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Abstract

Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward func-
tion from expert demonstrations. Many IRL algorithms require a known transition model
and sometimes even a known expert policy, or they at least require access to a generative
model. However, these assumptions are too strong for many real-world applications, where
the environment can be accessed only through sequential interaction. We propose a novel
IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which
actively explores an unknown environment and expert policy to quickly learn the expert’s
reward function and identify a good policy. AceIRL uses previous observations to construct
confidence intervals that capture plausible reward functions and find exploration policies
that focus on the most informative regions of the environment. AceIRL is the first approach
to active IRL with sample-complexity bounds that does not require a generative model of
the environment. AceIRL matches the sample complexity of active IRL with a generative
model in the worst case. Additionally, we establish a problem-dependent bound that relates
the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We
empirically evaluate AceIRL in simulations and find that it significantly outperforms more
naive exploration strategies.

Keywords: Inverse Reinforcement Learning, Active Learning, Reward-free Exploration

1. Introduction

Reinforcement Learning (RL) has achieved impressive results recently, from playing video
games [Mnih et al., 2015] to solving robotic control problems [Haarnoja et al., 2019]. How-
ever, in many applications, it is challenging to design a reward function that robustly de-
scribes the desired task [Amodei et al., 2016]. Instead of using an explicit reward function,
Inverse Reinforcement Learning (IRL) seeks to recover the reward by observing an expert,
e.g., an human who already knows how to perform a task [Ng et al., 2000]. However, most
existing IRL algorithms assume that the transition model, and in some cases, the expert’s
policy, are known. In many real-world applications, this is not given, and the agent needs
to estimate the transition dynamics and the expert policy from samples. Figure 1 shows an
illustrative example where the agent has to explore an environment and query the expert
policy in order to infer the expert’s reward function. IRL with sample-based estimation was
only recently analyzed formally by Metelli et al. [2021]. However, they assume a generative
model of the environment, i.e., the agent can query the transition dynamics for arbitrary
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Figure 1: An illustrative example of the Active IRL problem. The agent can choose between
four paths that lead to different objects. Observing the expert actions is not
enough to infer a reward function (e.g., from observing the expert recommending
to take the yellow path, the agent cannot infer that the human prefers to find the
carrot). Therefore, the agent has to explore the environment and learn about its
dynamics to infer a good reward function.

states and actions. In practice, this assumption is unrealistic, and the agent has to explore
the environment from a starting state or state distribution.

In this work, we consider IRL with unknown transition dynamics and expert policy
and focus on exploring the environment in order to recover the expert’s reward function
efficiently. We propose a novel algorithm, Active exploration for Inverse Reinforcement
Learning (AceIRL), which actively explores the environment and the expert policy to infer
a good reward function. To the best of our knowledge, we present the first paper providing
sample complexity guarantees for the active IRL problem without access to a generative
model. The proofs of all results presented in the main paper can be found in Appendix C,
we provide more discussion of related work in Appendix B, and in Appendix A we evaluate
AceIRL empirically in simulated environments.

2. Preliminaries

Let us first introduce necessary background and notation that we use throughout the paper.
Markov decision process (MDP). A finite-horizon (or episodic) MDP without re-

ward (MDP\R) is a tuple M := (S,A, P,H, s0), where S is the finite state space of size
S; A is the finite action space of size A; P : S × A → ∆S is the transition model; H is
the horizon and s0 is the initial state.1 We describe an agent’s behaviour with a (possible
stochastic) policy π ∈ S × [H]→ ∆A.

Reward function. A reward function r : S × A × [H]→ [0, Rmax] maps state-action-
time step triplets to a reward. Given an MDP\R M and a reward function r, we denote
the resulting MDP byM∪ r.

Value functions and optimality conditions. We define the Q-function Qπ,h
M∪r(s, a)

and value-function V π,h
M∪r(s) as: Q

π,h
M∪r(s, a) = rh(s, a)+

∑
s′,a′ πh+1(a

′|s′)P (s′|s, a)Qπ,h+1
M∪r (s′, a′),

and V π,h
M∪r(s) =

∑
a πh(a|s)Q

π,h
M∪r(s, a), respectively.

We define the advantage function Aπ,h
M∪r(s, a) as Aπ,h

M∪r(s, a) = Qπ,h
M∪r(s, a) − V π,h

M∪r(s).

A policy π is optimal if Aπ,h
M∪r(s, a) is ≤ 0 for each time step h ∈ [H], state s ∈ S, action

a ∈ A. We denote the set of optimal policies for the MDPM∪ r with Π∗
M∪r.

1. We can model any initial state distribution as a single initial state by modifying the transitions.
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3. Active Learning for Inverse Reinforcement Learning (Active IRL)

In this section, we first introduce the Active IRL problem . Then, we define the feasible
reward set for finite-horizon MDPs and characterize the error propagation on the reward
function and the value function , extending results by Metelli et al. [2021] to finite horizons.

Problem Definition. We want to explore to construct a dataset of demonstrations D
such that an arbitrary IRL algorithm can recover a good reward function from it. To be
agnostic to the choice of IRL algorithm, we consider the set of all feasible reward functions
for a specific expert policy. Formally, we consider IRL problems (M, πE) consisting of an
MDP\R and an expert policy πE , and we define the feasible reward set RM∪πE as the set
of all reward functions for which πE is optimal. Let us now define the goal of the active
IRL problem formally by providing an optimality criterion.

Definition 1 (Optimality Criterion) Let S be a sampling strategy. Let RB be the exact
feasible set and RB̂ be the feasible set recovered after observing n ≥ 0 samples collected from
M and πE. We say that S is (ϵ, δ, n)-correct if with probability at least 1− δ it holds that:

inf
r̂∈RB̂

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r̂ ∈ RB̂,

where π∗ is an optimal policy inM∪ r and π̂∗ is an optimal policy in M̂ ∪ r̂.

The first condition states that for each reward in the exact feasible set, the best reward
we could estimate in the recovered feasible set has a low error everywhere. This condition
is a type of “recall”: every possible true reward function needs to be captured by the recov-
ered feasible set. The second condition ensures that there is a possible true reward function
with a low error for every possible recovered reward function. This avoids an unnecessarily
large recovered feasible set. This condition is a type of “precision”: if we recover a reward
function, it has to be close to a possible true reward function.

Feasible Rewards in Finite-horizon MDPs Ng et al. [2000] characterize the feasible
reward set implicitly in the infinite horizon setting, whereas Metelli et al. [2021] characterize
it explicitly. Here, we provide similar results for a finite horizon.

Lemma 2 (Feasible Reward Set Implicit) A reward function r is feasible if and only if

for all s, a, h it holds that: Aπ,h
M∪r(s, a) = 0 if πE

h (a|s) ≥ 0 and Aπ,h
M∪r(s, a) ≤ 0 if πE

h (a|s) = 0.
Moreover, if the second inequality is strict, πE is uniquely optimal, i.e., Π∗

M∪r = {πE}.

Lemma 3 (Feasible Reward Set Explicit) A reward function r is feasible if and only
if there exists an {Ah ∈ RS×A

≥0 }h∈[H] and {Vh ∈ RS}h∈[H] such that for all s, a, h it holds
that:

rh(s, a) = −Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

Here, the first term ensures there is an advantage function for πE and it is 0 for
actions the expert takes and Ah(s, a) for actions the expert does not take. The second
term corresponds to reward-shaping by the value function.
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Algorithm 1 AceIRL algorithm for IRL in an unknown environment.

1: Input: significance δ ∈ (0, 1), accuracy ϵ, IRL algorithm A , number of episodes NE

2: Initialize k ← 0, ϵ0 ← H/10
3: while ϵk > ϵ/4 do
4: Solve (convex) optimization problem (ACE) to obtain πk
5: Explore with policy πk for NE episodes, observing transitions and expert actions
6: Increment k ← k + 1 and update P̂k, π̂k, C

h
k , and r̂k ← A (RB̂)

7: Update accuracy ϵk ← maxa Ê
0
k(s0, a)

8: end while
9: return Estimated reward function r̂k

Error Propagation Next, we study the error propagation of estimating the transition
model P with P̂ and the expert policy πE with π̂E . In particular, we bound the estimation
error on the reward as a function of the estimation errors of P̂ and π̂E , extending a result
by Metelli et al. [2021] to the finite horizon setting.

Theorem 4 (Error Propagation) Let (M, πE) and (M̂, π̂E) be two IRL problems. Then,
for any r ∈ R(M,πE) there exists r̂ ∈ R̂

(M̂,π̂E)
such that:

|rh(s, a)− r̂h(s, a)| ≤ Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|+
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

and we can bound Vh ≤ (H − h)Rmax and Ah ≤ (H − h)Rmax.

4. Active Exploration for Inverse Reinforcement Learning

Let us now turn to our original problem: recovering the expert’s reward function in an
unknown environment without a generative model. This problem is harder since we need to
create an exploration strategy to acquire the desired information about the environment. To
address this problem, we propose Active exploration for Inverse Reinforcement Learning
(AceIRL). First, we introduce a simplified version of the algorithm, which comes with a
problem independent sample complexity result (Section 4.1). Next, we introduce the full
algorithm, which considers the expected reduction of uncertainty in the next iteration to
improve exploration and maintains a confidence set of plausibly optimal policies to focus
on the most relevant regions (Section 4.2). The full algorithm provides a tighter, problem-
dependent sample complexity bound (Section 4.3).

4.1 Uncertainty-based Exploration for IRL

The first idea of AceIRL is similar to reward-free UCRL [Kaufmann et al., 2021]. Our goal
is to fulfill the PAC requirement in Definition 1. Hence, we start from an upper bound on
the estimation error between the performance of the optimal policy π̂∗ for a reward r̂ ∈ RB̂
in the recovered feasible set and the optimal policy π∗ for a reward function r ∈ RB in
the true MDP M. We will then use this upper bound to drive the exploration. For each

timestep h and iteration k, we define the error: êhk(s, a;π
∗, π̂∗) =

∣∣∣Qπ∗,h
M∪r(s, a)−Q

π̂∗,h
M∪r(s, a)

∣∣∣.
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We can define an upper bound on these errors recursively with CH
k (s, a) = 0 and

Eh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′∈A

Eh+1
k (s′, a′)

)
. (EB1)

It is straightforward to show that êhk(s, a;π
∗, π̂∗) ≤ Eh

k (s, a) for any two policies π∗, π̂∗. Us-
ing this error bound, we can introduce a simplified version of AceIRL that explores greedily
with respect to Eh

k (s, a). We call this algorithm “AceIRL Greedy”. Note that this is equiv-
alent to solving the RL problem defined by M∪ Ch

k ; hence, we can use any RL solver to
find the exploration policy in practice. We can show that if we stop if 4maxaE

0
k(s0, a) ≤ ϵ,

the solution fulfills the PAC requirement in Definition 1. Furthermore, we show in Ap-
pendix C.4 that AceIRL Greedy achieves a sample complexity on order Õ

(
H5R2

maxSA/ϵ
2
)
,

which matches the sample complexity of uniform sampling with a generative model. This
result implies that we do not need a generative model to achieve a good sample complexity
for IRL.

