analyses

H.1 Monte Carlo samples

The main text considers 1024 MC for PR. We consider 128, 256, and 512 samples, in
addition to the default of 1024. For problems with discrete spaces that are enumerable, we
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also consider analytic PR. We do not find statistically significant differences between the
final regret of any of these configurations (Figure 5). Runtime is linear with respect to MC
samples, and so substantial compute savings are possible when fewer MC samples are used
(Figure 6).
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Figure 5: A sensitivity analysis of the optimization performance of PR with respect to the
number of MC samples. We find that PR is robust to the number of MC samples, and the
MC PR matches the performance of the analytic PR.
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Figure 6: A sensitivity analysis of the wall time of PR with respect to the number of MC
samples. We observe that wall time scales linearly with the number of MC samples, which
is expected since compute PR in N

32 chunks to avoid overflowing GPU memory.

H.2 Effect of τ in Transformation

Throughout the main text, we use τ = 0.1, which we selected based on the observation that
it provides a reasonable balance between retaining non-zero gradients of g(φ) with respect
to φ and allowing θ to become close to 0 or 1. This observation is obvious from Figure 7.
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Figure 7: A comparison of the reparameterization of θ under various choices of τ . We
observe that τ = 0.1 provides a reasonable balance between retaining non-zero gradients of
g(φ) with respect to φ and allowing θ to become close to 0 or 1.

We further examine the effects of this hyperparameter by testing values of τ across four
orders of magnitude from 100 to 10−3 in the following sensitivity analysis. We find that our
default choice of 0.1 tends to perform well across all benchmark problems considered in this
work.

24



As τ → 0, the θ can take more extreme values, but the gradient of the transformation
with respect to φ also moves closer to zero. For larger values of τ , the gradient of the
transformation with respect to φ is larger, but θ has a more limited domain with less extreme
values. We find that τ = 0.1 is a robust setting across all experiments.
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Figure 8: A sensitivity analysis of the log regret of PR with respect to the τ . We find
τ = 0.1 to be quite robust across experiments.

Appendix I. Alternative methods

I.1 Straight-through gradient estimators

An alternative approach to using approximating the gradients under exact rounding using
finite differences is to approximate the gradients using straight-through gradient estimation
(STE) (Bengio et al., 2013). The idea of STE is to approximate the gradient of a function
with the identity function. In our setting, the gradient of the discretization function
with respect to its input is estimated using an identity function. Using this estimator
enables gradient-based AF optimization, even though the true gradient of the discretization
function is zero everywhere that it is defined. Although STEs have been shown to work
well empirically, these estimators are not well-grounded theoretically. Their robustness and
potential pitfalls in the context of AF optimization have not been well studied. Below,
we evaluate the aforementioned Exact Round + STE approach and show that it offers
competitive optimization performance (Figure 9) with fast wall times (Figure 10), but does
not quite match the optimization performance of PR on several benchmark problems.
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Figure 9: A comparison of exact rounding with straight-through gradient estimators versus
other acquisition optimization strategies. Log regret on each problem. We report log
hypervolume regret for Oil Sorbent and report the log regret of the best feasible objective
for Welded beam.
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Figure 10: A comparison of wall times of exact rounding with straight-through gradient
estimators versus other acquisition optimization strategies.
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I.2 TR methods with alternative optimizers

In this section, we consider alternative methods to PR for optimizing AFs using within trust
regions. The results in Figure 11 show that PR is a consistent best optimizer using TRs,
but that STEs work quite well with TRs in many scenarios.
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Figure 11: A comparison of TR methdods with different acquisition optimization strategies.
Log regret on each problem. We report log hypervolume regret for Oil Sorbent and report
the log regret of the best feasible objective for Welded beam.

27



0 50 100
1

10

100

W
all

 T
im

e (
s)

Mixed Int F1

0 50 100
1

10

100
Rosenbrock

0 50 100
1

10

100
Ackley

Cont. Relax. + TR Exact Round + TR Exact Round + STE + TR PR + TR

0 50 100
10

100

Welded Beam (5 constraints)

0 100 200
Iteration

10

100

W
all

 T
im

e (
s)

SVM

0 200 400
Iteration

1

10

100

Cellular Network

0 100 200
Iteration

1

10

100
Chemical Reaction

Figure 12: A comparison of wall times of TR methdods with different acquisition optimization
strategies.

