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Abstract
In multi-agent coverage control problems, agents navigate their environment to reach loca-
tions that maximize the coverage of some density. In practice, the density is rarely known a
priori, further complicating the original NP-hard problem. Moreover, in many applications,
agents cannot visit arbitrary locations due to a priori unknown safety constraints. In this
paper, we aim to efficiently learn the density to approximately solve the coverage problem
while preserving the agents’ safety. We first propose a conditionally linear submodular
coverage function that facilitates theoretical analysis. Utilizing this structure, we develop
MaCOpt, a novel algorithm that efficiently trades off the exploration-exploitation dilemma
due to partial observability, and show that it achieves sublinear regret. Next, we extend
results on single-agent safe exploration to our multi-agent setting and propose SafeMaC
for safe coverage and exploration. We analyze SafeMaC and give first of its kind results:
near optimal coverage in finite time while provably guaranteeing safety. We extensively
evaluate our algorithms on synthetic and real problems, including a bio-diversity monitoring
task under safety constraints, where SafeMaC outperforms competing methods.
Keywords: Multi-agent, Submodularity, Coverage control, Safety, Bayesian Optimization

1. Introduction

In multi-agent coverage control (MaC) problems, multiple agents coordinate to maximize
coverage over some spatially distributed events. Their applications abound, from collabora-
tive mapping [1], environmental monitoring [2], inspection robotics [3] to sensor networks [4].
In addition, the coverage formulation can address core challenges in cooperative multi-agent
RL [5], e.g., exploration [6], by providing high-level goals. In these applications, agents often
encounter safety constraints that may lead to critical accidents when ignored, e.g., obstacles
[7] or extreme weather conditions [8, 9].

. † Authors involved in joint supervision
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Deploying coverage control solutions in the real world presents many challenges: (i)
for a given density of relevant events, this is an NP hard problem [10]; (ii) such density is
rarely known in practice [2] and must be learned from data, which presents a complex active
learning problem as the quantity we measure (the density) differs from the one we want
to optimize (its coverage); (iii) agents often operate under safety-critical conditions, [7–9],
that may be unknown a priori. This requires cautious exploration of the environment to
prevent catastrophic outcomes. While prior work addresses subsets of these challenges (see
Section 7), we are not aware of methods that address them jointly.

This work makes the following contributions toward efficiently solving safe coverage
control with a-priori unknown objectives and constraints. Firstly, we model this multi-agent
learning task as a conditionally linear coverage function. We use the monotonocity and the
submodularity of this function to propose MaCOpt, a new algorithm for the unconstrained
setting that enjoys sublinear cumulative regret and efficiently recommends a near-optimal
solution. Secondly, we extend GoOSE [11], an algorithm for single agent safe exploration,
to the multi-agent case. Combining our extension of GoOSE with MaCOpt, we propose
SafeMaC, a novel algorithm for safe multi-agent coverage control. We analyze it and show it
attains a near-optimal solution in a finite time. Finally, we demonstrate our algorithms on a
synthetic and two real world applications: safe biodiversity monitoring and obstacle avoidance.
We show SafeMaC finds better solutions than algorithms that do not actively explore the
feasible region and is more sample efficient than competing near-optimal safe algorithms.

2. Problem Statement

We present the safety-constrained multi-agent coverage control problem that we aim to solve.
Coverage control. Coverage control models situations where we want deploy a swarm of
dynamic agents to maximize the coverage of a quantity of interest. Formally, given a finite1

set of possible locations V , the goal of coverage control is to maximize a function F : 2V → R
that assigns to each subset, X ⊆ V , the corresponding coverage value. For K agents, the
resulting problem is argmaxX:|X|≤K F (X).
Sensing region. Depending on the application, we may use different definitions of F . Here,
we model cases where agent i at location xi covers a limited sensing region around it, Di.
While Di can be any connected subset of V , in practice it is often a ball centered at xi.
Given a function ρ : V → R denoting the density of a quantity of interest at each v ∈ V ,
our coverage objective is

F (X; ρ, V ) =
∑
xi∈X

∑
v∈Di−

ρ(v)/N, (1)

where Di− := Di \D1:i−1 indicates the elements in V covered by agent i but not by agents
1 : i− 1, and N is the largest number of elements in V covered by a sensing region.
Safety. In many real-world problems, agents cannot go to arbitrary locations due to safety
concerns. To model this, we introduce a constraint function q : V → R and we consider safe all
locations v satisfying q(v) ≥ 0. Such constraint restricts the space of possible solutions of our
problem in two ways. First, it prevents agents from monitoring from unsafe locations. Second,
depending on its dynamics, agent i may be unable to safely reach a disconnected safe area

