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Abstract

Media used in the field of cellular agriculture is difficult to optimize due to the lack of math-
ematical models of population-level muscle cell growth. When measured in lab, growth
assays are convenient but inaccurate, while robust measures of cell number can be time-
consuming. In this work, we addressed these difficulties by optimized a cell culture media
with 14 components using a multi-information source Bayesian optimization algorithm that
locates optimal media conditions based on an iterative refinement of an desirability func-
tion. As a model system, we utilized murine C2C12 cells, using AlamarBlue, LIVE stain,
and trypan blue exclusion cell counting assays to determine cell number. We were able
to design media with 181% more cells than a common commercial variant at parity eco-
nomic cost, while doing so in 38% fewer experiments than an efficient design-of-experiments
method. The optimal medium generalized well to long-term growth, indicating the assay
fusion method improved measurement robustness relative to rapid growth assays alone.

Keywords: cellular agriculture, Bayesian optimization, multi-information source, media
optimization
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1. Introduction

Every bioprocess where cells are used in production requires suitable culture conditions for
cell growth. In the cellular agriculture, where cells are grown for consumption to replace
carbon-intensive and often unethical animal agriculture, cost-effective media has been iden-
tified as the most critical aspect in scale-up and commercialization (O’Neill et al. (2021)).
Optimizing these conditions is difficult due to the large number of media components with
nonlinear and interacting effects (Brunner et al. (2010)). Additionally, experiments are dif-
ficult to conduct at scale due to the expense of laboratory materials and time required to
grow cells. This is especially the case when optimizing adherent cell lines used in cultivated
meat production because cells must be sub-cultured / passaged, and thus exhibit drastically
different dynamics depending how many times the cells have been passaged (Cosenza et al.
(2021)).

In this work we address these issues, particularly the challenge of difficult-to-collect data
on multi-passage growth (call such data IS0), by supplementing it with faster but biased
approximations of long-term growth (call these ISi). The advantage of collecting ISi is that
it can be more numerous and highlight regions of the design space of interest to be further
considered by IS0. We then fuse these information sources using a multi-information source
(IS) Gaussian process (GP) model. With this statistical model, we can use Bayesian opti-
mization (BO), specifically the multi-point q-expected improvement acquisition function, to
select optimal experiments parameterized by desirability function D(x). Whether to sample
a point using IS0 or some ISi is determined using a combinatorial heuristic that quantifies
the D(x)-information value of a given set of experiments and allocates IS accordingly. We
will show that this BO method is superior to a traditional design-of-experiments (DOE)
method and the commercial dulbecco’s modified eagle medium (DMEM).

2. Methods

2.1 Experimental

Our model system is the multi-passage growth of C2C12 cells. These are adherent (growing
on the culture dish) cells that require some combination of media components listed in Table
1. They are also immortalized, allowing them to be stably passaged multiple times without
much genetic drift or cell death. The cells are kept at 37◦C and 5% CO2 and passaged
every 72 hrs in test media depending on the IS. The quality of a given combination of
media components were evaluated as follows: IS0, or cell count after Passage 2, was the
most robust measure of cell health because the C2C12 cells would have to survive and
grow for 144 hrs and withstand two passages, which can be damaging to cells. IS1, or cell
count after Passage 1, is ”automatically” pared with IS0 because in order to passage a cell
population at a given density one must have the cell count. IS2 (AlamarBlue) and IS3

(LIVE) are chemical assays done in small 96 well plates that are correlates of short-term
cell health. Together, these assays form the IS used in this study.

2.2 Computational

In standard BO, we model a process using a GP characterized by a prior mean µ0 = c
and covariance matrix Σ(x, x′) = σ2

fexp(−0.5Σp
k=1(xk − x′k)

2/λ2
k). We used the squared
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Abrev. Component
Conc.
Min

(mg/mL)

