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Abstract
Information-theoretic Bayesian optimization techniques have become popular for optimizing
expensive-to-evaluate black-box functions due to their non-myopic qualities. Entropy
Search and Predictive Entropy Search both consider the entropy over the optimum in
the input space, while the recent Max-value Entropy Search considers the entropy over
the optimal value in the output space. We propose Joint Entropy Search (JES), a novel
information-theoretic acquisition function that considers an entirely new quantity, namely
the entropy over the joint optimal probability density over both input and output space.
To incorporate this information, we consider the reduction in entropy from conditioning
on fantasized optimal input/output pairs. The resulting approach primarily relies on
standard GP machinery and removes complex approximations typically associated with
information-theoretic methods. With minimal computational overhead, JES yields state-of-
the-art performance for information-theoretic approaches across a wide suite of tasks. As a
light-weight approach with superior results, JES provides a new go-to acquisition function
for Bayesian optimization.

1. Introduction

The optimization of expensive black-box functions is a prominent task, arising across a wide
range of applications. Bayesian optimization (BO) (Mockus et al., 1978; Shahriari et al.,
2016) is a sample-efficient approach, and has been successfully applied to various problems.
In BO, a probabilistic surrogate model is used for modeling the (unknown) objective. The
selection policy employed by the BO algorithm is dictated by an acquisition function, which
draws on the uncertainty of the surrogate to guide the selection of the next query.

The choice of acquisition function is significant for the success of the BO algorithm. A
popular line of acquisition functions takes an information-theoretic angle, and considers the
expected information gain regarding the location of the optimum that is obtained from an
upcoming query. Entropy Search (ES) (Hennig and Schuler, 2012) and Predictive Entropy
Search (PES) (Hernández-Lobato et al., 2014) select queries by maximizing this quantity.
A related information-theoretic family of approaches considers the information gain on
the optimal objective value (Hoffman and Ghahramani, 2016). Max-value Entropy Search
(MES) (Wang and Jegelka, 2017) considers a one-dimensional density over the output space as
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Figure 1: The densities considered by ES/PES (top), MES (right) and JES (center) on a toy function.
The multimodal density p(x∗, f∗) is reduced to a heavy-tailed density over f∗ for the density used
by MES (right), which does not capture the multi-modality of the density over the optimum. The
density over x∗ used by PES (top) does not capture the apparent exploration/exploitation trade-off
that exists between the modes. Queries for all acquisition functions are dashed (bottom).

opposed to a D-dimensional input space, and yields a computationally efficient alternative
to ES and PES. However, shortcomings of MES have been highlighted in recent works (Takeno
et al., 2020; Nguyen et al., 2022). In particular, MES does not differentiate between the
(unobserved) maximal objective value f∗ and an observed noisy maximum ymax.

We propose an approach which merges the ES/PES and MES lines of work, and provides an
all-encompassing perspective on information gain regarding optimality. We introduce Joint
Entropy Search (JES), a novel acquisition function which innovates on previous information-
theoretic approaches by: (1) utilizing two sources of information, by considering the entropy
over both the optimum and optimal value; (2) Retaining low computational and conceptual
complexity by utilizing the full optimal observation, allowing it to rely on standard GP
machinery instead of complex approximations; (3) Intrinsically supporting noisy objective
functions, making it particularly efficient for these types of tasks.

2. Joint Entropy Search

We now present Joint Entropy Search (JES), a novel information-theoretic acquisition func-
tion. Similarly to previous work, JES considers a mutual information quantity. Unlike its
predecessors, JES considers the entropy of the optimal distribution over both the input and
output space. It utilizes a two-step reduction in the predictive entropy from conditioning
on sampled optima and their associated values. Throughout the section, we will refer to a
sampled optimum and its associated value, (x∗, f∗), as an optimal pair.

