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Abstract

Antibiotic resistance is an important public health problem. One potential solution is the
development of synergistic antibiotic combinations, in which the combination is more effec-
tive than the component drugs. However, experimental progress in this direction is severely
limited by the number of samples required to exhaustively test for synergy, which grows
exponentially with the number of drugs combined. In this extended abstract we introduce
the normalized diagonal sampling (NDS) design, an experimental design that samples along
all appropriately normalized diagonals in concentration space. Under a benign assumption
on antibiotic behavior, we prove that the NDS design identifies all synergies according
to a novel, clinically motivated definition of synergy. We applied our method to screen
two- through eight-way combinations of eight antibiotics at 10 concentrations each. Our
method showed that there are no clinically relevant synergies among these eight antibiotics,
accomplishing in two weeks what previously would have taken years.
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1. Introduction

Antibiotic resistance poses a clinical problem for which there are few available solutions.
One promising strategy is the use of synergistic antibiotic pairings whose collective potency
is greater than expected (Tyers andWright, 2019). Commercially available examples include
the antibiotics trimethoprim and sulfamethoxazole, which inhibit separate steps in the fo-
late biosynthesis pathway (Bushby and Hitchings, 1968), and quinupristin and dalfopristin,
which both inhibit the ribosome (Noeske et al., 2014). Very few examples of synergis-
tic combinations exceed two antibiotics (Booth et al., 1994), partly because the number
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of measurements required to detect multi-antibiotic synergy increases exponentially with
the number of antibiotics tested. Exhaustively testing 10 concentrations of five antibiotics
would require on the order of 105 experiments, which limits the search space even when
employing robotics to facilitate experimentation (Tekin et al., 2018). Scaling exhaustive
testing beyond five antibiotics is therefore impractical, and another approach is needed to
explore the space of possible synergies.

In this extended abstract we present an experimental design that provably identifies all
synergies among d drugs at m concentrations using just m · 2d measurements, an improve-
ment upon the md measurements of the exhaustive design that makes high-dimensional
synergy screening practical for the first time. Our contributions are fourfold: (1) we de-
fine a new metric of synergy motivated by the clinical use of combination therapy; (2)
we use domain-specific knowledge about the behavior of antibiotics to define a class of
high-dimensional dose-response curves; (3) we introduce the Normalized Diagonal Sam-
pling design, a novel experimental design, and show that sampling according to this design
identifies all synergies under our metric when the dose-response belongs to aforementioned
function class; and (4) we perform experiments using our design, and show that a set of
eight common antibiotics has no clinically relevant synergies against a wild-type strain of
E. coli. We conclude with a discussion of future work, in which we plan to apply adaptive
experimental design to identify drug combinations with high coverage over a variety of E.
coli strains with varying degrees of antibiotic resistance. Such a drug combination could be
used in the clinic to provide initial treatment even before the bacterial strain is identified.

Related work. Scientists are interested in understanding the behavior of combinations
of biological agents in fields as diverse as immunosuppressants (Berenbaum, 1977), environ-
mental toxins (Cedergreen, 2014), anesthetics (Hendrickx et al., 2008), and anticancer drugs
(Scripture and Figg, 2006). Understanding this behavior requires both a metric by which
to measure interactions and an experimental design for collecting measurements. Our pro-
posed metric, the Minimax Effective Concentration Index, combines elements of the popular
Highest Single Agent (Berenbaum, 1989) and Loewe (Loewe, 1953) models to reflect how
antibiotics are combined in the clinic. Our experimental design is similar to past work that
reduces the sample complexity via subsampling the combination space (Cokol et al., 2017),
but unlike past work, we provide formal guarantees on the recovery of synergistic responses.

2. Provably identifying synergy with sample-efficient experimental design

In this section we describe our theoretical and methodological contributions. We begin by
introducing a novel metric for synergy, the Minimax Effective Concentration Index. Next,
we describe a biologically sound assumption on the function class of high-dimensional dose-
response curves. Finally, we introduce our experimental design, the normalized diagonal
sampling design, which provably identifies all synergies using a small subset of all possible
measurements, as long as the dose-response function does in fact lie within our assumed
function class. Figure 1 summarizes these contributions.

2.1 The Minimax Effective Concentration Index

In clinical practice the goal is to administer antibiotic combinations that are effective while
avoiding high doses, which may cause adverse effects. We define the Minimax Effective
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Concentration Index (MECI), which captures the idea of avoiding high doses by minimizing
the highest single antibiotic’s concentration (appropriately normalized) among antibiotic
combinations that are effective at inhibiting growth.