4.2 Problem Dependent Exploration

AceIRL Greedy is limited in two ways: (i) it explores states that have high uncertainty
so far, whereas our goal is to reduce uncertainty in the next iteration, and (ii) it explores
to reduce the uncertainty about all policies, whereas our goal is to reduce the uncertainty
primarily about plausibly optimal policies. To address these limitations, we propose two
modifications that yield the full AceIRL algorithm.

Reducing future uncertainty. The greedy policy w.r.t. Eh
k explores states in

which the estimation error on the Q-functions is large. But this is not exactly what
reduces our uncertainty the most. Ideally, we would explore with a policy that mini-
mizes Eh

k+1. However, we cannot compute this quantity exactly. Instead, we can ap-
proximate it using our current estimate of the transition model. Concretely, if we have
an exploration policy π, we can estimate the reward uncertainty at the next iteration as

Ĉh
k+1(s, a) = (H−h)Rmaxmin

(
1, 2

√
2ℓhk(s,a)

nh
k(s,a)+n̂h

π(s,a)

)
, where n̂h

π(s, a) = NE ·η0,hM,π(s, a|s0) is

the expected number of times π visits (s, a) at time h and NE is the number of episodes we
will explore with π. We can use this estimate to find a policy that minimizes our estimate
of Eh+1

k . While our original approach was akin to “uncertainty sampling”, we now have a
better way to measure the “informativeness” of choosing an exploration policy.

Focusing on plausibly optimal policies. By exploring greedily w.r.t. Eh
k , we reduce

the estimation error of all policies. However, we are primarily interested in estimating the
distance between policies π∗ ∈ Π∗

M∪r and π̂∗ ∈ Π∗
M∪r̂ with r ∈ RB and r̂ ∈ RB̂. Of course,

we do not know these sets. Instead, assume we can construct a set of plausibly optimal
policies Π̂k that contains all π∗ and π̂∗

k with high probability. Then, we can redefine our

upper bounds recursively as ÊH
k (s, a) = 0 and:

Êh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)
, (EB2)

In contrast to (EB1), we maximize over policies in Π̂k rather than all actions. Acting
greedily with respect to Êh

k (s, a) is equivalent to finding the optimal policy πk ∈ Π̂k for
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the RL problem defined byM∪ Ch
k . To construct the set of plausibly optimal policies, we

use an arbitrary IRL algorithm A . We only assume that A will return a reward function
r̂k ∈ RB̂. Then, we can construct a set of plausibly optimal policies as Π̂k = {π|V ∗,

M̂∪r̂k
(s0)−

V π,

M̂∪r̂k
(s0) ≤ 10ϵk}. We show in Appendix C.5 that Π̂k contains both π∗ and π̂∗

k with high

probability. We can define a stopping condition analogously to before: 4maxa Ê
0
k(s0, a) ≤ ϵ.

Again, we can prove that if the algorithms stops, then RB̂ respects Definition 1.

Implementing AceIRL. To implement the full algorithm, we need to solve:

πk ∈ argmin
π

max
π̂∈Π̂k−1

Ê0
k+1(s0, π̂(s0)) (ACE)

The policy solving this problem minimizes the uncertainty at the next iteration about plau-
sibly optimal policies. This combines both modifications we just discussed. This problem
might seem difficult to solve at first, but, perhaps surprisingly, it can be formulated as a
convex optimization problem solvable with standard techniques (cf. Appendix C.6).

4.3 Sample Complexity of AceIRL

In this section, we present our main result about the sample complexity of AceIRL. The
result is problem-dependent and depends on the advantage function A∗,h

M∪r(s, a), which acts
similarly to a suboptimality gap: the closer the value of the second best action is to the best
action, the harder it is to identify the best action and infer the correct reward function.

Theorem 5 [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ, n)-correct solution with

n ≤ Õ

(
min

[
H5R2

maxSA

ϵ2
,

H4R2
maxSAϵ

2
τ−1

mins,a,h(A
∗,h
M∪r(s, a))

2ϵ2

])

where ϵτ−1 depends on the choice of NE, the number of episodes of exploration in each itera-
tion. A∗,h

M∪r(s, a) is the advantage function of r ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)),

the reward function from the feasible set RB closest to the estimated reward function r̂k.

This result is the minimum of two terms. The first term is problem independent and it
is achieved both by AceIRL Greedy and the full AceIRL. Using (ACE) can yield a better
sample complexity, represented by the second term in the minimum. This bound depends on
two main components: the ratio ϵτ−1/ϵ and the advantage function A∗,h

M∪r(s, a). The ratio
depends on the choice of NE , the number of exploration episodes per iteration.Appendix C.5
provides the full proof of this theorem.

5. Conclusion

We considered active inverse reinforcement learning (IRL) with unknown transition dy-
namics and expert policy and introduced AceIRL, an efficient exploration strategy to learn
about both the dynamic and the expert policy. We make a crucial step towards IRL algo-
rithms with theoretical guarantees, but there remain many questions for future work, such
as extending the approach to continuous environments using function approximation.
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Appendix A. Simulation Experiments

We perform a series of simulation experiments to evaluate AceIRL. We simulate a (deter-
ministic) expert policy using an underlying true reward function, and compare it to the
recovered reward functions. Our main evaluation metric is a normalized regret :(

V π∗,0
M∪r(s0)− V π̂∗,0

M∪r(s0)
)
/
(
V π∗,0
M∪r(s0)− V π̄∗,0

M∪r(s0)
)
,

where π∗ is the optimal policy forM∪ r, π̂∗ is the optimal policy for M̂ ∪ r̂, and π̄∗ is the
worst possible policy for r, i.e., the optimal policy forM∪ (−r).

We introduce the Four Paths environment shown in Figure 1, which consists of four
chains of states that have different randomly sampled transition probabilities. One path
has a goal with reward 1; all other rewards are 0. We also evaluate on Random MDPs
with uniformly sampled transition dynamics and reward functions, the Double Chain envi-
ronment proposed by Kaufmann et al. [2021], and the Chain and Gridworld environments
proposed by Metelli et al. [2021]. Appendix D.1 provides details on the transition dynamics
and rewards of all environments.
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Uniform sampling
(gener. model)

TRAVEL (gener. model)
[Metelli et al., 2021]

Random
Exploration

AceIRL
Greedy

AceIRL
(Full)

Four Paths (Figure 1) 1900± 71 17840± 1886
– NE = 50 1560± 76 24180± 1747 10780± 1369
– NE = 100 2000± 0 32760± 2172 14080± 1603
– NE = 200 4000± 0 52000± 4057 16160± 2033

Double Chain
[Kaufmann et al., 2021]

1980± 66 23640± 2195

– NE = 50 1120± 46 16240± 842 11580± 870
– NE = 100 2000± 0 22200± 1329 15440± 1031
– NE = 200 4000± 0 37200± 1664 20400± 1629

Metelli et al. [2021]:
Random MDPs (NE = 1) 22± 1 27± 1 22± 1 23± 1 21± 1
Chain (NE = 1) 78± 2 76± 4 161± 8 153± 8 142± 9
Gridworld (NE = 1) 43± 2 35± 2 45± 2 46± 3 48± 2

Table A.1: Sample complexity of AceIRL compared to random exploration and methods
that use a generative model. We show the number of samples necessary to find
a policy with normalized regret less than 0.4. We report means and standard
errors computed over 50 random seeds each. For each environment, we highlight
in bold the method that achieves the best performance without access to a
generative model. If multiple methods are within one standard error distance,
we highlight all of them. Overall, AceIRL is the most sample efficient method
without a generative model if NE is chosen small enough. In Appendix D.3, we
show learning curves for all individual experiments.
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Figure A.1: Normalized regret (lower is
better) of the policy optimiz-
ing for the inferred reward
in the estimated MDP as a
function of the number of
samples. The plots show the
mean and 95% confidence in-
tervals computed using 50
random seeds. We use NE =
50.

We compare AceIRL and AceIRL Greedy
to a uniformly random exploration policy, as
a naive exploration strategy. Further, we con-
sider uniform sampling with a generative model
as well as TRAVEL [Metelli et al., 2021], which
can be more sample efficient because they do
not need to explore the environment. Note that
TRAVEL is designed to learn a reward to be
transferred to a known target environment. In-
stead, we use a modified version that uses the
estimated MDP as a target. Appendix D.2 pro-
vides more details on our implementations, and
we provide source code in the supplemental ma-
terial.

Table A.1 shows the sample efficiency of all
algorithms in all environments, measured as the
number of samples needed to achieve a regret
threshold of 0.4 (different thresholds yield simi-
lar conclusions; cf. Appendix D). AceIRL is the
most sample efficient exploration strategy with-
out access to a generative model; but the relative
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differences between the methods depend on the environment. In some cases, AceIRL even
performs comparably to methods using a generative model, as the theory predicts.

In the Four Paths and Double Chain environments, we also vary the NE parameter.
AceIRL performs better for small values at the computational cost of updating the explo-
ration policy more often. If NE is too large, using AceIRL can be as bad as a uniformly
random exploration policy. Increasing NE hurts the performance of AceIRL Greedy more
severely, which does not consider NE explicitly. Figure A.1 shows the normalized regret
as a function of the number of samples in Four Paths and Double Chain. In both cases
AceIRL performs best. However, AceIRL Greedy is worse than random exploration in the
Four Paths environment. Hence, we find that the problem dependent exploration strategy
of the full algorithm significantly improves the sample efficiency.

Appendix B. Related Work

Most IRL algorithms assume that the underlying transition model is known [Ratliff et al.,
2006, Ziebart et al., 2008, Ramachandran and Amir, 2007, Levine et al., 2011]. However,
the transition model usually needs to be estimated from samples, which induces an error in
the recovered reward function that most papers do not study. Metelli et al. [2021] analyze
this error and the sample complexity of IRL in a tabular setting with a generative model.
They propose an algorithm focused on transferring the learned reward function to a fully
known target environment. Dexter et al. [2021] provides a similar analysis in continuous
state spaces and discrete action spaces, but they still require a generative model of the
environment. In contrast, we do not assume access to a generative model and thus need to
tackle the exploration problem in IRL.

Some prior work studies active learning algorithms for IRL in a Bayesian framework but
without theoretical guarantees. Lopes et al. [2009] propose an active learning algorithm for
IRL that estimates a posterior distribution over reward functions from demonstrations,
requiring a prior distribution and full knowledge of the environment dynamics. Relatedly,
Cohn et al. [2011] consider a Bayesian IRL setting with a semi-autonomous agent that asks
an expert for advice if it is uncertain about the reward. Brown et al. [2018] empirically
study active IRL in several safety-critical environments, selecting queries using value at risk.
Kulick et al. [2013] consider active learning for a robotic manipulation task, asking a human
expert for advice in situations with the highest predictive uncertainty. Similarly, Losey and
O’Malley [2018] propose a method to learn uncertainty estimates from human corrections
in a robotics context. All of these papers assume a Bayesian framework and do not provide
theoretical guarantees. In contrast, our setup does not require a prior over reward functions,
and we provide theoretical sample complexity guarantees for our algorithm.