The joint density. JES considers the joint probability density p(x∗, f∗) over both the
optimum x∗ and the true, noiseless optimal value f∗. Fig. 1 visualizes the densities p(x∗) and
p(f∗), considered by ES/PES and MES, respectively, and the joint density p(x∗, f∗), considered
by JES. As highlighted by the vertical dashed lines for the point selection of each strategy
(bottom), PES chooses strictly to reduce the uncertainty over x∗, and as such, considers
a region where the uncertainty over the optimal value is low. However, it can effectively
determine that the right side of the local optimum is more promising to query next. MES
seeks to reduce the tail of the probability density over f∗ (right), which in this case leads
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Figure 2: Step-by-step modeling when conditioning on one optimal pair (x∗, f∗). The posterior with
noise p(y|D) and without noise p(f |D) are illustrated in blue and yellow, respectively. The GP after
5 (noisy) observations, before conditioning on (x∗, f∗) is shown on the left. In the middle panel, we
draw (x∗, f∗) and condition on it, making p(f |D ∪ (x∗, f∗)) a delta distribution at the conditioning
point as the fantasized observation f∗ is noiseless. Since f∗ is also the presumed noiseless maximum,
we truncate its posterior p(f |D ∪ (x∗, f∗), f∗) globally in the right panel.

to an exploratory query. JES’ joint probability density over optimum and optimal value
captures uncertainties over both “where” and “how large” the optimum will be. As such, it
selects a point which is uncertain under both measures. For the selected query in Fig. 1, JES
will learn substantially about both x∗ and f∗ by querying it, whereas PES and MES learn only
about one of them.

The Joint Entropy Search acquisition function. We consider the mutual information
between the random variables (x∗, f∗) and a future query (x, y):

αJES(x) = I((x, y); (x∗, f∗)|D) (1)
= H[p(y|D,x)]− E(x∗,f∗) [H[p(y|D,x,x∗, f∗)]] (2)

= H[p(y|D,x)]− E(x∗,f∗) [H[p(y|D ∪ (x∗, f∗),x, f∗)]] . (3)

Eq. 2 is similar to MES but with the addition of x∗ and the replacement of y∗ with f∗

in the conditioning of the second term. The expectation is computed with respect to a
D + 1-dimensional joint probability density over x∗ and f∗. In Eq. 3, we make it explicit
that the conditional density inside the expectation is obtained after (1) conditioning the
GP on the previous data D, plus one additional noiseless optimal pair (x∗, f∗), and (2)
knowing that the noiseless optimal value is in fact f∗. By utilizing the complete observation
(x∗, f∗), and of just x∗ or f∗, we can treat it like any other (noiseless) observation. As
such, we quantify much of the entropy reduction by utilizing standard GP functionality.
For (2), we gain knowledge of the maximum of the noiseless objective, globally. Following
(Nguyen et al., 2022; Wang and Jegelka, 2017), the resulting effect is to truncate the GP’s
posterior over f , upper bounding it to f∗. The expectation in Eq. 3 is approximated through
MC by sampling L optimal pairs {(x∗

ℓ , f
∗
ℓ )}Lℓ=1 from p(x∗, f∗) using approximate Thompson

Sampling (TS) (Thompson, 1933). As such, we can loosely relate the entropy reduction to
two separate variance reduction steps over p(y|D,x): a conditioning term and a truncation
term. The former is easily computed exactly, and the latter requires approximation. In
Fig. 2, the resulting posterior distribution of the two-step conditioning is shown in detail.
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Incorporating optimal pairs. To obtain samples (x∗, f∗), we utilize an approximate
variant of TS, originally proposed in PES (Hernández-Lobato et al., 2014). This form allows
for fast and dense querying of the sample paths – the argmax and max of which is an
approximate draw from p(x∗, f∗). For PES, each sample x∗

ℓ and its inverted Hessian is
required for computing the acquisition function. To obtain the Hessian, each sample needs
to be thoroughly optimized through gradient-based optimization. JES however, only requires
the observation (x∗

ℓ , f
∗
ℓ ). As such, it can rely on cheap, approximate optimization of these

sample paths, e.g., by densely querying sample points. After obtaining a set of optimal pairs
{(x∗

ℓ , y
∗
ℓ )}Lℓ=1, we compute the conditional entropy quantity over y. Concretely, we generate

L GPs, each modeling a density {p(y|D∪ (x∗
ℓ , f

∗
ℓ ),x)}Lℓ=1 conditioned on an optimal pair and

the observed data D. As each optimal pair is drawn given the current GP hyperparameters,
we know that the current hyperparameters are correct even after adding the optimal pair to
the data. Thus, we can compute the updated inverse Gram matrix, (K + σ2

ϵ )
−1, through a

rank-1 update (Sherman and Morrison, 1950) instead of solving a linear system of equations.
Updated Gram matrices are then obtained in O(n2) per sample, as opposed to O(n3) for
solving the system of equations.