Let Ω = {1, 2, 3, . . . , d} index a set of d drugs. An experimental measurement consists
of a vector x ∈ Rd

≥0 encoding a concentration for each drug; an experiment determines
whether this vector is effective or ineffective against the bacteria. Let Ni be the normaliza-
tion constant for drug i, which captures biologically or clinically relevant notions of scale
between drugs, with N the vector of normalization terms. The set of possible experimen-
tal measurements, denoted X (Ω), is all combinations of drugs at a given set of m ratios
relative to the normalization, xi

Ni
∈ {0, c1, c2, . . . , cm−1}. These ratios are commonly taken

to be powers of two, cj = 2−j . Finally, let x
N denote elementwise division, resulting in a

normalized concentration vector. The MECI is defined as:

MECI(Ω) = min
x∈X (Ω)

∣∣∣∣∣∣ x
N

∣∣∣∣∣∣
∞

such that x is effective. (1)

We define the Total Synergy Score (TSS(Ω)) as the improvement of the best combination
in Ω upon the best single drug in Ω. The Emergent Synergy Score (ESS(Ω)) is similarly
defined as the improvement over the best (strict) subset of drugs in Ω, and captures the
marginal benefit of combining the drugs Ω. We say a synergy is clinically relevant whenever
log2(ESS(Ω)) ≤ −2.

TSS(Ω) =
MECI(Ω)

mini∈ΩMECI({i})
; ESS(Ω) =

MECI(Ω)

minΩ′⊂ΩMECI(Ω′)
.

2.2 The non-paradoxical growth assumption

Our goal is to identify synergies among all subsets of drugs in Ω, which means we must
solve the constrained optimization problem (1) for each subset. Observe that we only have
sample access to the constraint function; we must experimentally measure bacterial growth
under dose combination x to determine if x is effective.

Without any restrictions on the constraint function, we cannot identify the MECI using
any method other than exhaustive search. To overcome this problem, we identify a biolog-
ically meaningful function class of unimodal dose-response functions, which we say do not
exhibit paradoxical growth. The function class is defined formally in Definition 1, with an
example of paradoxical growth illustrated in Figure 1B.

Definition 1 (Absence of paradoxical growth) Let Ω be a set of antibiotics. Let the

vector x0 ∈ R|Ω|
≥0 represent a fixed background concentration of antibiotics to which we add

increasing amounts of another antibiotic combination x ∈ R|Ω|
≥0. We say the set of drugs

Ω does not exhibit paradoxical growth if, for all c3 > c2 > c1 ≥ 0, the response

r : R|Ω|
≥0 → R satisfies r(x0 + c2x) < r(x0 + c1x) =⇒ r(x0 + c3x) ≤ r(x0 + c2x).

2.3 The normalized diagonal sampling design

We introduce the normalized diagonal sampling (NDS) design, an experimental design that
samples all combinations of drugs in Ω at equal concentrations relative to the normaliza-
tions Ni. The NDS design evaluates each combination Ω′ ⊆ Ω at all m − 1 normalized
concentrations {c11, c21, . . . , cm−11}, where 1 represents a vector of all ones of size |Ω′|.
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Figure 1: (A) Testing three drugs at four concentrations each could be performed exhaus-
tively using a checkerboard assay (all circles), or via the NDS design (bold circles).
(B) “Proof by picture” of NDS correctness. Blue circles show the minimum-norm
effective concentration along each diagonal (solid red line) sampled by the NDS
design. Points with a smaller norm than the NDS-identified MECI must be inef-
fective, otherwise the drugs would exhibit paradoxical growth.

Exhaustive tests for synergy are conducted with checkerboard assays (see Figure 1A)
requiring md wells to screen d drugs at m concentrations each. The NDS design signifi-
cantly reduces the required number of wells by testing along the “diagonal” − testing each
combination with all drugs present at the highest concentration, then at the second-highest
concentration, and so on (bold measurements in Figure 1A). Under the NDS design, each
of the 2d drug combinations requires only m wells, for a total requirement of m · 2d wells.
For eight drugs and 10 concentrations per drug, this requires m · 2d = 10 · 28 = 2, 560 wells,
or about twenty six 96-well plates. This is experimentally feasible, whereas md = 108 wells
(requiring approximately 106 plates) is not.

Suppose we define a concentration vector x as effective whenever the measured response
falls below some threshold (r(x) ≤ t). Then, as long as the response behaves according to
Definition 1, we can identify entire regions of the antibiotic combination space as ineffective
using only measurements on the boundary of the space. This leads to our main result: the
correctness of the NDS design in the absence of paradoxical growth.

Theorem 2 Assume the set of drugs Ω does not exhibit paradoxical growth (Definition 1).
Then, the normalized diagonal sampling design applied to Ω identifies MECI(Ω′) for all
Ω′ ⊆ Ω. In other words, of all the concentration vectors x sampled by the NDS design, the
one with the minimum N -normalized ℓ∞ norm among effective vectors is also the minimum
norm effective point among the full set of possible combinations X (Ω′), for each Ω′ ⊆ Ω.

Since the NDS design provably finds the MECI, high-dimensional antibiotic combination
screens can be run with the confidence that if no synergies are identified, then none exist.
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Table 1: Experimental results show no strong synergy among eight tested drugs

Breakpoint Normalized MIC Normalized

Number of Drugs 2 3 4 5 6 7 8 2 3 4 5 6 7 8

Weak Synergy 5 4 6 1 0 1 0 18 14 11 1 0 0 0
No Synergy 23 52 64 55 28 7 1 10 42 59 55 28 8 1

2.4 Experimental results: no clinically relevant synergies among eight drugs

We applied our method to identify synergies among a set of eight common antibiotics:
ampicillin, aztreonam, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, trimetho-
prim and tobramycin. Experiments were fully randomized with the use of robotics, and
drug effectiveness was measured by computing the area under the curve of optical density
(600nm) over time.