Conc.
Max

(mg/mL)
Cost ck

T Transferrin 0 0.026 6.53E-03
I Insulin 0 0.035 1.43E-02
SS Sodium Selenite 0 1.75E-05 6.4E-09
AA Ascorbic Acid 0 8.75E-03 9.8E-06
Glu Glucose 0 15.75 0.2
Gluta Glutamine (GlutaMAX) 0 1.519 2.09E-02
Albu Albumin (AlbuMAX) 0 1.4 4.94
FBS FBS (% v/v) 0 17.5 14.00
H Hydrocortisone 0 1.75E-05 1.1E-05
D Dexamethasone 0 7.00E-04 7.2E-03
P Progesterone 0 1.75E-05 4.0E-07
Esd Estradiol 0 8.75E-06 1.6E-06
Ethan Ethanolamine 0 6.65E-03 6.1E-06
Glutath Glutathione 0 3.50E-03 6.0E-04
- DMEM Supplement (% v/v) - ***54.3 2.1E-02

Table 1: The bounds of optimization are listed above. The cost shown is a unitless scalar-
ization of the relative economic cost of each component. ***All media have a
54.3% v/v (volume percent) base of DMEM supplement (liquid form, no glucose,
glutamine, or FBS).

exponential covariance function covariance kernel to encode the belief that (i) media that
are closer in concentration are closer in growth rate, governed by hyper-parameters σ2 and
λ2, (ii) that the overall biological processes underlying the response surface are smooth with
(iii) each component response governed by λk, allowing each component k to have different
degrees of “wigglyness” for each IS. After observing N data points from a generative process
y(x) = g(x) + ϵ with noise ϵ ∼ N(0, σ2

ϵ ) we can compute the posterior mean µ(x) and
covariance σ(x) (equations 2.23 and 2.24 in (Rasmussen and Williams)).

Because the key objective of this work is to optimize an underlying (and data-poor)
process IS0, we fuse different IS by using a GP described in (Poloczek et al. (2017)). This
multi-IS GP utilizes auxiliary information sources to model an underlying “true” function.
We chose this model over the more typical multi-task GP to encode the prior belief that the
generative model includes an underlying “true” function and several biased / variable but
correlated auxiliary functions, and to provide the flexibility of allowing different length-scale
hyper-parameters λk for each IS to be learned from the data. Let us assume a generative
model y = g(x) + δ(x,m) + ϵ for a given medium combination x at an IS indexed by m.
We therefore have one independent GP for the underlying function g(x) and one for each
auxiliary IS deviation function δ(x,m) for the mth auxiliary IS (where m = 0 references
IS0).

Σ(xm, x′l) = Σ0(x, x
′) + 1(m ̸=0)1(m=l)Σl(x, x

′) (1)
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With this multi-IS GP characterized by the information fusion kernel in we now can
make predictions for IS0 using multiple data sets. Our objective function was a desirability
function D(x) (Akteke-Ozturk et al. (2018)) using a media cost function c(x) = cmin +
Σp
kckxk and feasibility indicator metric ϕ(x) = 1µ(x)≥yL .

D(x) = ϕ(x)
√

µ̄(x)c̄(x) (2)

The desirability function (i) scales µ̄(x) = µ(x)−yL
yH−yL

to favor higher growth media where

yL = 0.5 and yH = 2, (ii) scales c̄(x) = c(x)−cH
cmin−cH

to favor lower cost media for cH =

cmin+Σp
kck, and (iii) down-weights media that fails to be µ(x) ≥ yL, or predicted to perform

at least equal to or better than a user-defined lower bound yL. All lab measurements of
cell growth (at all IS) are made relative to a control medium (DMEM) so y is a normalized
value. We then use D(x) in the multi-point expected improvement acquisition function
α(X) = E[(max{D(X)}−D∗(XN ))+] from (Wang et al. (2020)) where max{D(X)} is the
optimal D(x) and D∗(XN ) is the previous best desirability found from the N observed data
points. To acknowledge the fact that data collected in biological experiments are noisy, we
refine the acquisition function to be the noisy multi-point expected improvement (Letham
et al. (2019)) by additionally sampling (using R = 2000 monte-carlo samples, where Σ is the
summation operator) previous values D(XN ). Note that the r subscript means rth sample
of the objective function using the reparameterization trick.