Approximating the truncated entropy. As highlighted in the right panel of Fig. 2,
conditioning on f∗ yields a truncated normal distribution p(f |D, f∗), but the entropy is
computed with regard to the density over noisy observations, y = f + ϵ, which leads to
an intractable entropy. We approximate this quantity through moment matching of the
truncated Gaussian distribution over f . Consequently, we obtain two Gaussian densities
p̂(f |D, f∗) ∼ N (mf |f∗ , σ2

f |f∗) and p(ϵ) ∼ N (0, σ2
ϵ ), where mf |f∗ and σ2

f |f∗ are the mean and
variance of the truncated Gaussian posterior p(f |D, f∗). We can then compute the entropy of
the approximate density p̂y as H[p̂(y|D ∪ (x∗, f∗),x, f∗)] = log(2π(σ2

ϵ + σ2
f |f∗)). The quality

of this approximation is studied in greater detail in Appendix E

Greedy selection to guard against model misspecification. JES, like other information-
theoretic approaches, aims to reduce the uncertainty over the location of the optimum. With
this strategy, the incentive to query the perceived optimum is often lower than for heuristic
approaches, such as EI. In cases where the surrogate model is misspecified, information-
theoretic approaches risk reducing the entropy based on a faulty belief of the optimum,
which can drastically impact their performance. As a remedy, we utilize an inverse γ-greedy
approach: with probability γ, JES queries the argmax of the posterior mean to confirm its
belief of the location of the optimum. If the model is misspecified, these greedy steps enable
the algorithm to reconsider its beliefs, rather than continuing to act on faulty ones.

Putting it all together. For a set {(x∗
ℓ , y

∗
ℓ )}Lℓ=1 and GPs with mean and covariance

functions {mℓ(x), sℓ(x)}Lℓ=1, the expression for the JES acquisition function is

αJES(x) = H[p(y|D,x)]− E(x∗,f∗) [H[p(y|D ∪ (x∗, f∗),x, f∗)]] (4)

≈ log(2π(s(x) + σ2
ϵ ))−

1

L

L∑
ℓ=1

log(2π(σ2
ϵ + σ2

f |f∗(x;D,x∗
ℓ , f

∗
ℓ ))), (5)

where σ2
f |f∗(x;D,x∗

ℓ , f
∗
ℓ ) = σ2

T (f
∗;mℓ(x), sℓ(x)) and σ2

T (α;µ, σ
2) is the variance of an upper

truncated Gaussian distribution with parameters (µ, σ2), truncated at α. To form our
strategy, we interleave queries chosen by argmaxαJES(x) with a fraction γ of greedy queries.
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Task JES-100 MES-100 EI PES-100
2D 1.40± 0.32 1.03± 0.19 0.23± 0.13 17.39± 4.95
4D 1.50± 0.37 1.21± 0.3 0.3± 0.17 34.53± 8.3
6D 1.56± 0.39 1.26± 0.37 0.35± 0.2 62.92± 13.54

Table 1: Runtime of JES, MES, PES and EI on GP sample tasks of varying dimensionalities. JES is
only marginally slower than MES, and orders of magnitude faster than PES.

Joint Entropy Search Max-value Entropy Search

Predictive Entropy Search Expected Improvement

Figure 3: Comparison of queries on a 2D GP sam-
ple, 100 function evaluations. The global optimum is
circled in white, and four local optima in grey. Earlier
queries are colored yellow, and later queries red.

0 20 40 60 80 100
Iteration

3

2

1

0

1

Lo
g 

si
m

pl
e 

re
gr

et

2D-GP sample
EI
JES-100
MES-100
PES-100

0 50 100 150 200
Iteration

2.0

1.5

1.0

0.5

0.0

0.5

1.0

4D-GP sample

0 100 200 300
Iteration

1.5

1.0

0.5

0.0

0.5

1.0

6D-GP sample

0 200 400 600
Iteration

0.25

0.00

0.25

0.50

0.75

1.00

1.25

12D-GP sample

Figure 4: Comparison on GP prior sam-
ples. We run 1000 repetitions each for 2, 4
and 6D, and 250 on 12D. Mean and 2 SE
of log regret are displayed.