1. Continuous domains can be handled via discretization
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(b) Illustration of multi-agent GoOSE

Figure 1: a) Agents are partitioned into two batches. Agent 1 cover D1(green), 2 cover D2−

(orange) & 3 cover D3−(yellow). b) SafeMaC sets a goal xg,it ∀i in the optimistic set. It forms
a expander region (dark blue) to safely expand the pessimistic safe set, Sp

t , towards the goal.

starting from xi0, see Fig. 1a. We denote with R̄ϵq({x
i
0}) the largest safely reachable region

starting from xi0 and with B a collection of batches of agents such that all agents in the same
batch B share the same safely reachable set, ∀i, j ∈ B : R̄ϵq({x

i
0}) ∩ R̄ϵq({x

j
0}) ̸= ∅, see Ap-

pendix B for formal definitions. Based on this, we define the safely reachable control problem∑
B∈B

max
XB∈R̄ϵq

(XB
0 )

F (XB; ρ, R̄ϵq(X
B
0 )), (2)

where, XB
0 = {xi0}i∈B are the starting locations of all agents in B and R̄ϵq(X

B
0 ) =

∪i∈BR̄ϵq({x
i
0}) indicates the largest safely reachable region from any point xi0 for all i in B.

Unknown density and constraint. In practice, the density ρ and the constraint q are
often unknown a priori. However, the agents can iteratively obtain noisy measurements of
their values at target locations. We consider synchronous measurements, i.e., we wait until all
agents have collected the desired measurement for the current iteration before moving to the
next one. Here, we focus on the high-level problem of choosing informative locations, rather
than the design of low-level motion planning. Therefore, our goal is to find an approximate
solution to the problem in Eq. (2) preserving safety throughout exploration, i.e., at every
location visited by the agents, while taking as few measurements as possible in case the
dynamics of the agents are deterministic and known as in [11].

3. Background
Submodularity. Optimizing a function defined over the power set of a finite domain, V ,
scales combinatorially with the size of V in general. In special cases, we can exploit the
structure of the objective to find approximate solutions efficiently. Monotone submodular
functions are one example of this.

A set function F : 2V → R is monotone if for all A ⊆ B ⊂ V we have F (A) ≤ F (B). It
is submodular if ∀v ∈ V \B, we have, F (A∪{v})−F (A) ≥ F (B ∪{v})−F (B). In coverage
control, this means adding v to A yields a larger or equal relative coverage improvement
than adding v to B, if A ⊆ B. Crucially, [12] guarantees that the greedy algorithm produces
a solution within a factor of (1 − 1/e) of the optimal solution for problems of the type
argmaxX:|X|≤K F (X; ρ, V ), when F is monotone and submodular. In practice, the greedy
algorithm often outperforms this worst-case guarantee [13]. The coverage function in Eq. (1)
is a conditionally linear, monotone and submodular function (proof in Appendix C), which
lets us use the results above to design our algorithm for safe coverage control.
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Assumptions. We make regularity assumptions for ρ and q, which let us model them using
Gaussian Processes (GP) [14]. For details, see Apx. A.1. In the next sections, we discuss
MaCOpt and defer the algorithm, analysis and results of SafeMaC to the Appendix A.

4. MaCOpt: unconstrained multi-agent coverage control
Greedy sensing regions. In sequential optimization, it is crucial to balance exploration
and exploitation. GP-UCB [15] is a theoretically sound strategy to strike such a trade-off that
works well in practice. Agents evaluate the objective at locations that maximize an upper con-
fidence bound over the objective given by the GP model such that locations with either a high
posterior mean (exploitation) or standard deviation (exploration) are visited. We construct
a valid confidence upper bound for the coverage F (X) starting from our confidence intervals
on ρ, by replacing the true density ρ with its upper bound uρt in Eq. (1). Next, we apply the
greedy algorithm to this upper bound (Line 3 of Algorithm 1) to select K candidate locations
for evaluating the density. Unfortunately, this exploration strategy may perform poorly. This
is because, to reduce the uncertainty over the coverage F at X, we must learn the density ρ at
all locations inside the sensing region, ∪Ki=1D

i, rather than simply at X. We say ours is a par-
tial monitoring problem, where the objective F differs from the quantity we measure, i.e., the
density ρ. Next, we explain how to choose locations where to observe the density for a given X.
Uncertainty sampling. Given the next locations for the agents, X, we measure the density
to learn efficiently about F (X). Intuitively, agent i learns the density where the uncertainty is
highest within the area it covers that is not covered by agents {1, . . . , i−1}, i.e., Di−

t (Line 4).
Stopping criterion. The algorithm should terminate when a near-optimal solution is
achieved. Intuitively, this occurs when the uncertainty about the coverage value of the
greedy recommendation is low. Formally, we require the sum of the uncertainties over the
sampling targets, wt =