α(X) = 1/RΣR
r=1[(max{Dr(X)} −max{Dr(XN )})+] (3)

We now must determine which experiments should be collected with our high-fidelity IS0

versus lower-fidelity IS. After hyper-parameter optimization using L-BFGS-B to maximize
the log-likelihood of the multi-IS GP (with normal priors on λ’s and σf ’s, and a gamma prior
on σϵ), we solve X∗ = argmaxα(X) using the IS0 prediction using multi-start L-BFGS-B
for q = 10 total experiments (the capacity of our lab). Next, we compute α(X) for all

(
q
q0

)
combinations of X∗ for q0 = 3 (IS0 capacity of our lab). The highest scoring combination of
q0 experiments in X∗ is allocated to IS0 and IS1, and the q−q0 = 7 remaining experiments
are allocated to IS2 and IS3 only. The reasoning behind this heuristic is that the most
optimal experiments should be allocated the most important IS, while the sub-optimal (but
still valuable) experiments should be allocated the remaining auxiliary IS.

3. Results

We compared this algorithm to a DOE method, which only had access to IS1 AlamarBlue
assay, in the optimization of cell culture media. Our BO method found D(x) 132% higher
than DOE using 38% fewer experiments (but with 34% higher cost) and a 113% improve-
ment over the control DMEM (with 1.6% higher cost) as seen in Figure 1. Our BO method
found that Transferrin, Glutamine, Progesterone, and Estradiol should be at a high relative
concentration. Ascorbic Acid, Hydrocortisone, and Dexamethasone should be at a low/zero
concentration. As expected, there was a trade-off between number of cells y(x) and medium
cost c(x) captured in Figure 1b-1c. More nutrients, especially FBS, improved cell number
at the expense of higher cost; this trend then breaks down as more FBS and Albumin
have a deleterious effect on growth / desirability. This may be due to the redundancy of
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Figure 1: the conditions of each experiment (concentration ranges in Table 1) are shown
plotted as a function of the cumulative number of experiments in the BO (circle)
and DOE (box) study. The moving average (solid and dashed line for BO and
DOE respectively) shows how each method searches for optimal concentrations.
The horizontal line represents the final BO optimal concentration.

Albumin (FBS has naturally-occurring Albumin and other proteins) which caused it to be
automatically screened out of the design.

It was also useful to examine the correlations between different IS (Figure 2). The model
predicts all IS to have very linear correlations (Figure 2c left) likely due to prior-enforced
hyper-parameter regularization. In reality, IS1 and IS2 fail to capture high performing
media due to the breakdown in linearity of the AlamarBlue and LIVE assay at high cell
concentrations. This further emphasizes the need for robust measures of multi-passage
growth beyond simple (and biased) rapid growth assays. The optimal medium allowed the
C2C12 cells to grow well for two additional passages (Passage 4) while the DOE-designed
media did not (data not shown), indicating the multi-information source assay improved
measurement robustness relative to rapid growth assays alone.

4. Conclusions

Multi-passage growth assays are difficult to measure, and even more difficult to optimize
when given many components. We managed this complexity by coupling long-term (> 1
passages) cell number measurements with simpler but less valuable rapid growth chemical
assays in murine C2C12 cultures as a model system for cellular agricultural applications,
capturing a more holistic model of a theoretical cell growth process. We combined this
with an optimization algorithm that efficiently allocates laboratory resources during multi-
passage optimization. This resulted in a reduction in experimental effort to find a media
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Passage 2
0.56 0.59 0.71

Passage 1
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Actual Correlation (Data YN)Predicted Correlation

LIVE

Distribution of YN

(XN, XN) for All N Datapoints
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(x, x) for xFBS [0, 1]

Figure 2: (a) kernel output for data {XN , YN} organized by IS0,IS1,IS2,IS3 left to right
(b) same kernel but organized with equally space values of xFBS from 0 to 1. (c)
Various IS cell number / correlate distributions (diagonal histograms) are shown.
Above the diagonal (squares) are the actual inter-IS correlations for each IS with
their respective R2 values, and below the diagonal (circles) are the predicted
inter-IS correlations for a random data set. The middle distributions are the
output distributions of each IS.

more proliferative than the control at nearly the same cost. As the longer-term passaging
study suggests, our Passage 2 objective function and IS were well calibrated to mimicking
the complex industrial process of growing large batches of cells over many passages. The
media resulting from the BO algorithm supported significantly more C2C12 cell growth
with only a small increase in cost. With these results, it should be possible to implement
this type of experimental optimization algorithm to other systems of importance to cellular
agriculture and cell culture production processes with difficult-to-measure output spaces,
including for optimization of serum-free media for cell growth and for differentiation.
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