3. Experimental evaluation

Benchmarks. We now evaluate JES on a suite of diverse tasks: Samples from a GP prior,
synthetic test functions, and MLP tuning from HPOBench (Eggensperger et al., 2021). We
do not use the inverse γ-greedy approach for the GP tasks (i.e., we set γ = 0) and report
mean and standard error (SE) of inference regret. For the synthetic and MLP tasks, we
marginalize over the GP hyperparameters, and set γ = 0.1, and report simple regret. The
experimental setup can be found in Appendix B, and ablation studies on γ in Appendix C.

GP prior samples. We consider samples from a GP prior for four different dimensionalities:
2D, 4D, 6D, and 12D. In this optimal setting with fixed GP hyperparameters, JES outperforms
all other acquisition functions by substantial amounts on all tasks. In Tab. 1, we display
runtimes for all acquisition functions when GP hyperparameters are marginalized over.

Fig. 3 compares JES queries (top left) against PES, MES and EI for one repetition
on a two-dimensional GP sample task. JES succeeds in finding all attractive regions
of the search space, and queries the region around the optimum densely, which is sen-
sible in a noisy setting. EI (bottom right) fails to query two local optima. PES (bot-
tom left) also ignores two local optima, and circles the (perceived) optimum densely,
which is costly in terms of number of evaluations. Lastly, MES (top right) successfully
queries all attractive regions of the space, but also samples regions that are evidently
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Figure 6: Comparison on synthetic test functions (top) and HPOBench (bottom). Mean and 2
(top) and 1 (bottom) SE are displayed for each acquisition function across 100/150 repetitions.

poor the most densely. JES successfully excludes the apparent suboptimal regions of
the space, finds all relevant optima, and queries these optima in a desirable manner.
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Figure 5: Evaluation on noisy (σ2
ϵ =

4, orange) GP sample tasks across 100
repetitions. Mean and 2 SE of log regret.

We additionally evaluate the performance of all ap-
proaches on GP sample tasks that have a substantial
amount of noise. While MES and PES slow down ap-
proximately at the halfway point for both tasks, JES
steadily improves for the entire length of the run.

Synthetic test functions. In Fig. 6, we study JES
on Branin (2D), Hartmann (3D) and Hartmann (6D).
On Branin, JES starts out slightly slower than MES
but ultimately reaches the same performance; and on
the two Hartmann functions, JES performs amongst
the best in the beginning and clearly best in the end.

MLP tasks. Lastly, we evaluate JES on the tuning an MLP model’s 4 hyperparameters
on three datasets. These tasks are part of the OpenML (Vanschoren et al., 2014) library of
tasks. The tasks are classification problems with tabular data. We observe that JES performs
almost identically to MES and EI on two tasks, and substantially better on one.

4. Conclusion

We have presented Joint Entropy Search, an information-theoretic acquisition function
that considers an entirely new quantity, namely the joint density over the optimum and
optimal value. By utilizing the entropy reduction from fantasized optimal observations, JES
obtains a simple form for the entropy reduction regarding the joint distribution. As such,
the additional information considered comes with minimal computational overhead, avoids
restrictive assumptions on the objective, and yields state-of-the-art performance along with
superior decision-making. We believe JES to be a new go-to acquisition function for BO, and
to establish a new standard for subsequent information-theoretic techniques.
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D θd σ2 σ2
ϵ Range

2 0.1 10 0.01 [−9, 9]
4 0.2 10 0.01 [−11, 11]
6 0.3 10 0.01 [−13, 13]

12 0.6 10 0.01 [−18, 18]

Table 2: Hyperparameters for the generated GP sample tasks.

Appendix A. Broader impact

Our work proposes a novel acquisition function for Bayesian optimization. The approach is
foundational and does not have direct societal or ethical consequences. However, JES will
be used in the development of applications for a wide range of areas and thus indirectly
contribute to their impacts on society. As an algorithm that can be used for HPO, JES
intends to cut resource expenditure associated with model training, while increasing their
performance. This can help reduce the environmental footprint of machine learning research.

Appendix B. Experimental Setup

Frameworks. For all tasks and acquisition functions, we use the original PES imple-
mentation in MATLAB by Hernández-Lobato et al. (2014), which uses the GPStuff (Van-
hatalo et al., 2013) library. The implementation optimizes the acquisition function, and
the posterior mean, by sampling a dense grid of points, and uses a gradient-based op-
timizer to further optimize the single best point. For better accuracy, we substantially
increased the number of grid points. The JES implementation can be found at https:
//github.com/jointentropysearch/JointEntropySearch.