∑K
i=1 u

ρ
t−1(x

g,i
t ) − lρt−1(x

g,i
t ), to be below a threshold, ϵρ (Line 2).

Importantly, this stopping criterion requires the confidence intervals to shrink only at regions
that potentially maximize the coverage.
MaCOpt. Now, we introduce MaCOpt (Algorithm 1). At round t, we select the sensing
locations for the agents, Xt, by greedily optimizing the upper confidence bound of the
coverage. Then, each agent i collects noisy density measurements at the points of highest
uncertainty within Di−

t . Finally, we update our GP over the density and, if the sum of
maximum uncertainties within each sensing region is small, we stop the algorithm.

5. Analysis

MaCOpt. To measure the progress of MaCOpt, we study its regret, i.e., the difference
between its solution and the one we could find if we knew the true density. Since control
coverage consists in maximizing a monotone submodular function, we cannot compute the
true optimum even for known densities. However, we can efficiently find a solution that is
at least (1− 1/e) within the optimum. Thus, we quantify performance using the following
notion of cumulative regret,

Regact(T ) = (1− 1

e
)

T∑
t=1

F (X⋆; ρ, V )−
T∑
t=1

F (Xt; ρ, V ), (3)

where F (X⋆; ρ, V ) is the optimal coverage. We now state one of our main results, which guaran-
tees that the cumulative regret of MaCOpt grows sublinearly in time (proof in Appendix E).
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Algorithm 1 MaCOpt

1: Inputs X0, ϵρ, V , GPρ, t← 1
2: while wt > ϵρ do
3: ∀i, xit ← argmax

xi

∑
v∈Di\D1:i−1

t

uρt−1(v)

4: ∀i, xg,it ←argmax
x∈Di−

t

uρt−1(v)−l
ρ
t−1(v)

5: wt←
∑K

i=1 u
ρ
t−1(x

g,i
t )− lρt−1(x

g,i
t )

6: ∀i, yiρt = ρ(xg,it )+ηρ, Update GP
7: t← t+ 1

8: Recommend Xt

L

H

(a) Gorilla Nests

0 50 100 150 200
Samples

0.3

0.4

0.5

0.6

F
(X

T
;ρ
,V

)

MacOpt
UCB

(b) Coverage MaCOpt VS UCB

Figure 2: a) Contours show the Gorilla nests dist-
ribution with weather constraints marked by the

black dashed line, and its contours with grey dash-
ed line. b) MaCOpt in the Gorilla environment.

Theorem 1 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + ln(1/δ). With

probability at least 1− δ, MaCOpt’s regret defined in Eq. (3) is bounded by O(
√

Tβρ
Tγ

ρ
KT ),

Pr

{
Regact(T ) ≤ K

√
8Tβρ

Tγ
ρ
KT

log(1 +Kσ−2
ρ )

}
≥ 1− δ. (6)

The proof of 1 builds on two key ideas. First, we exploit the conditional linearity of the
submodular objective to bound the cumulative regret defined in Eq. (3) with a sum of per
agent regrets. Secondly, we bound the per agent regret with the information capacity γρKT ,
a quantity that measures the largest reduction in uncertainty about the density that can
be obtained from KT noisy evaluations of it. Since γρKT [17] grows sublinearly with T for
commonly used kernels, so does MaCOpt’s regret in Eq. (6). The immediate corollary of
the above theorem, when the MaCOpt stopping criteria is reached (Line 2 of Algorithm 1)
guarantees a near optimal solution up to ϵρ precision.

Corollary 1 Let t⋆ρ be the smallest integer, t⋆ρ
βt⋆ρ

γKt⋆ρ

≤ 8K2

log(1+Kσ−2)ϵ2ρ
, then there exists a t < t⋆ρ

such that w.h.p, MaCOpt terminates and achieves, F (Xt; ρ, V ) ≥ (1− 1
e )F (X⋆; ρ, V )− ϵρ.