Appendix J. Alternative categorical kernels

In this section, we demonstrate that PR can be used with arbitrary kernels over the
categorical parameters including those that require discrete inputs (which Cont. Relax.
is incompatible with). Specifically for the categorical parameters, we compare using a
Matérn-5/2 Kernel with one-hot encoded categoricals, a Categorical kernel (default), and a
latent embedding kernel (Zhang et al., 2019). For the latent embedding kernel, we follow
Pelamatti et al. (2021) and use a 1-d latent embedding for categorical parameters where the
cardinality is less than or equal to 3 and a 2-d embedding for categorical parameters where
the cardinality is greater than 3. For each latent embedding, we use an isotropic Matérn-5/2
kernel and use product kernel across the kernels for the categorical, binary, ordinal, and
continuous parameters. The results presented in Figure 14 show that latent embedding and
categorical kernels have much lower variance across replications on the chemical reaction
problem.
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Figure 13: A comparison of different kernels over categorical parameters. Left: Welded beam
has one categorical parameter, metal type (4 levels). Right: Chemical reaction has three
categorical parameters, solvent, base, and ligand (with 4, 12, and 4 levels, respectively).

Appendix K. Alternative Acquisition Functions

In this section, we compare PR with expected improvement (EI) against PR with upper
confidence bound (UCB). For UCB, we set the hyperparameter β in each iteration using the
method in Kandasamy et al. (2015). Although UCB comes enjoys bounded regret (Srinivas
et al., 2010), we find empirically that EI works better on most problems.

29



0 50 100

0

1

2
Lo

g 
Re

gr
et

Mixed Int F1

PR + EI PR + UCB

0 50 100
1

2

3

Rosenbrock

0 50 100
1.0

0.5

0.0

Ackley

0 100 200
Iteration

0.9

0.8

0.7

Lo
g 

Re
gr

et

SVM

0 200 400
Iteration

0.9

0.8

Cellular Network

0 100 200
Iteration

1

0

1

Chemical Reaction

Figure 14: A comparison of different kernels over categorical parameters.

Appendix L. Additional Results on Optimizing Acquisition Functions

In this section, we provide additional results on various approaches for optimizing acquisition
functions using the same evaluation procedure as in the main text. We use 50 replications.
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Figure 15: A comparison of methods for optimizing acquisition functions.

Appendix M. Stochastic vs Deterministic Optimization

In this section, we compare optimizing PR with stochastic and deterministic optimization
methods. For stochastic methods, we use stochastic gradient ascent (SGA) with various
initial learning rates between 10−1 and 10−3. The learning rate is multiplied by 0.1 every
30 steps following the approach in Huang et al. (2017). For SGA, the MC estimators
of PR and its gradient resample the base samples at each evaluation. For deterministic
optimization, base samples are kept fixed. SGA is run for 200 iterations and L-BFGS-B
is run for a maximum of 200 iterations. In Figure 16, we observe that SGA works well
on some problems with some learning rates, but SGA is sensitive to the choice of learning
rate. Furthermore, we observe that the best learning rate varies from problem to problem.
Deterministic optimization consistently performs better than stochastic optimization and
has lower variance across replications.
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Figure 16: A comparison of PR using stochastic and deterministic optimization methods.
The initial learning rate for stochastic gradient ascent is given in parentheses.

Appendix N. Related Work

Many methods for BO over discrete and mixed search spaces have been proposed. Previous
work has largely focused on improving BO by either (i) improving the surrogate models or
(ii) improving techniques for optimizing AFs.