GP Sample tasks. To generate the GP sample tasks, we use a random Fourier fea-
ture (Rahimi and Recht, 2007) with weights drawn from the spectral density of a squared
exponential kernel. For dimension-wise length scale θd, output scale σ2, and noise variance
σ2
ϵ , the hyperparameters per task are shown in Table 2. The range in the last column is

a rough approximation of the magnitude of the output spanned by each GP sample. The
length scales of the samples are gradually increased with each dimensionality to maintain
a reasonable level of difficulty for all tasks. Since the optimal values for these tasks are
unavailable, they are approximated through a dense random search, followed by local search
on the most promising subset of points.

Runtime tests. For the runtime tests, we utilized each acquisition function’s original
MATLAB implementation. Each acquisition function is timed on the whole procedure of
selecting the next query – starting from the pre-computation involved with JES, MES and
PES, until the subsequent query is ultimately selected. As such, the time spent sampling
GP hyperparameters, inverting the Gram matrix, and evaluating the objective function is
excluded. In Tab. 3, all relevant hyperparameters for the runtime of each acquisition function
are displayed: The number of sampled sets of hyperparameters (No. HP sets), the number of
maxima per sampled set of hyperparameters (No. maxima per set), the number of randomly

9

https://github.com/jointentropysearch/JointEntropySearch
https://github.com/jointentropysearch/JointEntropySearch


Approach No. HP sets No. maxima per set No. RS No. features

JES 10 10 10000 1000
MES 10 10 10000 N/A
EI 10 N/A 10000 N/A
PES 10 10 1000 1000

Table 3: Settings for the runtime tests. The JES settings are chosen to mimic MES/PES as closely as
possible.

Task No. HP sets No. maxima per set Update frequency σ2
ϵ

Branin 20 5 5 0.01
Hartmann (3D) 20 5 10 0.01
Hartmann (6D) 20 5 10 0.01

MLP classification 20 5 5 0.0

Table 4: GP Hyperparameter sets and updates for the synthetic test functions and MLP tasks.

sampled points evaluated on the acquisition function (No. RS) and the number of Fourier
features (No. features) employed when approximately sampling optima.

Synthetic test functions. For the synthetic test functions, 100 sampled optimal pairs
are used for each acquisition function. GP hyperparameters are marginalized over for these
tasks, so an equal number of optimal pairs are sampled for each hyperparameter set. The
hyperparameters are re-sampled on a fixed schedule throughout the run. Naturally, the
sampled maxima were updated at each iteration. Moreover, each test function was also given
a fixed amount of noise. Regret was computed not from the noisy observed value, but from
the true, noiseless function value.

MLP classification tasks. All the classification tasks have a substantial amount of noise.
As noiseless objective values are unavailable, we report the observed classification accuracy. 5
hyperparameters are available in HPOBench for these tasks. However, one of them (number
of layers, depth) is held fixed due to its small integer-valued domain and the lack of integer
hyperparameter support in the MATLAB framework. As seen in Tab. 5, the two other integer-
valued hyperparameters batch size and width have orders of magnitude larger domains, and
can therefore reasonably be treated as continuous hyperparameters. All tasks are optimized
in the [0, 1] range, and are scaled, transformed, and rounded to the nearest integer in the
objective function where necessary. All non-fixed parameters are evaluated in log scale. The
three tasks evaluated are Australian, Blood-transfusion-service-center, and Vehicle, with
HPOBench task numbers #146818, #10101, #53, respectively.

Compute resources. All experiments are carried out on Intel Xeon Gold 6130 CPUs.
Each repetition is run on a single core. In total, approximately 50, 000 core hours are used
for the experiments in the main paper, and an additional 20, 000 for the appendix.
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Name Type Range

Alpha (L2) Continuous [10−8, 10−3]
Batch size Integer [22, 28]

Depth Fixed to 2 {1, 2, 3}
Initial learning rate Continuous [10−5, 1]

Width Integer [24, 210]

Table 5: Search space for the MLP tasks.
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Figure 7: Comparison of JES with varying fraction γ of inverse greedy selections. Mean and 1
standard error of log simple regret is displayed for all tasks.