Appendix C. Proofs of Theoretical Results

In Table C.2, we provide a reference of the notation and symbols used in our paper.

C.1 Simulation Lemmas

In this section, we establish several simulation lemmas that we will use throughout our
analysis. Some of the results were already derived in prior work for the infinite horizon

11



Table C.2: Overview of our notation
Symbol Name Signature

M Markov decision process without reward (MDP\R) (S,A, P,H, s0)
S State space
A Action space
P Transition model S ×A → ∆S
H Horizon H ∈ N+

s0 Initial state s0 ∈ S
π Policy S × [H]→ ∆A
r Reward function S ×A× [H]→ [0, Rmax], Rmax ∈ R+

M∪ r Markov decision process (MDP) (S,A, P,H, s0, r)

Qπ,h
M∪r Q-function (of π inM∪ r) S ×A× [H]→ R

V π,h
M∪r Value function (of π inM∪ r) S × [H]→ R

Aπ,h
M∪r Advantage function (of π inM∪ r) S ×A× [H]→ R

ηh,·M,π(·|s0)
State-visitation frequency
(conditioned on state)

[H]→ ∆S

ηh,·M,π(·|s0, a0)
State-visitation frequency
(conditioned on state-action)

[H]→ ∆S

ηh,·M,π(·, ·|s0)
State-action-visitation frequency
(conditioned on state)

[H]× S → ∆A

ηh,·M,π(·, ·|s0, a0)
State-action-visitation frequency
(conditioned on state)

[H]× S → ∆A

RM∪r Feasible set ofM∪ r
RB = RM∪πE Exact feasible set
RB̂ = RM̂∪π̂E Recovered feasible set

ϵ Target accuracy ϵ ∈ R+

δ Significancy δ ∈ (0, 1)
NE Number of exploration episodes NE ∈ N+

setting, e.g., by Zanette et al. [2019] and Metelli et al. [2021]. For completeness, we provide
proofs for all results in the finite-horizon setting.

Definition C.1 (Occupancy measures) We define ηh,h
′

M,π(s|s0) as the probability of being
in state s at timestep h′ ≥ h following a policy π in MDP\R M starting in state s0 at
timestep h. We can compute it recursively as:

ηh,hM,π(s
′|s) := 1{s′=s}

ηh,h
′+1

M,π (s′|s) :=
∑
s′′,ã

P (s′|s′′, ã)πh′(ã|s′′)ηh,h
′

M,π(s
′′|s)

We define the same probability for state-action pairs analogously:

ηh,h
′

M,π(s
′, a′|s, a) := 1{s′=s,a′=a}

ηh,h
′+1

M,π (s′, a′|s, a) :=
∑
s̃,ã

πh′(a′|s′)P (s′|s̃, ã)ηh,h
′

M,π(s̃, ã|s, a)

as well as

ηh,hM,π(s
′, a′|s) := πh(a

′|s′)1{s′=s}

ηh,h
′+1

M,π (s′, a′|s) :=
∑
s̃,ã

πh′(a′|s′)P (s′|s̃, ã)ηh,h
′

M,π(s̃, ã|s)

12



Because the environment is Markovian, it also holds for h′ > h that

ηh,h
′

M,π(s
′|s) =

∑
s̃,a

ηh+1,h′

M,π (s′|s̃)P (s̃|s, a)πh(a|s)

and equivalently for state-action pairs.

Lemma C.2 The value function and Q-function of a policy π in an MDPM∪r at timestep
h can be expressed as:

V π,h
M∪r(s) =

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π(s
′, a′|s)rh′(s′, a′)

Qπ,h
M∪r(s, a) =

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π(s
′, a′|s, a)rh′(s′, a′)

Proof We show the result for the value function; the derivation for the Q-function is
analogous.

Note that for h = H the statement holds because V π,H
M∪r(s) = 0. The general result

follows by induction. Assume that for h+ 1 the statement holds. Then:

V π,h
M∪r(s)

(a)
=
∑
a

πh(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V π,h+1
M∪r (s′)

)

(b)
=
∑
a

πh(a|s)

rh(s, a) +
∑
s′

P (s′|s, a)

 H∑
h′=h+1

∑
s′′,a′′

ηh+1,h′

M,π (s′′, a′′|s′)rh′(s′′, a′′)


(c)
=
∑
a

πh(a|s)rh(s, a) +
H∑

h′=h+1

∑
s′,a′

ηh,h
′

M,π(s
′|s)πh′(a′|s′)rh′(s′, a′)

(d)
=

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π(s
′|s)πh′(a′|s′)rh′(s′, a′)

where (a) uses the Bellman equation, (b) the induction step, (c) uses Theorem C.1 and
relabels s′′ → s′, a′′ → a′, and (d) uses Theorem C.1 again and relabels a→ a′.

Lemma C.3 (Simulation lemma 1 by Metelli et al. [2021]) Let M be an MDP\R,
and r, r̂ two reward functions with corresponding optimal policies π∗, π̂∗. Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M,π∗(s
′, a′|s, a)

(
rh′(s′, a′)− r̂h′(s′, a′)

)
V π∗,h
M∪r(s)− V π̂∗,h

M∪r̂(s) ≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M,π∗(s
′, a′|s)

(
rh′(s′, a′)− r̂h′(s′, a′)

)
13



Proof Note that Qπ̂∗,h
M∪r̂(s, a) ≥ Qπ∗,h

M∪r̂(s, a) for all s, a because π̂∗ is optimal for r̂. Hence

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a) ≤ Qπ∗,h
M∪r(s, a)−Qπ∗,h

M∪r̂(s, a)

(a)
=

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π∗(s
′, a′|s, a)(rh′(s′, a′)− r̂h′(s′, a′))

where (a) uses Theorem C.2. After observing V π̂∗,h
M∪r̂(s) ≥ V π∗,h

M∪r̂(s), the second result follows
analogously.

Lemma C.4 LetM be an MDP\R, r, r̂ two reward functions with optimal policies π∗, π̂∗.
Then,

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a) ≤
H∑

h′=h

∑
s′,a′

(
ηh,h

′

M,π∗(s
′, a′|s, a)− ηh,h

′

M,π̂∗(s
′, a′|s, a)

) (
rh′(s′, a′)− r̂h′(s′, a′)

)
Proof

Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a) = (Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r̂(s, a)) + (Qπ̂∗,h
M∪r̂(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M,π∗(s
′, a′|s, a)

(
rh′(s′, a′)− r̂h′(s′, a′)

)
+ (Qπ̂∗,h

M∪r̂(s, a)−Qπ̂∗,h
M∪r(s, a))

(b)
=

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π∗(s
′, a′|s, a)

(
rh′(s′, a′)− r̂h′(s′, a′)

)
+

H∑
h′=h

∑
s′,a′

ηh,h
′

M,π̂∗(s
′, a′|s, a)

(
r̂h′(s′, a′)− rh′(s′, a′)

)
=

H∑
h′=h

∑
s′,a′

(
ηh,h

′

M,π∗(s
′, a′|s, a)− ηh,h

′

M,π̂∗(s
′, a′|s, a)

) (
rh′(s′, a′)− r̂h′(s′, a′)

)
where (a) uses Theorem C.3 and (b) uses Theorem C.2.

Lemma C.5 Let M1,M2 be two MDP\R with transition dynamics P1, P2 respectively, r
a reward function and π a policy. Then, for any state s and timestep h:

V π,h
M2∪r(s)− V π,h

M1∪r(s) =
H∑

h′=h

∑
s′,a′,s′′

ηh,h
′

M2,π
(s′; s)πh′(a′|s′)(P2(s

′′|s′, a′)− P1(s
′′|s′, a′))V π,h′+1

M1∪r (s′′)

V π,h
M1∪r(s)− V π,h

M2∪r(s) =

H∑
h′=h

∑
s′,a′,s′′

ηh,h
′

M2,π
(s′; s)πh′(a′|s′)(P1(s

′′|s′, a′)− P2(s
′′|s′, a′))V π,h′+1

M1∪r (s′′)

Moreover,

∣∣∣V π,h
M2∪r(s)− V π,h

M1∪r(s)
∣∣∣ ≤ H∑

h′=h

∑
s′,a′,s′′

ηh,h
′

M2,π
(s′; s)πh′(a′|s′)

∣∣∣P2(s
′′|s′, a′)− P1(s

′′|s′, a′)
∣∣∣V π,h′+1

M1∪r (s′′)
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Proof We start by writing explicitly the value-functions:

V π,h
M2∪r(s)− V π,h

M1∪r(s) =
∑
a,s′

πh(a|s)
(
P2(s

′|s, a)V π,h+1
M2∪r (s

′)− P1(s
′|s, a)V π,h+1

M1∪r (s
′)± P2(s

′|s, a)V π,h+1
M1∪r (s

′)
)

=
∑
a,s′

πh(a|s)
(
(P2(s

′|s, a)− P1(s
′|s, a))V π,h+1

M1∪r (s
′) + P2(s

′|s, a)(V π,h+1
M2∪r (s

′)− V π,h+1
M1∪r (s

′))
)

Unrolling the recursion gives the first result; the second result follows similarly:
V π,h
M1∪r(s)− V π,h

M2∪r(s) =
∑
a,s′

πh(a|s)
(
P1(s

′|s, a)V π,h+1
M1∪r (s

′)− P2(s
′|s, a)V π,h+1

M2∪r (s
′)± P2(s

′|s, a)V π,h+1
M1∪r (s

′)
)

=
∑
a,s′

πh(a|s)
(
(P1(s

′|s, a)− P2(s
′|s, a))V π,h+1

M1∪r (s
′) + P2(s

′|s, a)(V π,h+1
M1∪r (s

′)− V π,h+1
M2∪r (s

′))
)

Together, the first two results imply the third one because all terms in the sums are
non-negative.