Improving models: Historically, methods leveraging tree-based surrogate models,
e.g., SMAC (Hutter et al., 2011) and TPE (Bergstra et al., 2011), have been popular
for optimizing discrete or mixed search spaces. BOCS encodes categorical parameters as
binary variables and uses Bayesian linear regression with pairwise interactions (Baptista
and Poloczek, 2018). COMBO uses a diffusion kernel on the graph built from a graph
Cartesian product of discrete parameters (Oh et al., 2019). MerCBO similarly exploits
the combinatorial graph, but with Mercer features and Thompson sampling (Deshwal et al.,
2021b). HyBO extends the diffusion kernels to mixed continuous-discrete spaces (Deshwal
et al., 2021a). However, these methods scale poorly with respect to the number of data points
and parameters. Moreover, of the methods listed above, only HyBO supports continuous
parameters without discretization. HyBO enjoys a universal approximation property, but
relies on summing over all possible orders of interactions between base kernels for each
parameter which results in exponential complexity with respect to the number of parameters
and limits its applicability to low-dimensional problems. Gryffin (Häse et al., 2021) uses
kernel density estimation, but is limited to categorical search spaces. MiVaBO uses a linear
combination of basis functions (e.g. pseudo Boolean features (Boros and Hammer, 2002)
for discrete parameters) with interaction terms(Daxberger et al., 2020). MVRSM (Bliek
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et al., 2021) uses ReLU-based surrogates for computational efficiency, but is limited by the
expressiveness of these models.

Optimizing acquisition functions: As discussed previously, Garrido-Merchán and
Hernández-Lobato (2020) propose using continuous relaxation and discretize the inputs before
evaluating the AF. However, the resulting AF after discretization is piece-wise-flat along slices
of the discrete parameters and is difficult to optimize. CoCaBO (Ru et al., 2020) sample
discrete parameters using a multi-armed bandit and optimize the continuous parameters
conditioned on the sampled discrete parameters. However, CoCaBO’s performance degrades
as number of discrete configurations increases. Casmopolitan (Wan et al., 2021) uses
local trust regions combined with an interleaved AF optimization strategy that alternates
between local search steps on the discrete parameters and gradient ascent for the continuous
parameters. Furthermore, both CoCaBO and Casmopolitan do not inherently exploit
ordinal structure. Moreover, the computational issues of many existing approaches make it
difficult to apply them to multi-objective and constrained optimization.

Probabilistic reparameterization: PR has been considered for optimizing discrete
parameters in other domains such as reinforcement learning (Williams, 1992) and sparse
regression (Yin et al., 2020). However, PR has not been leveraged for BO (although a
different reparameterization is commonly used in MC AFs (Wilson et al., 2018)).

Alternative methods for propagating gradients: Alternative methods for prop-
agating gradients through discrete structures have been considered in the deep learning
community (among others). One approach is to use approximate discrete Concrete distribu-
tions (Maddison et al., 2017; Jang et al., 2017), which admit sample-path gradients. However,
samples from Concrete distributions are not discrete and significant approximation error can
result in pathologies similar to evaluating the AF using continuous relaxation. Moreover,
approximately discrete samples prohibit using surrogate models that require discrete inputs,
e.g., GPs with Hamming distance kernels (Ru et al., 2020). Another approach for gradient
propagation in the deep learning community is to use straight-through gradient estimators
(STE) (Bengio et al., 2013), where the gradient of the discretization function with respect
to its input is estimated using an identity function. This approach works well empirically,
these estimators are not well-grounded theoretically. Nevertheless, we discuss and evaluate
using STE for AF optimization in Appendix I.

Appendix O. Discussion

The performance and regret properties of BO depend critically on adequately maximizing
the AF. For problems with discrete features, exhaustively trying all possible combinations of
discrete values quickly becomes infeasible as the number of combinations grows. Alternatives
such as trying a subset of the possible combinations or resorting to continuous relaxations
often leads to a failure to effectively optimizing the AF which may result in sub-optimal BO
performance. As an alternative, we propose using PR which allows us to better optimize
the AF and we showed that PR shows strong performance on a large number of real-world
problems. Our approach is complementary to other approaches and can easily be combined
with other approaches such as trust region methods and specialized kernels for discrete
parameters. One limitation of PR is that it requires introduces computationally-demanding
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integration. However, given that the computation in PR is embarrassingly parallel, it
motivates for future research on optimizing AFs on distributed hardware.
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