6. Experiments

We compare MaCOpt and SafeMaC (Appendix A) to existing methods on synthetic and real-
world problems. We validate our theoretical claims and observe their superiority. We briefly
discuss the Gorilla environment and refer reader to Appendix A, H for the synthetic, the
obstacle and the constrained Gorilla experiment setups along with extended empirical analysis.
Gorilla nest environment. We simulate a bio-diversity monitoring task, where we aim
to cover areas with high density of gorilla nests with a quadrotor in the Kagwene Gorilla
Sanctuary (Fig. 2a). The nest density is obtained by fitting a smooth rate function [18] over
Gorilla nest counts [19]. We perform our experiments with K = 3 agents in a 34× 34 grid
world. Each agent’s disk is defined as the region an agent can reach in r = 5 steps in the
defined grid. We normalize coverage with a maximum value

∑
v∈R̄0(X0)

ρ(v)/N .
MaCOpt. We compare MaCOpt to UCB, a baseline that skips the uncertainty sampling step
from Section 4 and obtains measurements at locations as per Greedy sensing region. Fig. 2b
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shows comparison in the gorilla environment on a day of good weather, i.e., when everywhere
is safe. We see that UCB gets stuck in a local optimum as it does not reduce the uncertainty
of the density, whereas MaCOpt explores more and achieves a higher coverage value.

7. Related work

Our work is at the intersection of multiple fields. This section highlights the most relevant con-
nections to them but is not an exhaustive overview (we reference surveys whenever possible).
Bayesian optimization. In BO, an agent evaluates an objective at a sequence of inputs to
maximize it [20]. In contrast, in our setting the quantity we measure differs from our objective.
Partial monitoring [21] addresses this kind of issues with randomized algorithms rooted in
information theory [22, 23]. In coverage control with unknown density, this challenge is often
addressed by learning the density uniformly over the domain [24, 25]. In contrast, MaCOpt
learns the density only at promising locations.
Coverage control. MaC with known densities is a well-studied NP hard [26] problem.
Many algorithms use efficient heuristics to converge quickly to a local optimum. One popular
strategy is Lloyd’s algorithm [27], which has been studied in different settings, e.g., with
known densities [28, 29], a-priori unknown densities [25, 30–32], taking into account agent’s
dynamics and constraints [33], or in case of non-identical robots [34]. These methods apply
to continuous state and action space and show convergence to a local optimum but lack
optimality guarantees [24, 25, 33] and do not provide sample complexity bounds. Moreover,
their extension to non-convex, disconnected domains is not trivial [35].
Submodular optimization. Online submodular maximization aims at optimizing unknown
submodular functions from noisy measurements. It has multiple applications, including
optimization of numerical solvers [36] and information gathering [37]. Mainly related to ours
is the work in [38], which proposes an algorithm for contextual news recommendation for
linear user preferences with strong regret guarantees. In contrast to that setting, we consider
dynamic agents and have access to partial feedback.
Safety. Depending on the safety formulation and the assumptions, many algorithms have
been proposed for safe learning in dynamical systems [39–48]. In the setting related to us, i.e.,
one with a-priori unknown constraints, there exists safe exploration algorithms that leverage
regularity and establish safety and optimality guarantee for the BO case [49, 50] and further
extended to the MDP case [51, 52]. All these approaches may be sample inefficient as they
may explore the constraint in regions not relevant to the objective. GoOSE [11] addresses this
problem for both BO and MDP cases. The only work in this context that addresses multi-agent
problems is [53]. However, they have a different objective and do not have safety guarantees.

8. Conclusion

We present two novel algorithms for multi-agent coverage control in unconstrained (MaCOpt)
and safety critical environments (SafeMaC). We show MaCOpt achieves sublinear cumulative
regret, despite the challenge of partial observability. Moreover, we prove SafeMaC achieves
near optimal coverage in finite time while navigating safely. We demonstrate the superiority
of our algorithms in terms of sample efficiency and coverage in real-world applications such as
safe biodiversity monitoring. We dedicated this paper to choosing informative goal locations.
In future, we plan to extend this work to plan informative trajectories as well.
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Appendix A. SafeMaC