Lemma C.6 Let M1,M2 be two MDP\R with transition dynamics P1, P2 respectively, r
a reward function, and π∗

1, π
∗
2 optimal policy inM1 ∪ r andM2 ∪ r, respectively. Then, for

any state s and timestep h:

V ∗,h
M1∪r(s)− V ∗,h

M2∪r(s) ≤
∑
h′=h

∑
s′,a′,s′′

ηh,h
′

M2,π∗
1
(s′; s)π∗

1,h(a
′|s′)(P1(s

′′|s′, a′)− P2(s
′′|s′, a′))V ∗,h

M1∪r(s
′′)

V ∗,h
M2∪r(s)− V ∗,h

M1∪r(s) ≤
∑
h′=h

∑
s′,a′,s′′

ηh,h
′

M2,π∗
2
(s′; s)π∗

2,h(a
′|s′)(P2(s

′′|s′, a′)− P1(s
′′|s′, a′))V ∗,h

M2∪r(s
′′)

Proof

V ∗,h
M1∪r(s)− V ∗,h

M2∪r(s) =
∑
a,s′

(
π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)− π∗
2,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)

± π∗
1,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)± π∗
1,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)
)

=
∑
a,s′

(
π∗
1,h(a|s)P2(s

′|s, a)(V π∗
1 ,h+1

M1∪r (s′)− V
π∗
2 ,h+1

M2∪r (s′))

+ π∗
1,h(a|s)(P1(s

′|s, a)− P2(s
′|s, a))V π∗

1 ,h+1
M1∪r (s′)

+ (π∗
1,h(a|s)− π∗

2,h(a|s))P2(s
′|s, a)V π∗

2 ,h+1
M2∪r (s′)

)
≤
∑
a,s′

(
π∗
1,h(a|s)P2(s

′|s, a)(V π∗
1 ,h+1

M1∪r (s′)− V
π∗
2 ,h+1

M2∪r (s′))

+ π∗
1,h(a|s)(P1(s

′|s, a)− P2(s
′|s, a))V π∗

1 ,h+1
M1∪r (s′)

)
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where the last inequality uses that π∗ is optimal forM2 ∪ r. Unrolling the recursion gives
the first result. A similar argument yields the second results:

V ∗,h
M2∪r(s)− V ∗,h

M1∪r(s) =
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)V π∗
2 ,h+1

M2∪r (s′)− π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)

± π∗
2,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)
)

=
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)(V π∗
2 ,h+1

M2∪r (s′)− V
π∗
1 ,h+1

M1∪r (s′))

+ π∗
2,h(a|s)P2(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)− π∗
1,h(a|s)P1(s

′|s, a)V π∗
1 ,h+1

M1∪r (s′)

≤
∑
a,s′

(
π∗
2,h(a|s)P2(s

′|s, a)(V π∗
2 ,h+1

M2∪r (s′)− V
π∗
1 ,h+1

M1∪r (s′))

+ π∗
2,h(a|s)(P2(s

′|s, a)− P1(s
′|s, a))V π∗

1 ,h+1
M1∪r (s′)

C.2 Feasible Reward Set

In this section, we characterize the feasible reward set first implicitly, then explicitly, and
prove a result about error propagation. Metelli et al. [2021] provide a similar analysis in
the infinite horizon setting.

Lemma C.7 (Feasible Reward Set Implicit) A reward function r is feasible if and

only if for all s, a, h it holds that: Aπ,h
M∪r(s, a) = 0 if πE

h (a|s) ≥ 0 and Aπ,h
M∪r(s, a) ≤ 0

if πE
h (a|s) = 0. Moreover, if the second inequality is strict, πE is uniquely optimal, i.e.,

Π∗
M∪r = {πE}.

Proof The result follows directly from the definition of the feasible reward set.

Lemma C.8 A Q-function satisfies the conditions of Theorem 2 if and only if there exists
an {Ah ∈ RS×A

≥0 }h∈H and {Vh ∈ RS} such that for every h, s, a ∈ [H]× S ×A:

QπE ,h
M∪r(s, a) = −Ah(s, a)1{πE

h (a|s)=0} + Vh(s)

Proof We first show that if QπE ,h
M∪r(s, a) has this form, the conditions of Theorem 2 are

satisfied, and then the converse. Assume QπE ,h
M∪r(s, a) = −Ah(s, a)1{πE

h (a|s)=0} + Vh(s).
Then,

V πE ,h
M∪r (s) =

∑
a

πE
h (a|s)Q

πE ,h
M∪r(s, a) = Vh(s).

If πE
h (a|s) > 0, then QπE ,h

M∪r(s, a) = V πE ,h
M∪r (s), which is the first condition of Theorem 2. If

πE
h (a|s) = 0, QπE ,h

M∪r(s, a) = V πE ,h
M∪r (s) − Ah(s, a) ≤ V πE ,h

M∪r (s), which is the second condition
of Theorem 2.
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For the converse, assume that the conditions of Theorem 2 hold, and let Vh(s) = V πE ,h
M∪r (s)

and Ah(s, a) = V πE ,h
M∪r (s)−QπE ,h

M∪r(s, a).

Lemma C.9 (Feasible Reward Set Explicit) A reward function r is feasible if and
only if there exists an {Ah ∈ RS×A

≥0 }h∈[H] and {Vh ∈ RS}h∈[H] such that for all s, a, h
it holds that:

rh(s, a) = −Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

Proof Since QπE ,h
M∪r(s, a) = rh(s, a) +

∑
s′ P (s′|s, a)Vh+1(s

′), using Theorem C.8, we have:

rh(s, a) = QπE ,h
M∪r(s, a)−

∑
s′

P (s′|s, a)Vh+1(s
′)

= −Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

Theorem 4 (Error Propagation) Let (M, πE) and (M̂, π̂E) be two IRL problems. Then,
for any r ∈ R(M,πE) there exists r̂ ∈ R̂

(M̂,π̂E)
such that:

|rh(s, a)− r̂h(s, a)| ≤ Ah(s, a)|πE
h (a|s)− π̂E

h (a|s)|+
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

and we can bound Vh ≤ (H − h)Rmax and Ah ≤ (H − h)Rmax.

Proof We start by rewriting r and r̂ using Theorem 3:

rh(s, a) = −Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

r̂h(s, a) = −Âh(s, a)1{π̂E
h (a|s)=0} + V̂h(s) +

∑
s′

P̂ (s′|s, a)V̂h+1(s
′)

We can choose (w.l.o.g.) Vh = V̂h and Âh = 1{πE
h (a|s)=0}Ah:

rh(s, a)− r̂h(s, a) =−Ah(s, a)1{πE
h (a|s)=0} + Vh(s) +

∑
s′

P (s′|s, a)Vh+1(s
′)

+Ah(s, a)1{π̂E
h (a|s)=0}1{πE

h (a|s)=0} − Vh(s)−
∑
s′

P̂ (s′|s, a)Vh+1(s
′)

=Ah(s, a)1{πE
h (a|s)=0}(1{π̂E

h (a|s)=0} − 1) +
∑
s′

Vh+1(s
′)(P (s′|s, a)− P̂ (s′|s, a))

=−Ah(s, a)1{πE
h (a|s)=0}1{π̂h(a|s)≥0} +

∑
s′

Vh+1(s
′)(P (s′|s, a)− P̂ (s′|s, a))

The result follows by taking the absolute value and applying the triangle inequality.
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Algorithm 2 Uniform sampling IRL with a generative model.

1: Input: significance δ ∈ (0, 1), target accuracy ϵ, maximum number of samples per iter.
nmax

2: Initialize k ← 0, ϵ0 ← H
3: while ϵk > ϵ/2 do
4: Uniformly sample ⌈nmax

SAH ⌉ samples from all (s, a, h) ∈ S ×A× [H]
5: For all samples, observe sample from transition dynamics and expert policy
6: k ← k + 1
7: Update P̂k, π̂k, and Ch

k

8: Update accuracy ϵk ← Hmaxs,a,hC
h
k (s, a)

9: end while

C.3 Uniform Sampling IRL with a Generative Model

In this section, we derive sample complexity results for uniform sampling with a generative
model (Algorithm 2). Metelli et al. [2021] proved an analogous result for the infinite horizon
setting focusing on transferable rewards. In contrast, our focus is on the finite horizon
setting. Moreover, Metelli et al. [2021] considers to learn a reward that is transferable to a
known target environment. In our setting, instead, we suppose to use the recovered reward
function in the unknown source environment.

Definition C.10 (Optimality Criterion) Let S be a sampling strategy. Let RB be the
exact feasible set and RB̂ be the feasible set recovered after observing n ≥ 0 samples collected
fromM and πE. We say that S is (ϵ, δ, n)-correct if with probability at least 1− δ it holds
that:

inf
r̂∈RB̂

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r ∈ RB,

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

∣∣∣Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)
∣∣∣ ≤ ϵ for each r̂ ∈ RB̂,

where π∗ is an optimal policy inM∪ r and π̂∗ is an optimal policy in M̂ ∪ r̂.

Lemma C.11 (Good Event) Let πE be a (possibly stochastic) expert policy. We estimate
the expert policy with π̂E and the transition model P with an estimate P̂k from k episodic
interactions. Let nh

k(s, a) and nh
k(s) be the number of times state action pairs and states

have been observed at time h within the first k episodes, and nh+
k (s, a) = max{1, nh

k(s, a)}.
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Then,

1{πE
h (a|s)=0}1{π̂E

h (a|s)≥0}Ah(s, a) ≤ (H − h)Rmax

√
ℓhk(s, a)

nh
k
+
(s, a)

1{π̂E
h (a|s)=0}1{πE

h (a|s)≥0}Âh(s, a) ≤ (H − h)Rmax

√
ℓhk(s, a)

nh
k
+
(s, a)∑

s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| ≤ (H − h)Rmax

√
2ℓhk(s, a)

nh
k
+
(s, a)∑

s′

|(P (s′|s, a)− P̂k(s
′|s, a))V̂ π,h

r (s′)| ≤ (H − h)Rmax

√
2ℓhk(s, a)

nh
k
+
(s, a)

where ℓhk(s, a) = log
(
24SAH(nh

k
+
(s, a))2/δ

)
, holds simultaneously for all (s, a, h) ∈ S ×

A × [H] and k ≥ 1 with probability at least 1 − δ. We call the event that these equations
hold the good event E and write P (E ) ≥ 1− δ.

Proof We show that each statement individually does not hold with probability less than
δ/4, which implies the result via a union bound. Let us denote β1(s, a, h) := (H −

h)Rmax

√
2ℓhk(s,a)

nh
k
+
(s,a)

. First, consider the last two inequalities. The probability that either

of them does not hold is:

Pr

(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] :

∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(a)

≤Pr

(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] :

∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(b)

≤
∑
m≥0

∑
s,a

H∑
h=0

Pr

(∑
s′

|(P (s′|s, a)− P̂k(s
′|s, a))V π,h

r (s′)| > β1(s, a, h)

)
(c)

≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp

(
− 2β1(s, a, h)

2m2

4m(H − h)2R2
max

)
≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp (−ℓk(s, a))

=
∑
m≥0

∑
s,a

H∑
h=0

2δ

24SAH(m+)2
=

δ

12

1 +
∑
m≥0

1

m2

 =
δ

12

(
1 +

π2

6

)
≤ δ

4

Step (a) assumes that we visit a state action pair m times, and focuses on these m times
the transition model for the given state-action pair is updated. Step (b) uses a union bound
over m and (s, a). Step (c) applies Hoeffding’s inequality using that we estimate P with an

average of samples, and V π,h
r ≤ (H − h)Rmax.