We performed two separate experiments according to two different normalizations Ni,
EUCAST breakpoint and minimum inhibitory concentration (MIC), to illustrate the flexibil-
ity of our synergy metric and experimental design. The breakpoint normalized experiment
is motivated by clinical applications, where the breakpoint serves as a proxy for a stan-
dard dose of antibiotics, while the MIC normalized experiment more closely aligns with the
methods biologists use to understand the mechanisms of synergy. Table 1 shows the number
of drug combinations with weak synergy (log2ESS = −1) and no synergy (log2ESS = 0),
stratified by the number of drugs in the combination. We found no combination of any
cardinality that exhibited clinically relevant levels of synergy (log2ESS ≤ −2).

Our findings are consistent with previous studies that found synergy to be rare (Cokol-
Cakmak et al., 2020; Tekin et al., 2018; Chandrasekaran et al., 2016; Yilancioglu and Cokol,
2019). Our method provides an advantage over these previous methods; under the assump-
tion that the drugs do not exhibit paradoxical growth, we guarantee that no clinically
relevant synergies exist among these eight drugs in the experimental conditions tested, even
though our design required only a fraction of the samples of an exhaustive screen.

3. Future directions: optimizing the empiric therapy

We have so far motivated antibiotic combination therapy with the promise of synergy, with
implications for reduced side effects or decreased acquisition of resistance when treating
a single bacterial strain (genetic variant). A different motivation for combination therapy
comes from the clinical goal of coverage, in which we seek a combination that is effective
against the largest number of bacterial strains possible.

Definition 3 (Coverage) Let bacterial strains s be drawn from a population S, as in a
hospital setting in which patients arrive with infections of unknown origin. Let Ω be the

set of drugs available. We define the coverage of the combination x ∈ R|Ω|
≥0 as C(x) :=

Ps∼S(x is effective against s).

Coverage is a property of the population S of infectious strains, and varies across category
of infection (e.g. sepsis, pneumonia) and geographical region. Finding a combination with
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high coverage is complicated by the existence of antibiotic resistance, with many strains
exhibiting multiple antibiotic resistance. In addition, resistance to one drug can confer
resistance to an entire class or mechanism of antibiotics, so that resistance patterns are
typically correlated between strains.

Identifying an antibiotic combination with high coverage is important in the adminis-
tration of the so-called empiric therapy, the combination prescribed to all patients with a
given set of symptoms before doctors know specific information about the infectious strain.
This problem can be formalized as a constrained maximization of the coverage:

Problem Statement 1 (Optimal Empiric Therapy.) Identify the combination of K
antibiotics that maximizes coverage while applying no antibiotic at a dose greater than its
normalization Ni.

argmax
x

C(x) s.t. ||x||0 ≤ K,
∣∣∣∣ x

N

∣∣∣∣
∞ ≤ 1

We present several ideas for future directions to address this problem statement.
Subset selection. One constraint of the empiric therapy is that it should not prescribe

any drug above its normalization constant Ni. By choosing Ni to be the EUCAST break-
point, which is a proxy for the concentration the drug achieves in the human body when
administered in a clinical setting, this constraint translates to prescribing each drug at no
more than its “standard” dose. Our non-paradoxical growth assumption tells us that the
highest-coverage dosing will always occur when each drug in the combination is prescribed
at xi = Ni, so the problem becomes one of selecting the best K of d drugs.

Best-of-K Bandits. When the problem is cast as one of subset selection, it bears
some resemblance to the Best-of-K bandits problem. Each round, a strain s is chosen by
nature, the player chooses a set of K antibiotics, and the player receives reward 1 if the
strain is sensitive to any drug in the player’s set, or a reward of 0 if the strain is resistant
to all drugs in the player’s set. Simchowitz et al. (2016) show that the Best-of-K bandits
problem is very challenging when individual drugs have low average effectiveness but drug
sensitivities are correlated among strains. Our setting may additionally involve interactions
between the drugs, which is not precisely captured by the Best-of-K framework.

Matrix completion. If there were no interactions between drugs, or those interactions
were of a small magnitude, then the behavior of high-dimensional combinations could be
predicted using just single-drug response data for each strain. If we take S to be an infinite
population of strains, then an important experimental design goal is to identify which single
drug responses to collect from which strains, where at each time step we may choose to mea-
sure the susceptibility of one new or previously-measured strain to a single antibiotic. Since
resistance patterns among strains are correlated, it is natural to suspect that the matrix
describing the resistance of each strain to each drug has a low-dimensional factorization.
We could leverage this idea to take fewer measurements from each strain, allowing us to
sample more strains from S. If we believed the set of drugs exhibited interactions up to
some order M , then we could extend this to M + 1-dimensional tensor factorization.
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