A.1 Background

Goal-oriented safe exploration. GoOSE [11] is a single-agent safe exploration algorithm
that extends unconstrained methods to safety-critical cases. Concretely, it maintains an
under and an over approximation of the feasible set, known as the pessimistic and optimistic
safe sets. It preserves safety by restricting the agent to the pessimistic safe set. It efficiently
explores the objective by letting the original unconstrained algorithm recommend locations
within the optimistic safe set. If such recommendations are provably safe, the agent evaluates
the objective there. Otherwise, it evaluates the constraint at a sequence of safe locations
to prove that such recommendation is either safe, which allows it to evaluate the objective,
or unsafe, which triggers the unconstrained algorithm to provide a new recommendation.
Assumptions. To guarantee safety, GoOSE makes two main assumptions. First, it assumes
there is an initial set of safe locations, X0, from where the agent can start exploring. Second,
it assumes the constraint is sufficiently well-behaved, so that we can use data to infer
the safety of unvisited locations. Formally, it assumes the domain V is endowed with a
positive definite kernel kq(·, ·), and that the constraint’s norm in the associated Reproducing
Kernel Hilbert Space [54] is bounded, ∥q∥kq ≤ Bq. This lets us use Gaussian Processes
(GPs) [14] to construct high-probability confidence intervals for q. We specify the GP
prior over q through a mean function, which we assume to be zero everywhere w.l.o.g.,
µ(v) = 0,∀v ∈ V , and a kernel function, k, that captures the covariance between different
locations. If we have access to T measurements, at VT = {vt}Tt=1 perturbed by i.i.d. Gaussian
noise, yT = {q(vt) + η}Tt=1 with η ∼ N (0, σ2), we can compute the posterior mean and
covariance over the constraint at unseen locations v, v′ as µT (v) = k⊤T (v)(KT +σ2I)−1yT and
kt(v, v

′) = k(v, v′)−k⊤T (v)(KT +σ2I)−1kT (v
′), where kT (v) = (k(v1, v), ..., k(vT , v)),KT is a

the positive definite kernel matrix [k(v, v′)]v,v′∈VT
and I ∈ RT×T denotes the identity matrix.

In this work, we make the same assumptions about the safe seed and the regularity of q and ρ.
Approximations of the feasible set. Based on the GP posterior above, GoOSE
builds monotonic confidence intervals for the constraint at each iteration t as lqt (v) :=
max{lqt−1(x), µ

q
t−1(v) − βq

t σ
q
t−1(v)} and uqt (v) := min{uqt−1(x), µ

q
t−1(v) + βq

t σ
q
t−1(v)}, which

contain the true constraint function for every v ∈ V and t ≥ 1, with high probability if βq
t is

selected as in [16] or Section 5. GoOSE uses these confidence intervals within a set S ⊆ V
together with the Lipschitz continuity of q to define operators that determine which locations
are safe in a worst and best case scenarios,

pt(S) = {v ∈ V, |∃z ∈ S : lq(z)− Lqd(v, z) ≥ 0}, (4)
o
ϵq
t (S) = {v ∈ V, |∃z ∈ S : uq(z)− ϵq − Lqd(v, z) ≥ 0}. (5)

Notice the pessimistic operator relies on the lower bound, lq, while the optimistic one on the
upper bound, uq. Moreover, the optimistic one uses a margin ϵq to exclude "barely" safe
locations as the agent might get stuck learning about them. Finally, to disregard locations
the agent could not safely reach or from where it could not safely return, GoOSE introduces
the Rergodic(·, ·) operator. Rergodic(pt(S), S) indicates locations in S or locations in pt(S)
reachable from S and from where the agent can return to S along a path contained in pt(S).
Combining pt(S) and Rergodic(·, ·), GoOSE defines the pessimistic and ergodic operator P̃t(·),
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which it uses to update the pessimistic safe set. Similarly, it defines Õt(·) using o
ϵq
t (·) to

compute the optimistic safe set.