We show the first two inequalities similarly, with β2(s, a, h) := (H − h)Rmax

√
ℓhk(s,a)

nh
k
+
(s,a)
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Pr
(
∃k ≥ 1, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(a)

≤Pr
(
∃m ≥ 0, (s, a, h) ∈ S ×A× [H] : |(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(b)

≤
∑
m≥0

∑
s,a

H∑
h=0

Pr
(
|(πE

k (a|s)− π̂E
k (a|s))V π,h

r (s′)| > β2(s, a, h)
)

(c)

≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp

(
− 2β2(s, a, h)

2m2

m(H − h)2R2
max

)
≤
∑
m≥0

∑
s,a

H∑
h=0

2 exp (−ℓk(s, a))

=
∑
m≥0

∑
s,a

H∑
h=0

2δ

24SAH(m+)2
=

δ

12

1 +
∑
m≥0

1

m2

 =
δ

12

(
1 +

π2

6

)
≤ δ

4

A union bound over all equations results in P (E ) ≥ 1− δ.

Definition C.12 We define the reward uncertainty as

Ch
k (s, a) = (H − h)Rmaxmin

(
1, 2

√
2ℓhk(s, a)

nh
k(s, a)

)

Corollary C.13 Under the good event E , in each iteration k it holds for all (s, a, h) ∈
S ×A× [H] that:

|rh(s, a)− r̂kh(s, a)| ≤ Ch
k (s, a)

Proof

|rh(s, a)− r̂kh(s, a)|
(a)

≤ Ah(s, a)1{πE
h (a|s)=0}1{π̂E

h (a|s)≥0} +
∑
s′

Vh+1(s
′)|P (s′|s, a)− P̂ (s′|s, a)|

(b)

≤ (H − h)Rmax

(
2

√
2ℓhk(s, a)

nh
k
+
(s, a)

)
= Ch

k (s, a)

where (a) uses Theorem 4 and (b) uses Theorem C.11.

Corollary C.14 Let S be a sampling strategy. Let RB be the exact feasible set and RB̂k

be the feasible set recovered after k iterations. If

Hmax
s,a,h

Ch
k (s, a) ≤

ϵ

2
,

then the conditions of Theorem 1 are satisfied.
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Proof For the first condition of Theorem 1, observe:

inf
r̂∈RB̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a))

(a)

≤ inf
r̂∈RB̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

H∑
h′=h

∑
s′,a′

(
ηh,h

′

M,π∗(s
′, a′|s, a)− ηh,h

′

M,π̂∗(s
′, a′|s, a)

) (
rh′(s′, a′)− r̂h′(s′, a′)

)
(b)

≤ inf
r̂∈RB̂k

sup
π̂∗∈Π∗

M̂∪r̂

max
s,a,h

∣∣∣ H∑
h′=h

∑
s′,a′

(
ηh,h

′

M,π∗(s
′, a′|s, a)− ηh,h

′

M,π̂∗(s
′, a′|s, a)

)
Ch′
k (s′, a′)

∣∣∣
≤2Hmax

s,a,h
Ch
k (s, a)

where (a) uses Theorem C.4 and (b) uses Theorem C.13.
For the second condition of Theorem 1, it follows similarly that:

inf
r∈RB

sup
π∗∈Π∗

M∪r

max
s,a,h

(Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)) ≤ 2Hmax
s,a,h

Ch
k (s, a)

Hence, if Hmaxs,a,hC
h
k (s, a) ≤ ϵ/2, both conditions of Theorem 1 are satisfied.

Theorem C.15 (Sample Complexity of Uniform Sampling IRL) With probability at
least 1− δ, Algorithm 2 stops at iteration τ fulfilling Theorem 1 with a number of samples
upper bounded by:

n ≤ Õ
(
H5R2

maxSA

ϵ2

)
Proof First, note

Hmax
s,a,h

Ch
k (s, a) = H2Rmaxmax

s,a,h

(
2

√
2ℓhk(s, a)

nh
k
+
(s, a)

)
After τ iterations, we have collected τ · nmax samples and for each s, a, h, we have:

nh
τ
+
(s, a) ≥ τnmax

SAH ≥ 1
To terminate at iteration τ , we need to have for all s, a, h:

2H2Rmax

√
2ℓhτ (s, a)

nh
τ (s, a)

≤ ϵ

2

which implies

nh
τ (s, a) ≥

32H4R2
maxℓ

h
τ (s, a)

ϵ2

By using Lemma B.8 by Metelli et al. [2021], we can conclude that the number of samples
necessary to ensure accuracy ε is:

n ≤ Õ
(
H5R2

maxSA

ϵ2

)
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Corollary C.16 If the true reward function does not depend on the timestep h, i.e., rh(s, a) =

r(s, a), then we can modify Algorithm 2 to only need n ≤ Õ
(
H4R2

maxSA
ϵ2

)
samples.

Proof If we know that the reward function does not depend on h we can choose Ck(s, a) =
minhC

h
k (s, a) as a confidence interval of the reward. Consequently, we can sample all states

for a fixed h.

We still need for all s, a:

2H2Rmax

√
2ℓhτ (s, a)

nh
τ (s, a)

≤ ϵ

2
⇒ nh

τ (s, a) ≥
32H4R2

maxℓ
h
τ (s, a)

ϵ2

Again, we use Lemma B.8 by Metelli et al. [2021], but we can eliminate one sum over
H, ending up with:

n ≤ Õ
(
H4R2

maxSA

ϵ2

)

C.4 Sample Complexity of AceIRL in Unknown Environments (Problem
Independent)

We are now ready to analyze the sample complexity of AceIRL (Algorithm 1). We first
consider the simple version of the algorithm: AceIRL Greedy. Then, we consider the
full version of the algorithm after introducing a few additional lemma about the policy
confidence set. We start by defining the error upper bound and deriving two lemmas that
will help us to show that it is indeed an upper bound on the error we want to reduce.

Definition C.17 We define recursively:

EH
k (s, a) = 0; Eh

k (s, a) = min
(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′∈A

Eh+1
k (s′, a′)

)

where P̂ is the estimated transition model of the environment.

The first lemma shows that the error upper bound can upper bound the error due to
estimating the transition model.

Lemma C.18 Under the good event E , for all policies π and reward functions r and all
s, a, h:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Eh
k (s, a)
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Proof

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| =
∣∣∣∑

s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)Qπ,h+1

M̂∪r
(s′, a′)

−
∑
s′

P (s′|s, a)
∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)±

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)

∣∣∣
≤
∣∣∣∑

s′

(
P̂ (s′|s, a)− P (s′|s, a)

)∑
a′

π(a′|s′)Qπ,h+1
M∪r (s′, a′)

∣∣∣
+
∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

For h = H the result holds trivially. Now assuming it holds for h+ 1, we consider step
h:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)
∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′

∣∣∣Qπ,h+1

M̂∪r
(s, a)−Qπ,h+1

M∪r (s, a)
∣∣∣

≤ Ch
k (s, a) +

∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′) = Eh

k (s, a)

The next lemma shows that the error upper bound can also upper bound the error in
estimating the reward function, which is due to estimating the transition model and the
expert policy.

Lemma C.19 Under the good event E , for all reward function r, all policies π, and all
s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Eh

k (s, a)

Proof For h = H the result holds trivially. Now assuming it holds for h + 1, we consider
step h:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)
∑
a′

π(a′|s′)|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)max
a′
|Qπ,h+1

M̂∪r̂
(s′, a′)−Qπ,h+1

M̂∪r
(s′, a′)|

≤|r̂(s, a)− r(s, a)|+
∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′) = Eh

k (s, a)
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We can now combine the previous two lemmas to show that E is indeed an upper bound
on the error we want to reduce. This implies correctness of AceIRL Greedy, which the
following lemma formalizes.

Lemma C.20 (Correctness of AceIRL Greedy) If AceIRL Greedy stops in episode k,
after sampling n samples, i.e., E0

k(s0, πk+1(s0)) ≤ ϵ
4 , then it fulfills Theorem 1.

Proof Let us define the error

ehk(s, a) := |Q
π∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)|

where π∗ is the true optimal policy inM∪ r, and π̂∗ is the optimal policy in M̂ ∪ r̂, i.e.,
in the estimated MDP using the inferred reward function. Then,

ehk(s, a) = |Q
π∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)±Qπ∗,h

M̂∪r
(s, a)±Qπ̂∗,h

M̂∪r
(s, a)|

≤ |Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)|︸ ︷︷ ︸

≤Eh
k (s,a)

+|Qπ∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)|+ |Qπ̂∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M∪r(s, a)|︸ ︷︷ ︸
≤Eh

k (s,a)

≤ 2Eh
k (s, a) + |Q

π∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)|

where, we used Theorem C.18.
Let us consider the remaining term |Qπ∗,h

M̂∪r
(s, a) − Qπ̂∗,h

M̂∪r
(s, a)| in two steps. First, we

have:

Qπ∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a) ≤Qπ∗,h

M̂∪r
(s, a)−Qπ∗,h

M̂∪r̂
(s, a)︸ ︷︷ ︸

≤Eh
k (s,a)

+Qπ∗,h

M̂∪r̂
(s, a)−Qπ̂∗,h

M̂∪r̂
(s, a)︸ ︷︷ ︸

≤0

+

+Qπ̂∗,h

M̂∪r̂
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)︸ ︷︷ ︸

≤Eh
k (s,a)

≤ 2Eh
k (s, a),

where we used Theorem C.19 and the fact that π̂∗ is optimal in the MDP M̂ ∪ r̂. Second,
we have:

Qπ̂∗,h

M̂∪r
(s, a)−Qπ∗,h

M̂∪r
(s, a) ≤Qπ̂∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M∪r(s, a)︸ ︷︷ ︸
≤Eh

k (s,a)

+Qπ̂∗,h
M∪r(s, a)−Qπ∗,h

M∪r(s, a)︸ ︷︷ ︸
≤0

+

+Qπ∗,h
M∪r(s, a)−Qπ∗,h

M̂∪r
(s, a)︸ ︷︷ ︸

≤Eh
k (s,a)

≤ 2Eh
k (s, a),

where we used Theorem C.18 and the fact that π∗ is optimal in the MDPM∪ r. Overall,
we find that

|Qπ∗,h

M̂∪r
(s, a)−Qπ̂∗,h

M̂∪r
(s, a)| ≤ 2Eh

k (s, a),

and consequently,
ehk(s, a) ≤ 4Eh

k (s, a).
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Note that, Eh
k (s, a) only sums positive terms, hence:

max
s,a,h

Eh
k (s, a) ≤ max

a
E0

k(s0, a) = E0
k(s0, πk+1(s0))

Hence, if E0
k(s0, πk+1(s0)) ≤ ϵ

4 , we have for all s, a, h ∈ S ×A× [H]:

ehk(s, a) ≤ ϵ

which implies correctness according to Theorem 1.