Appendix C. Ablation Studies

We provide ablation studies for the hyperparameter controlling the ratio of inverse greedy
selection γ and the noise variance σ2

ϵ .

C.1 Ablation study on γ

We provide an ablation study on γ in terms of both the simple and inference regret of
JES. While simple regret may be a more practically relevant metric, inference regret helps
understand the ability of the acquisition function to successfully locate the optimum. Fig. 7
shows that γ > 0 improves simple regret, which is to be expected from its occasional greedy
selection. However, as is shown in Fig. 8, a moderate fraction γ ∈ {0.05, 0.1} also yields
comparable or even improved inference regret on all tasks. Notably, γ = 0.2 yields slightly
worse performance on Hartmann (6D), but yields marginally improved performance on Branin
and Hartmann (3D). As such, the inverse γ-greedy approach not only improves performance
in terms of simple regret, but yields improved inference as well.

C.2 Ablation study on σ2
ϵ

For the noise variance ablation study, we once again consider the GP sample tasks. We fix
the GP noise hyperparameter σ2

ϵ to the correct value prior to the start of the experiment. In
Fig. 9, we show that the performance of JES is robust with respect to the noise level, while
the performance of MES and PES decrease more drastically as the level of noise increases.
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Figure 8: Comparison of JES with varying fraction γ of inverse greedy selections. Mean and 1
standard error of log inference regret is displayed for all tasks.
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Figure 9: Evaluation of JES, MES and PES on noisy 4D GP sample tasks across 50 repetitions for 9
different noise levels. The noise variance σ2

ϵ ranges from 10−4 (top left) to 20 (bottom right). Log
noise standard deviation log(σϵ) is marked in dashed orange.

Appendix D. Dependence on the number of MC samples

We show in Fig. 10 the dependence of JES on the number of MC samples for the GP
sample tasks. JES displays a slight dependence on the number of GP samples, as initial
performance improves marginally for larger number of samples. This is more prominent for
higher-dimensional tasks, where a lower number of samples causes a substantially slower
start. This can be explained by the fact that a larger number of sampled optimal pairs
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Figure 10: Comparison of JES with varying numbers of MC samples on GP tasks of varying
dimensionalities - 10 repetitions on 10 unique tasks, for a total of 100 repetitions. Mean and 1
standard error of log inference regret is displayed for all tasks.

are required to accurately model a higher-dimensional density. Notably, the final regret on
the 12-D benchmark is better for lower numbers of samples, such as JES-4. One potential
explanation for this is its inability to model the joint distribution accurately. If all realized
optimal pairs are close to the perceived optimum, JES is almost certainly going to sample
there. Moreover, since the information gain for each sample is relatively low for samples
in a well-explored region, the information gain of a few samples in an unexplored region
may outweight the information gain of a much larger number of samples in a well-explored
region. For JES-4 and JES-20, it is more likely that all of the sampled optimal pairs are close
to the optimum in this manner, while there is still small positive density on other parts of
the search space. As such, it is possible that JES-4 and JES-20 over-exploit slightly in the
12-dimensional benchmark.

Appendix E. Approximation Quality

We approximate the entropy of the posterior over observations conditioned on the data
and the optimal pair H [p(y|D ∪ (x∗, f∗),x, f∗)] – the entropy of the sum of a Gaussian
and a truncated Gaussian variable – by moment matching of the truncated distribution.
We now show the quality of this approximation, and what impact it can potentially have
on query selection. To do so, we utilize the results from Nguyen et al. (2022) regarding
the density of p(y|D,x, f∗). We note that the approximation regards the truncation from
knowing the optimal value f∗, which constitutes an additional reduction in entropy after
having conditioned the GP on the new observation. As such, the approximation considers
only a fraction of the total entropy reduction, as visualized in Fig. ??.