A.2 SafeMaC: safety-constrained multi-agent coverage control

Intuition. We adopt a perspective similar to GoOSE as we separate the exploration of the
safe set from the maximization of the coverage. Given an over and under approximation
of the safe set (whose computation is discussed later), we want to explore optimistically
optimal goals for each agent, similar to MaCOpt. To this end, we find the maximizers of
the density upper bound in the optimistic safe set with the Greedy algorithm. Then, we
define sampling goals to learn the coverage at those locations.
Phases of SafeMaC. Coverage values depend both on the density and the feasible region
(Eq. (2)). Thus, there are two sensible sampling goals given a disk assignment: i) optimistic
coverage: if we are uncertain about the density within the disks, we target locations with the
highest density uncertainty (Line 6 of Algorithm 2); ii) optimistic exploration: if we know
the density within the disk but there are locations under it that we cannot classify as either
safe (in Sp) or unsafe (in V \ So,ϵq), we target those with the highest constraint uncertainty
among them (Line 8). If all the goal locations are safe with high probability, which can only
happen during optimistic coverage, we safely evaluate the density there (Line 19). Otherwise,
we explore the constraint with a goal directed strategy that aims at classifying them as either
safe or unsafe similar to GoOSE (Line 9-12). In case this changes the topological connection
of the optimistic feasible set, we recompute the disks as this may change Greedy’s output
(Line 15-17). We repeat this loop until we know the feasibility of all the points under the
disks recommended by Greedy and their density uncertainty is low (Line 4). Next, we
explain how the multiple agents coordinate their individual safe regions to evaluate a goal
(MaCOpt in batches), how the agents progress toward their goals (safe expansion) and finally
we describe SafeMaC convergence.
MaCOpt in batches. In the multi-agent setting of GoOSE (see Fig. 1b), each agent i

maintains Sp,i
t a pessimistic (or S

o,ϵq ,i
t an optimistic) belief of the safe locations, obtained

by iteratively applying P̃t(·) the pessimistic ( or Õt(·) the optimistic) ergodic operators
(see Section 3) to the previous pessimistic belief Sp,i

t−1 (Line 11 of Algorithm 2). Since the
agents cannot navigate to an arbitrary location in the constrained case, SafeMaC computes
coverage maximizers on a restricted region, obtained by ignoring the known unsafe locations.
To denote such a restricted region, we define a union set Su,i

t := S
o,ϵq ,i
t ∪ Sp,i

t , which is the
largest set known to be optimistically or pessimistically safe up to time t. Moreover, if the
agents are topologically disconnected, they cannot travel from one safe region to another and
the best strategy for any batch of agents is to maximize coverage locally. For this, we form a
collection of batches Bt, such that any batch B ∈ Bt contains agents that lie in topologically
connected regions determined by the union set (Line 13-14 ). SafeMaC computes a Greedy
solution for each B ∈ Bt in their corresponding Su,B

t := ∪i∈BSu,i
t . This is the largest set

where the agents can find an optimistically safe path to travel. Analogous to Bt, we define Bpt
as collection of batches where any B ∈ Bpt contains agents which are topologically connected
in pessimistic set and Sp,B

t := ∪i∈BSp,i
t .

Safe expansion. Safe expansion is the sub-routine inspired by GoOSE for goal-oriented
exploration of the safe set that we use to learn about the feasibility of sampling targets.
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It uses a heuristic h to assign priority scores p to points that are optimistically but not
pessimistically safe. Those determine locations whose feasibility is relevant to learn that
of the sampling targets ( Line 2 of Algorithm 4). A simple and effective choice for the
heuristic is the inverse of the distance to the targets. Then, it identifies safe locations where
the constraint is not yet known ϵq-accurately (Line 3). Among them, it determines the
α-immediate expanders, i.e., those that could potentially add locations with priority α to the
pessimistic set, Gϵq

t (α) = {v ∈ W
ϵq
t |∃z ∈ At(α) : u

q
t − Lqd(v, x) ≥ 0}. In Line 4, it selects

the non-empty α-expander set with the highest priority. In Line 6 - 7, the agent evaluates
the constraint at the location with the highest uncertainty in this set (see [11] for details).
SafeMaC convergence. The optimistic coverage phase switches to optimistic exploration
phase, when density uncertainty is under the disks is low (wt ≤ ϵρ). In the exploration, either
the topological connection of the optimistic feasible set changes or will classify the uncertain
region as pessimistically safe. In the former case, SafeMaC will recompute a new coverage lo-
cation and switch to the coverage phase. Alternatively, if the uncertain region is pessimistically
safe, SafeMaC is said to be converged since the density uncertainty in the exploration phase
is already low. The phases show an interesting dynamics; SafeMaC continuously iterates
between the optimistic exploration and the optimistic coverage phase until we know about the
feasibility of the disk and their uncertainty is low. In the worst case, SafeMaC might explore
the entire environment. In this case the sample complexity will be similar to a two-stage
algorithm, where we explore the whole domain and then optimize coverage in the resulting
known environment.However, in practice, SafeMaC is much better than this worst case.