Next, we will analyze the sample complexity of AceIRL Greedy. Let us first define
pseudo-counts that will be crucial to deal with the uncertainty of the transition dynamics
in our analysis. This is similar to the analysis of UCRL for reward-free exploration by
Kaufmann et al. [2021].

Definition C.21 We define the pseudo-counts of visiting a specific state action pair at
timestep h within the first k iterations as

n̄h
k(s, a) :=

k∑
i=1

η0,hM,πi
(s, a|s0),

where πi is the exploration policy in episode i.

The following lemma allows us to introduce the pseudo-counts when considering the
contraction of the reward confidence intervals.

Lemma C.22 With probability at least 1− δ
2 for all s, a, h, k ∈ S ×A× [H]×N+, we have:

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤

8ℓ̄hk(s, a)

max
(
n̄h
k(s, a), 1

)
where ℓ̄hk(s, a) = log

(
24SAH(n̄h

k(s, a))
2/δ
)
.

Proof This result adapts Lemma 7 by Kaufmann et al. [2021] to our setting.
By Lemma 10 in Kaufmann et al. [2021], we have with probability at least 1− δ

2 :

nh
k(s, a) ≥

1

2
n̄h
k(s, a)− βcnt(δ),

where βcnt(δ) = log(2SAH/δ).
We distinguish two cases. First let βcnt(δ) ≤ 1

4 n̄
h
k(s, a). Then nh

k(s, a) ≥
1
4 n̄

h
k(s, a), and

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤

2ℓhk(s, a)

max(nh
k(s, a), 1)

=
2 log(24SAH(nh

k(s, a))
2/δ)

max(nh
k(s, a), 1)

≤
2 log(24SAH(n̄h

k(s, a)/4)
2/δ)

(n̄h
k(s, a)/4)

≤
8ℓ̄hk(s, a)

max(n̄h
k(s, a), 1)
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where we use that log(24SAHx2/δ)/x is non-increasing for x > 1, and log(24SAHx2/δ) is
non-decreasing and βcnt(δ) ≥ 1.

Now consider let βcnt(δ) >
1
4 n̄

h
k(s, a). Then,

min

(
2ℓhk(s, a)

nh
k(s, a)

, 1

)
≤ 1 < 4

βcnt(δ)

max(n̄h
k(s, a), 1)

≤
4ℓ̄hk(s, a)

max(n̄h
k(s, a), 1)

where we used that ℓhk(s, a) = log
(
24SAH(nh

k(s, a))
2/δ
)
= βcnt(δ) + log

(
6nh

k(s, a))
2
)
≥

βcnt(δ).

The final lemma we need shows relates the error upper bound which is defined using
our estimated transition model to a similar quantity defined using the (unknown) real
transitions.

Lemma C.23 Under the good event E , we have for any s, a, h :

Eh
k (s, a) ≤ 2Ch

k (s, a) +
∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

where P is the true transition model that we do not know.

Proof First note that Eh
k (s, a) ≤ H by definition. Now, consider:

Eh
k (s, a) ≤ Ch

k (s, a) +
∑
s′

P̂ (s′|s, a)max
a′

Eh+1
k (s′, a′)

= Ch
k (s, a) +

∑
s′

(P̂ (s′|s, a)− P (s′|s, a) + P (s′|s, a))max
a′

Eh+1
k (s′, a′)

= Ch
k (s, a) +

∑
s′

(P̂ (s′|s, a)− P (s′|s, a))max
a′

Eh+1
k (s′, a′)︸ ︷︷ ︸

≤Ch
k (s,a)

+
∑
s′

P (s′|s, a))max
a′

Eh+1
k (s′, a′)

≤ 2Ch
k (s, a) +

∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

where we used the good event and the fact that Ch
k can only shrink over episodes.

Finally, we can analyze the sample complexity of AceIRL Greedy.

Theorem C.24 (AceIRL Greedy Sample Complexity (problem independent)) AceIRL
Greedy terminates with an (ϵ, δ, n)-correct solution, with

n ≤ Õ
(
H5R2

maxSA

ϵ2

)
.
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Proof Theorem C.20 shows that if AceIRL Greedy terminates, then it returns a (ϵ, δ,
n)-correct solution. So, we need to show that it terminates within τ iterations and bound
τ .

Let us consider the average error, defined by

qhk :=
∑
s,a

η0,hM,πk+1
(s, a|s0)Eh

k (s, a)

(a)

≤
∑
s,a

η0,hM,πk+1
(s, a|s0)

(
2Ch

k (s, a) +
∑
s′

P (s′|s, a)max
a′

Eh+1
k (s′, a′)

)
=
∑
s,a

η0,hM,πk+1
(s, a|s0)

(
2Ch

k (s, a) +
∑
s′

P (s′|s, a)
∑
a′

πk+1(a
′|s′)Eh+1

k (s′, a′)
)

= 2
∑
s,a

η0,hM,πk+1
(s, a|s0)Ch

k (s, a) + qh+1
k

where we used Theorem C.23 in step (a). Unrolling the recursion, results in:

qhk ≤ 2
H∑

h′=h

∑
s,a

η0,h
′

M,πk+1
(s, a|s0)Ch′

k (s, a)

If the algorithm terminates at τ , we have for each k < τ , and s, a, h ∈ S ×A× [H]: ϵ <
4E0

k(s0, πk+1(s0)). We have q0k = E0
k(s0, πk+1(s0)); therefore, as long we haven’t stopped,

we have ϵ ≤ 4q0k. Writing out this inequality, yields:

ϵ ≤ 4q0k ≤ 8
H∑

h=0

∑
s,a

η0,hM,πk+1
(s, a|s0)Ch

k (s, a)

≤ 4HRmax

H∑
h=0

∑
s,a

η0,hM,πk+1
(s, a|s0)

√
8 log(12SAH(nh

k(s, a))
2/δ)

max(nh
k(s, a), 1)

Using Theorem C.22, we can relate this to the pseudo-counts

ϵ < 4HRmax

H∑
h=0

∑
s,a

η0,hM,πk+1
(s, a|s0)

√
8 log(12SAH(n̄h

k(s, a))
2/δ)

max(n̄h
k(s, a), 1)

≤ 4HRmax

H∑
h=0

∑
s,a

η0,hM,πk+1
(s, a|s0)

√
8 log(12SAHk2/δ)

max(n̄h
k(s, a), 1)

Summing the inequality over k = 0, . . . T with T < τ , we obtain

ϵ(T + 1) ≤ 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

T∑
k=1

η0,hM,πk+1
(s, a|s0)

1√
max(n̄h

k(s, a), 1)

= 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

T∑
k=1

n̄k+1
h (s, a)− n̄k

h(s, a)√
max(n̄h

k(s, a), 1)
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where we used the definition of the pseudo-counts in the last equality. Using Lemma 19 by
Jaksch et al. [2010], we can further bound the sum in k:

ϵ(T + 1) = 4HRmax

√
8 log(12SAHT 2/δ)

H∑
h=0

∑
s,a

√
n̄T+1
h (s, a)

≤ 4HRmax

√
8 log(12SAHT 2/δ)

√
SA

H∑
h=0

√∑
s,a

n̄T+1
h (s, a)

= 4H2Rmax

√
8 log(12SAHT 2/δ)

√
SA
√
T + 1

It follows that

ϵ
√
T + 1 ≤ 4H2Rmax

√
8SA log(12SAHT 2/δ)

ϵ2τ ≤ 128H4R2
maxSA log(12SAH(τ − 1)2/δ)

setting τ = T + 1.

For large enough τ , this inequality cannot hold because
√
T + 1 on the l.h.s grows faster

than log(τ) on the r.h.s. Hence, the stopping time τ is finite. Further, we can apply Lemma
15 by Kaufmann et al. [2021], and follow that

τ ≤ Õ
(
H4R2

maxSA

ϵ2

)
If we observe H samples in each iteration, i.e., NE = 1, we get a sample complexity of

n ≤ Õ
(
H5R2

maxSA

ϵ2

)

C.5 Sample Complexity of AceIRL in Unknown Environments (Problem
Dependent)

For the problem dependent analysis, we will need this additional lemma also used by Kakade
and Langford [2002].

Lemma C.25 (Lemma 6.1 by Kakade and Langford [2002]) For any policy π:

V π∗,h
M∪r(s)− V π,h

M∪r(s) = −
∑
s′,a′

H∑
h′=h

ηh,h
′

M,π(s
′, a′; s)A∗,h′

M∪r(s
′, a′)
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Proof

V ∗,h
M∪r(s)− V π,h

M∪r(s)

=
∑
a

π∗
h(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V ∗,h+1
M∪r (s′)

)

−
∑
a

πh(a|s)

(
rh(s, a) +

∑
s′

P (s′|s, a)V π,h+1
M∪r (s′)

)
±
∑
a,s′

πh(a|s)P (s′|s, a)V ∗,h+1
M∪r (s′)

=
∑
a

(π∗
h(a|s)− πh(a|s))r(s, a) +

∑
a,s′

(π∗
h(a|s)− πh(a|s))P (s′|s, a)V ∗,h+1

M∪r (s′)

+
∑
a,s′

πh(a|s)P (s′|s, a)(V ∗,h+1
M∪r (s)− V π,h+1

M∪r (s))

=−
∑
a

π(a|s)A∗,h
M∪r(s, a) +

∑
a,s′

πh(a|s)P (s′|s, a)(V ∗,h+1
M∪r (s)− V π,h+1

M∪r (s))

Unrolling the recursion yields the result.

We can now start with the analysis. First, we define the policy confidence set, and show
that it indeed contains the relevant policies under the good event.

Definition C.26 We define the policy confidence set as

Π̂k = {π|V ∗,
M̂∪r̂

(s0)− V π,

M̂∪r̂
(s0) ≤ 10ϵk}

where r̂ = A (RB̂) is the reward estimated using an IRL algorithm A . We choose ϵk
recursively by solving the optimization problem

ϵk = max
π∈Π̂k−1

H∑
h=0

∑
s′,a′

η0,h
M̂,π

(s′, a′; s0)C
h
k (s

′, a′)

starting with ϵ0 =
1
10H.

The following lemma will help us to deal with uncertainty about the transition dynamics.