To establish the quality of the approximation, we compare our approach to approximating
the entropy by MC. Naturally, the MC approach is more computationally expensive than
moment matching, but yields an asymptotically correct result. In Fig. 11, we show for
varying noise levels, expressed as the noise variance ratio of the total variance, and truncation
quantiles Φ−1(α), the difference in entropy between an MC and a moment matching approach.
For example, a truncation quantile of 10−2 means that the upper 99% of the density of the
posterior distribution is removed as a result of truncation. We see that the approximate
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Figure 11: Visualization of approximation error from the moment matching approach compared to
an asymptotically exact MC approach. The colormap represents the fraction of the entropy reduction
resulting from truncation as approximated from moment matching divided by the entropy reduction
as computed through MC. The inconsistencies in coloring in the rightmost part of the image are
caused by inconsistent MC approximation.

entropy reduction from moment matching is consistently lower than for the asymptotically
exact MC approach. Moreover, the approximation error seemingly increases logarithmically
with the truncation quantile. As such, we can expect modest underestimates of the entropy
reduction when we truncate the posterior to an extreme degree, and the level of noise is
low. In the right image of Fig 2, the posterior is severely truncated left of the conditioned
location. However, the noise variance constitutes a large fraction of the total variance at
this location, which means that the approximation is still accurate with respect to the true
entropy reduction. The scenario represented in the bottom left corner of the grid, where
we severely truncate the posterior and the noise variance is low, does not reasonably occur
in practice. The aforementioned scenario would entail sampling an optimal pair which is
several orders of magnitudes worse than the mean of the GP at uncertain (in the sense that
σ >> σϵ) locations. Lastly, the blue region in the upper left corner of the grid represents a
region where we have less truncation, and the noise is a relatively insignificant part of the
total variance. Fig. 11 shows that the entropy reduction from truncation in this region is
underestimated by approximately 15%. As such, the approximation error leads to a slightly
less explorative strategy than what a strategy with exact computation of the truncation term
would provide.
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Figure 12: Mean of inference regret on high-dimensional synthetic functions for vanilla inverse
γ-greedy versions of JES, MES and PES. Upward spikes signify points where the GP hyperparameters
are re-sampled, and the inference regret getting worse as a result. Error bars are omitted to increase
legibility.

Appendix F. Model Misspecification

The performance of information-theoretic methods can suffer substantially from model
misspecification. In Fig. 12, we show for JES, PES and MES how the inverse γ-greedy approach
helps stabilize inference and improve inference regret, and yields substantially better simple
regret for all methods. For Michalewicz (10D), we observe that the inference regret of MES
gets substantially worse after iteration 150. With the inverse γ-greedy approach, this issue is
severely reduced. In Fig. 13, the corresponding simple regrets for MES deviate at iteration
150. The same behavior can be observed for JES on Levy (8D) around iteration 200. Across
all test functions in Fig. 12 and Fig. 13, an inverse γ-greedy strategy yields comparable or
improved inference regret, and strictly improved simple regret for all acquisition functions.
Moreover, we observe that MES is generally the top-performing acquisition function, implying
that it is the most robust to model misspecification. Using the inverse γ-greedy approach,
the acquisition function verifies whether the belief over the location of the optimum is correct
under the current model hyperparameters. If it is not, it re-calibrates its belief.

Appendix G. Regret Measures

We display the regret measures for the GP sample and synthetic test functions.

G.1 GP sample tasks

In Fig. 14, we show the simple regret for the GP sample tasks. We note that the simple and
inference regrets for MES are approximately equal, while there is a substantial difference for
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Figure 13: Mean and 1 standard error of simple regret on high-dimensional synthetic functions for
vanilla inverse γ-greedy versions of JES, MES and PES.
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Figure 14: Comparison of JES, MES, PES and EI on GP prior samples using simple regret. We run
1000 repetitions each for 2, 4 and 6D, and 250 on 12D. Mean and 2 standard errors of log regret are
displayed. The vertical dashed line shows the end of the initial design phase.

JES. For PES, the difference between simple and inference regret is the most pronounced at
approximately two order of magnitude at the most.

G.2 Synthetic test functions

Next, we show the inference regret for the synthetic test functions in Fig. 15. We note that
he simple and inference regrets for JES are approximately equal. For PES, the difference
between simple and inference regret is once again very pronounced. Notably, the simple
regret is significantly better than the inference regret for MES on Branin, implying that it
does not yet have full knowledge of where the optimum is. We once again note the numerical
issues of PES on Branin. Moreover, the inference regret of MES gets marginally worse for
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Figure 15: Comparison of JES, MES, PES and EI on Branin and Hartmann-6, σ2
ϵ = 0.10. Mean

and 2 standard errors of log regret are displayed across 100 repetitions. The vertical dashed line
represents the end of the initial design phase.

Hartmann (6D) from approximately iteration 100 until the end of the run, implying that its
knowledge about the location of the optimum gets worse.
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