A.3 Analysis

SafeMaC. This section presents our main result for safety-constrained multi-agent coverage
control. In particular, Theorem 2 (proof in Appendix F) guarantees that SafeMaC safely
achieves near-optimal safe coverage in finite time.

Theorem 2 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ)

and t⋆ρ be the smallest integer such that t⋆ρ
βt⋆ρ

γKt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
. Let βq

t and t⋆q be defined

analogously. Then, there exists t < t⋆q + t⋆ρ, such that with probability at least 1− δ∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ. (7)

The theoretical analysis has two components: (i) we show SafeMaC’s coverage is near-
optimal at convergence (Lem. 12), and (ii) we prove it converges in finite time. Since
SafeMaC learns the constraint and the density, we must bound the sample complexity for
both to prove (ii). For the constraint, we extend the results for single-agent GoOSE to our
multi-agent setting (Appendix G).

For the density, we use results from Theorem 1 to show that, within a coverage phase,
the cumulative regret is sublinear. Next, we use additivity of the information gain (Lem. 16)
between any pair of coverage phases to bound the sample complexity of density for the
subsequent coverage phases. Combining these results, we obtain Theorem 2.
Intermediate recommendation. Theorem 2 guarantees SafeMaC converges to a safe
and near-optimal solution. Can it also make sensible recommendations before the stopping
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Algorithm 2 SafeMaC

1: Inputs X0, Lq, ϵρ, V , GPρ, GPq

2: ∀i, Sp,i
0 ←− X0, S

o,ϵq ,i
0 ←− V , t← 0

3: X1, w1 ← Greedy(uρ0, l
ρ
0, [K], V )

4: while ∀i, (So,ϵq ,i
t \Sp,i

t ) ∩Di
t ≠∅ or wt > ϵρ

do
5: if wt > ϵρ then
6: ∀i, xg,it ←argmax

x∈Di−
t

uρt−1(v)− lρt−1(v)

7: else
8: ∀i, xg,it ← argmax

x∈(So,ϵq,i
t−1 \Sp,i

t−1)∩Di
t

uqt−1(v)− lqt−1(v)

9: if for any i ∈ [K], xg,it ̸∈ Sp,i
t then

10: SE(S
o,ϵq ,i
t−1 , Sp,i

t−1, x
g,i
t )

11: Sp,i
t ← P̃t(S

p,i
t−1), S

o,ϵq ,i
t ←Õ

ϵq
t (Sp,i

t−1)
12: t← t+ 1

13: ∀i, B′t(i) = {j ∈ [K]|Su,i
t ∩ Su,j

t ̸= ∅}
14: Bt =

⋃
i∈[K] B′t(i)

15: if for any B ∈ Bt, Su,B
t ̸= Su,B

t−1 then
16: Xt, wt← Greedy(uρt−1, u

ρ
t−1, B, Su,B

t )
17: ∀i, xg,it ←argmax

x∈Di−
t

uρt−1(v)− lρt−1(v)

18: if ∀i, xg,it ∈ Sp,i
t and wt > ϵρ then

19: ∀i, yiρt = ρ(xg,it ) + ηρ, Update GP
20: update GP i.e, compute uρt , l

ρ
t

21: t← t+ 1
22: Xt,wt ← Greedy(uρt−1, u

ρ
t−1,B, Su,B

t−1)

23: Recommend Xt

Algorithm 3 Greedy UCB (Greedy)

1: Inputs uρt−1, l
ρ
t−1, B, Su

t

2: for i = 1, 2, ..., |B| do
3: xit←argmax

xi

∑
v∈Di\D1:i−1

t ∩Su
t

uρt−1(v)

4: xg,it ← argmax
v∈Di\D1:i−1

t ∩Su
t

uρt−1(v)− lρt−1(v)

5: wt ←
∑|B|

i=1 u
ρ
t−1(x

g,i
t )− lρt−1(x

g,i
t )

6: Return XB
t , wt

Algorithm 4 Safe Expansion (SE)

1: Inputs S
o,ϵq
t , Sp

t , x
g
t

2: At(p)←{v∈S
o,ϵq
t \pt(S

p
t )|h(v) = p}

3: W
ϵq
t ← {v ∈ Sp

t |u
q
t (v)− lqt (v) > ϵq}

4: α⋆ ← maxα s.t. |Gϵq
t (α)| > 0

5: if Optimization problem feasible
then

6: vt←argmaxv∈Gϵq
t (α⋆)u

q
t (v)−l

q
t (v)