Lemma C.27 Under the good event E , if π ∈ Π̂k, then:

|V π,h

M̂∪r̂
(s)− V π,h

M∪r̂(s)| ≤ ϵk

|V ∗,h
M∪r̂(s)− V ∗,h

M̂∪r̂
(s)| ≤ ϵk

Proof First by Theorem C.5:

|V π,h

M̂∪r
(s)− V π,h

M∪r(s)| ≤
H∑

h′=h

∑
s′,a′,s′′

ηh,h
′

M̂,π
(s′; s)πh′(a′|s′)|P̂ (s′′|s′, a′)− P (s′′|s′, a′)|V π,h′+1

M∪r (s′′)

≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M̂,π
(s′; s)πh′(a′|s′)Ck(s

′, a′) ≤ ϵk
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Then, by Theorem C.6:

V ∗,h
M∪r(s)− V ∗,h

M̂∪r
(s) ≤

∑
h′=h

∑
s′,a′,s′′

ηh,h
′

M̂,π∗(s
′; s)π∗

h′(a′|s′)(P (s′′|s′, a′)− P̂ (s′′|s′, a′))V ∗,h
M∪r(s

′′)

≤
∑
h′=h

∑
s′,a′

ηh,h
′

M̂,π∗(s
′; s)π∗

h′(a′|s′)Ck(s
′, a′) ≤ ϵk

And, similarly

V ∗,h
M̂∪r

(s)− V ∗,h
M∪r(s) ≤

∑
h′=h

∑
s′,a′,s′′

ηh,h
′

M̂,π̂∗(s
′; s)π̂∗

h′(a′|s′)(P̂ (s′′|s′, a′)− P (s′′|s′, a′))V ∗,h
M̂∪r

(s′′)

≤
∑
h′=h

∑
s′,a′

ηh,h
′

M̂,π̂∗(s
′; s)π̂∗

h′(a′|s′)Ck(s
′, a′) ≤ ϵk

Now we show that the relevant policies are always in the policy confidence set, condi-
tioned on the good event.

Lemma C.28 Conditioned the good event E , if π∗, π̂∗ ∈ Π̂k−1, then π∗ ∈ Π̂k.

Proof Let r ∈ RB. Then

V ∗,h
M̂∪r̂k

(s)− V π∗,h

M̂∪r̂k
(s) = V ∗,h

M̂∪r̂k
(s)− V ∗,h

M̂∪r
(s) + V ∗,h

M̂∪r
(s)− V π∗,h

M̂∪r̂k
(s)

(a)

≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M̂,π∗(s
′, a′|s)Ch′

k (s′, a′) +

H∑
h′=h

∑
s′,a′

ηh,h
′

M̂,π∗(s
′, a′|s)Ch′

k (s′, a′)
(b)

≤ 2ϵk

where (a) uses Theorem C.2, Theorem C.3 and Theorem C.13, (b) uses that π∗ ∈ Π̂k−1 and
the definition of ϵk. Hence,

max
s

(
V ∗,h
M̂∪r̂k

(s)− V π∗,h

M̂∪r̂k
(s)
)
≤ 2ϵk ≤ 10ϵk

and therefore π∗ ∈ Π̂k.

Lemma C.29 Conditioned on the good event E , for every policy π and episodes k′ > k,
there exists r̂k′ ∈ RB̂k′

, such that:

max
s

(
V π,h
M∪r̂k′

(s)− V π,h
M∪r̂k(s)

)
≤ 4ϵk

Proof Similarly to the proof of the previous lemma, we have

V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r̂k
(s) = V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r
(s) + V π,h

M̂∪r
(s)− V π,h

M̂∪r̂k
(s)

≤
H∑

h′=h

∑
s′,a′

ηh,h
′

M̂,π
(s′, a′|s)Ch′

k′ (s
′, a′) +

H∑
h′=h

∑
s′,a′

ηh,h
′

M̂,π
(s′, a′|s)Ch′

k (s′, a′) ≤ 2ϵk
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where we use that the confidence intervals are shrinking with increasing episode number,
i.e., ϵk′ ≤ ϵk.

By combining this with Theorem C.27, we get the result:

max
s

(
V π,h
M∪r̂k′

(s)− V π,h
M∪r̂k(s)

)
=max

s

(
V π,h
M∪r̂k′

(s)− V π,h

M̂∪r̂k′
(s)︸ ︷︷ ︸

≤ϵk

+V π,h

M̂∪r̂k′
(s)− V π,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤2ϵk

+V π,h

M̂∪r̂k
(s)− V π,h

M∪r̂k(s)︸ ︷︷ ︸
≤ϵk

)
≤ 4ϵk

Lemma C.30 Under the good event E , if π̂∗
k, π ∈ Π̂k−1 and π /∈ Π̂k, then the policy π is

suboptimal for some reward r̂k′ ∈ RB̂k′
for all k′ ≥ k.

Proof We can observe that

V π,h
M∪r̂k′

(s0)− V ∗,h
M∪r̂k′

(s0) = V π,h
M∪r̂k′

(s0)− V
π̂∗
k,h

M∪r̂k′
(s0)

=V π,h
M∪r̂k′

(s0)− V π,h
M∪r̂k(s0)︸ ︷︷ ︸

(a)

≤ 4ϵk

+V π,h
M∪r̂k(s0)− V π,h

M̂∪r̂k
(s0)︸ ︷︷ ︸

(b)

≤ ϵk

+ V π,h

M̂∪r̂k
(s0)− V

π̂∗
k,h

M̂∪r̂k
(s0)︸ ︷︷ ︸

(c)
>10ϵk

+V
π̂∗
k,h

M̂∪r̂k
(s0)− V

π̂∗
k,h

M∪r̂k(s0)︸ ︷︷ ︸
(b)

≤ ϵk

+ V
π̂∗
k,h

M∪r̂k(s0)− V
π̂∗
k,h

M∪r̂k′
(s0)︸ ︷︷ ︸

(a)

≤ 4ϵk

> 0

where we applied (a) Theorem C.27, (b) Theorem C.29, and (c) the definition of Π̂k and
the fact that π /∈ Π̂k. Consequently, π is suboptimal for at least some reward function
r̂k′ ∈ RB̂k′

.

Corollary C.31 For ϵ0 =
H
10 , for every k ≥ 0 it holds that both π∗, π̂∗

k+1 ∈ Π̂k.

Proof We show the statement by induction over k. For k = 0, we have 10ϵ0 = H and there-
fore Π̂0 contains all policies. Assume that for k− 1 the statement holds, i.e., π∗, π̂∗

k ∈ Π̂k−1,

and consider k. By Theorem C.28, π∗ ∈ Π̂k. Note, that π̂∗
k+1 ∈ Π̂k−1. Hence, by Theo-

rem C.29, it follows that π̂∗
k+1 ∈ Π̂k because it would be suboptimal otherwise which is a

contradiction.

The last result we need, is quantifying the size of the policy confidence set.
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Lemma C.32 Under the good event E , let r̃ ∈ argminr∈RB
maxs,a(r(s, a)− r̂k(s, a)), where

r̂k = A (RB̂k
). If π ∈ Π̂k, then maxs(V

∗,h
M̂∪r̃

(s)− V π,h

M̂∪r̃
(s)) ≤ 12ϵk.

Proof

V ∗,h
M̂∪r̃

(s)− V π,h

M̂∪r̃
(s) = V ∗,h

M̂∪r̃
(s)− V ∗,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤ϵk

+V ∗,h
M̂∪r̂k

(s)− V π,h

M̂∪r̂k
(s)︸ ︷︷ ︸

≤10ϵk

+V π,h

M̂∪r̂k
(s)− V π,h

M̂∪r̃
(s)︸ ︷︷ ︸

≤ϵk

ϵk ≤ 14ϵk

Next, we define the error upper bound based on the policy confidence set.

Definition C.33 Using Π̂k, we define recursively:

ÊH
k (s, a) = 0

Êh
k (s, a) = min

(
(H − h)Rmax, C

h
k (s, a) +

∑
s′

P̂ (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

)
where P̂ is the estimated transition model of the environment. In contrast to Theorem C.17,
the maximization is over policies in Π̂k rather than all actions.

This definition allows us to derive results that are analogous to the problem independent
case.

Lemma C.34 Under the good event E , for all policies π ∈ Π̂k and reward functions r and
all s, a ∈ S ×A:

|Qπ,h

M̂∪r
(s, a)−Qπ,h

M∪r(s, a)| ≤ Êh
k (s, a)

Proof The proof is the same as for Theorem C.18, restricting the set of policies to Π̂k.

Lemma C.35 Under the good event E , for all reward function r, all policies π ∈ Π̂k, and
all s, a ∈ S ×A:

|Qπ,h

M̂∪r̂
(s, a)−Qπ,h

M̂∪r
(s, a)| ≤ Êh

k (s, a)

Proof The proof is the same as for Theorem C.19, restricting the set of policies to Π̂k.

Lemma C.36 Under the good event E , we have for any s, a, h :

Êh
k (s, a) ≤ 2Ch

k (s, a) +
∑
s′

P (s′|s, a) max
π∈Π̂k−1

π(a′|s′)Êh+1
k (s′, a′)

Proof The proof is the same as for Theorem C.36.

Finally, we can combine these results to analyze the algorithm’s sample complexity.

32



Theorem 5 [AceIRL Sample Complexity] AceIRL returns a (ϵ, δ, n)-correct solution with

n ≤ Õ

(
min

[
H5R2

maxSA

ϵ2
,

H4R2
maxSAϵ

2
τ−1

mins,a,h(A
∗,h
M∪r(s, a))

2ϵ2

])

where ϵτ−1 depends on the choice of NE, the number of episodes of exploration in each itera-
tion. A∗,h

M∪r(s, a) is the advantage function of r ∈ argminr∈RB
maxh,s,a(rh(s, a)− r̂k,h(s, a)),

the reward function from the feasible set RB closest to the estimated reward function r̂k.

Proof First note that the analysis of Theorem C.24 still applies; so, in the worst case we
get the same sample complexity. The key difference is that we no longer use the overall
greedy policy w.r.t Eh

k , but restrict ourselves to policies in Π̂k.
Again, we consider the error

eπ,hk (s, a) := |Qπ∗,h
M∪r(s, a)−Qπ̂∗,h

M∪r(s, a)|

where π∗ is the true optimal policy inM∪ r, and π̂∗ is the optimal policy in M̂ ∪ r̂, i.e.,
in the estimated MDP using the inferred reward function.

Similar, to the proof of Theorem C.20, we can use Theorem C.34 and Theorem C.35 to
show for all policies π ∈ Π̂h

k , that:

eπ,hk (s, a) ≤ 4Êh
k (s, a)

which implies the correctness of the algorithm according to Theorem C.14 when stopping
at

Ê0
k(s0, πk+1(s0)) ≤

ϵ

4
(1)

Now, consider the following condition for all s, a, h:

Ch
k (s, a) ≤ −A

∗,h
M∪r̃(s, a)

ϵ

48ϵk−1
, (2)

where r̃ ∈ argminr∈RB
maxh,s,a(rh(s, a) − r̂k,h(s, a)). We will (a) show that when this

condition holds the previous stopping condition also holds, and (b) analyze after how many
iterations this condition will certainly hold. Together this will yield the result.

To show that Equation (2) implies Equation (1), we assume that Equation (2) holds.
Then, we get by applying Theorem C.36 recursively:

Ê0
k(s0, πk+1(s0)) ≤ 2 max

π∈Π̂k−1

max
a

H∑
h=0

∑
s′,a′

η0,hM,π(s
′, a′; s0, a)C

h
k (s

′, a′)

≤ 2 max
π∈Π̂k−1

max
a

H∑
h=0

∑
s′,a′

η0,hM,π(s
′, a′; s0, a)

(
−A∗,h

M∪r̃(s
′, a′)

ϵ

48ϵk−1

)
(a)

≤ 2 max
π∈Π̂k−1

(V ∗,0
M∪r(s0)− V π,0

M∪r(s0))
ϵ

48ϵk−1

(b)

≤ ϵ

4
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where (a) uses Theorem C.25 and (b) uses Theorem C.32.
Next, we analyze after how many iterations Equation (2) holds, which will give a lower

bound on the sample complexity result. The argument proceeds similar to the proof of
Theorem C.24.

Before the algorithm terminates at τ , we have for all k < τ :

min
s,a,h

(−A∗,h
M̂∪r̃

(s, a))
ϵ

48ϵk−1
< max

s,a,h
Ch
k (s, a) ≤ HRmax

√
2ℓhk(s, a)

max(Nh
k (s, a), )

Using similar argument to the proof of Theorem C.24, using the same pseudo-counts, we
arrive at:

min
s,a,h

(−A∗,h
M∪r̃(s, a))

ϵ

48ϵτ−1

√
τ + 1 ≤ HRmax

√
8SA log(12SAHτ2/δ)

Again, we can use Lemma 15 by Kaufmann et al. [2021] to find that

τ ≤ Õ

(
H3R2

maxSAϵ
2
τ−1

mins,a,h(A
∗,h
M∪r̃(s, a))

2ϵ2

)

C.6 Computing the Exploration Policy

To run AceIRL, we need to solve the optimization problem:

πh
k = min

π
max

π̂∈Π̂k−1

H∑
h=0

∑
s′,a′

η0,h
M̂,π̂

(s′, a′; s0)Ĉ
h
k (s

′, a′|π)

For simplicity let us denote the state visitation frequencies by

µh(s, a) := η0,h
M̂,π

(s, a; s0)

µ̂h(s, a) := η0,h
M̂,π̂

(s, a; s0)

Let us introduce the following matrix notation

Ã =



I 0 0 0 . . . 0

P̂ −I 0 0 . . . 0

0 P̂ −I 0 . . . 0
. . .

0 0 . . . 0 P̂ −I
I 0 0 . . . 0 0
0 I 0 . . . 0 0

. . .
0 0 0 . . . I 0
0 0 0 . . . 0 I


, a =


r̂0k−1

r̂1k−1

. . .
r̂Hk−1

 , A =

[
A 0
aT −1

]
,
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x =


µ0

µ1

. . .
µH

t

 , x̂ =


µ̂0

µ̂1

. . .
µ̂H

 , b =



µ̄0

0
. . .
0
1
. . .
1

−10ϵk−1


, c =


C0

C1

. . .
CH

1

 ,

where µ̄0 is the actual initial state distribution of the environment (which we assume to
know). We can now write the inner maximization problem above as a linear program:

max
x

cTx

Ax = b

x ≥ 0

The corresponding dual problem is:

min
y

bT y

AT y ≥ c

Using this we can write the full min-max problem as:

min
x̂,y

bT y

AT y ≥ c(x)

Ãx = b

x ≥ 0

which is a convex optimization problem, if we use:

Ch(s, a) = 2(H − h)Rmax

√
2 log

(
24SAH(max(1, nh

k(s, a)))
2/δ
)

max(1, n̂h
k+1(s, a)

)

where n̂h
k+1(s, a) = nh

k(s, a) + µh(s, a) ∗ NE is the number of times we expect h, s, a to be
visited at the next iteration.

Solving this optimization problem yields the state-visitation frequencies µ̂k(s, a). We
can then find the exploration policy that induces these state-visitations simply as:

πk,h(a|s) :=
µ̂h
k(s, a)∑

a′ µ̂
h
k(s, a

′)
.

Appendix D. Experimental Details

In this section, we provide more details on our experiments. We discuss the environments in
detail (Appendix D.1), provide some information on the implementation and the libraries
and computational resources we used (Appendix D.2), and we provide more full plots of all
experiments we discussed (Appendix D.3).
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D.1 Details on the Environments

Four Paths. The four paths environment has 41 states and 4 actions:

S = {c, l1, . . . , l10, u1, . . . , u10, r1, . . . , r10, d1, . . . , d10}, A = {a1, a2, a3, a4},

and a time horizon of H = 20. The agent starts in the center state c, from which can
move in four directions: left (a1), up (a2), right (a3), or down (a4). Each action ai has a
probability pi of failing. If an action fails it moves in the opposite direction. p1, . . . , p4 are
sampled uniformly from (0, 0.3). One of the states (l10, u10, r10, d10) is chosen as the goal
state at random. The reward in the goal state is 1, all other rewards are 0.

Double Chain. The Double Chain MDP, proposed by Kaufmann et al. [2021], consists
of L states S = {s0, . . . , sL−1}, and two actions A = {left, right}, which correspond to
a transition to the left or to the right. When the agent takes an action, there is a 0.1
probability of moving to the other direction. The state sL−1 has reward 1, all other states
have reward 0, and the agent starts in the center of the chain at s(L−1)/2. We choose L = 31,
similar to Kaufmann et al. [2021]. The environment has horizon H = 20.

Chain. The Chain MDP, proposed by Metelli et al. [2021] has 6 states S = {s1, s2, s3, s4, s5, su}
and 10 actions A = {a1, . . . , a10}. The agent starts in a random initial state. Taking action
a10 moves it right along the chain with probability 0.7 and to state su with probability 0.3.
Any other action moves the agent right with probability 0.3 and to state su with probability
0.7. If the agent is in state su, action a10 moves it back to state s1 with probability 0.05.
Any other action moves it to s1 with probability 0.01. The reward is 1 in all states except
su where the reward is 0. Metelli et al. [2021] provide an illustration of the environment in
Figure 3. We choose H = 10 for the chain.

Gridworld. The Gridworld, proposed by Metelli et al. [2021], is a 3× 3 gridworld with
an obstacle in the center cell (2, 2) and a goal cell at the right center cell (2, 1). The agent
starts in a random non-goal cell, and it has 4 action one to move in each direction. If the
agent takes an action with probability 0.3 the action fails and the agent moves in a random
direction instead. If the agent is in the center cell (2, 2) which has the obstacle, if the agent
would move right it instead stays in the center cell with probability 0.8. The reward in the
goal cell is 1, all other rewards are 0. Metelli et al. [2021] provide an illustration of the
gridworld in Figure 6. We choose H = 10 for the gridworld.

Random MDPs. We generate random MDPs by uniformly sampling an initial state
distribution and transition matrix and normalizing them. The rewards are sampled uni-
formly between 0 and 1. Our random MDPs have 9 states, 4 actions and horizon 10.

D.2 Implementation Details

We provide a full implementation of AceIRL in Python, using multiple open sources libraries,
including cvxpy and the SCS optimizer [Diamond and Boyd, 2016, O’Donoghue et al., 2016]
for solving the optimization problem in Appendix C.6, and standard libraries for numerical
computing, including numpy, and scipy. We choose Maximum Entropy IRL [Ziebart et al.,
2008] as an IRL algorithm, but AceIRL is agnostic to this choice.

We ran experiments in parallel on a server with two 64 Core AMD EPYC 7742 2.25GHz
processors. We estimate a total wall-clock time of less than 48 hours for running all exper-
iments presented in this paper, including 50 random seeds each.
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Figure D.2: Full learning curves for all experiments shown in Table A.1. Similar to Fig-
ure A.1, we show the mean and 95% confidence intervals computed over 50
random seeds. In addition to the exploration algorithms, we also show uniform
sampling and TRAVEL which are much faster in most cases because they have
access to a generative model.

D.3 Additional Results

We provide full learning curves for all experiments discussed in Figure D.2.
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Appendix E. Connection to Reward-free Exploration

In the reward-free exploration problem, introduced by Jin et al. [2020], the agent explores
an MDP\R to learn a transition model. In each iteration it chooses a new exploration policy
based on previous data. The goal is to ensure that if the agent is given a reward function
r after the exploration phase it can find a good policy using its transition model. Jin et al.
[2020] formalize this goal as reducing the error:

V π∗,0
M∪r(s0)− V π̂∗,0

M∪r,

where π̂∗ is the optimal policy in the estimated MDP M̂ ∪ r. Note the striking similarity
between this problem, and the active IRL problem, we study in this paper. We want to
reduce a similar error (cf. Theorem 1), but we have additional information about the reward
in form of the expert policy.

The Reward-free UCRL algorithm, proposed by Kaufmann et al. [2021], is essentially
analogous to AceIRL Greedy (Section 4.1). Reward-free UCRL explores greedily with
respect to an upper bound on the value function error. However, the exploration policy
needs to be updated after each episode to adapt to the new uncertainty estimates. This
might be expensive or not possible in practice. Instead, we could consider a batched version
of reward-free exploration, where in each iteration the agent explores for NE episodes,
similar to our Active IRL problem. In this setting, a greedy policy w.r.t. uncertainty is
suboptimal because it does not adapt to the reduced uncertainty over the NE episodes.

Instead, we can consider reducing the expected uncertainty at the next iteration, similar
to our discussion in Section 4.2. If our error estimate is denoted by Ek(s, a), we do no longer
act greedily w.r.t. Ek. Instead we try to estimate the error at the next iteration Êk+1(s, a|π)
as a function of the policy and try to select the policy that reduces this error. In the tabular
case, we can formulate this as a convex optimization problem, analogous to Appendix C.6.
We call this adaptation of AceIRL to the reward-free exploration problem Ace-RF.

Figure E.3 shows illustrative results of this algorithm in the batched reward-free ex-
ploration setting in the Double Chain environment. We find that for larger batch sizes,
choosing an exploration policy that reduces future uncertainty is significantly better than
reward-free UCRL.

38



0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples

N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 1000

0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples

N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 2000

0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples

N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 3000

0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples
N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 4000

0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples

N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 5000

0 0.2 0.4 0.6 0.8 1

×106

0

0.2

0.4

0.6

0.8

1

Samples

N
o
rm

a
li
z
e
d

R
e
g
re
t

NE = 5000

Unif. Samp.
(generative)

Unif.
Expl.

RF-UCRL Ace-RF

Figure E.3: Illustrative experiments for reward-free exploration in the Double Chain en-
vironment proposed by Kaufmann et al. [2021]. The difference to our Active
IRL setting is that the agent does not have access to the expert policy during
exploration, but still tries to learn a good model of the environment. During
testing it then gets access to the reward function, and the regret measures the
suboptimality of the policy trained in the agent’s transition model. We find
that the ideas used in AceIRL are also useful for batched reward-free explo-
ration with larget NE .
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