7: Update GP with yt = q(vt) + ηq
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criteria are met? Ideally, such recommendations should (i) be safely reachable and (ii) ensure
a minimum coverage. To satisfy (i), they should be in the pessimistic safe set, Sp

t . To satisfy
(ii), their coverage should be computed according to F (·; lρt−1, S

p
t ), i.e., assuming a worst-case

density, lρt−1, and a worst-case feasible set, Sp
t . If the greedy recommendation Xt is in Sp

t , we
can recommend it at intermediate steps. However, this is not always the case and we need
an alternative. To this end, we compute X l,B

t , i.e., the greedy solution w.r.t. the worst-case
objective, F (·; lρt−1, S

p,B
t ) ∀B ∈ Bpt . At any time T , SafeMaC recommends the best of either

strategy up to time T according to the worst-case objective.
In Appendix F.1, we show that such recommendation is also near optimal at convergence.

A.4 SafeMaC experiments

Environments. Below, we present the 3 environments we consider.
i) In synthetic data, both the density ρ and the constrain q are sampled from a GP

with zero mean and Matérn Kernel with ν = 2.5, scale σk = 1, and lengthscale l = 2. The
observations are perturbed by i.i.d noise N (0, 10−3).

ii) In obstacles, we sample maps with several block-shaped obstacles (Fig. 5a) and we
aim to maximize coverage while avoiding dangerous collisions. At v, each agent senses the
distance to the nearest obstacle dm(v), which could be given by sensors such 1D-Lidars. We
use q′(v) = 1/(1 + exp(−1.5dm(v))), to map the distance between [0, 3] and saturate the
constraint value for large distances, and we set q(v) = q′(v)− 0.5 to avoid collisions. The
density is sampled from the same GP as the synthetic case.

iii) In gorilla nest, the Kagwene Gorilla Sanctuary (Fig. 2a) has regions affected by
adverse weather (e.g. rain and storms) which are unsafe for the drone due to higher chances
of crashes and should be avoided. This forms a constrained case of gorilla nest environment
explained in Section 6. As a proxy for bad weather, we use the cloud coverage data over the
KGS from OpenWeather [55].
SafeMaC. We compare SafeMaC with two baselines, i) a two-stage algorithm [52], that
first fully explores the feasible region, and then uses MaCOpt to maximize the coverage
ii) PassiveMaC, a baseline inspired by [49] that runs MaCOpt in the pessimistic set and
passively measures the constraint in the process. Figs. 3a and 3b show the coverage at
convergence and the number of samples to converge for SafeMaC and the two baselines across
all the environments. PassiveMaC converges quickly but gets stuck in a local optimum as it
does not actively explore the constraint. SafeMaC and Two-Stage converge to much higher
coverage values. However, SafeMaC is more sample efficient thanks to its goal-oriented
exploration. The results are averaged over 50 instances produced using different seeds and
samples for every environment. Fig. 3c shows the coverage value of the intermediate safe
recommendations (Section 5) in the gorilla environment as a function of the number of
samples. It confirms the previous results: SafeMaC finds solutions comparable to Two-Stage
more efficiently and PassiveMaC gets stuck in a local optimum.
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Figure 3: Comparison of SafeMaC with PassiveMaC and Two-Stage in all environments at
convergence (a) and (b) and during optimization for the gorilla environment in (c).

Appendix B. Definitions

B.1 Notations

Problem Formulation
F ≜ Submodular function, F : 2V → R
V ≜ Domain
v ≜ An element in the domain V

F (X; ρ, V ) ≜ Coverage objective defined in Eq. (1)
i ≜ Agent index
ρ ≜ Density function, ρ : V → R
q ≜ Constraint function, q : V → R

Di ≜ Sensing region around agent i

D1:i ≜ ∪ij=1D
j , union of sensing regions of agents 1 : i

Di− ≜ Di \D1:i−1, region occupied by agent i, but not by 1 : i− 1
agents

D̃i ≜ Sensing region occupied by greedy optimal location of agent
i

D̃i− ≜ D̃i \D1:i−1

N ≜ Largest number of elements in Di for any xi ∈ V

K ≜ Total number of agents

Batch Operation
B ≜ A batch of agents, {1, 2 . . . |B|}

B′t(i) ≜ {j ∈ [K]|Su,i
t ∩S

u,j
t ̸= ∅}, agents connected in union set with

agent i

Bt ≜
⋃

i∈[K] B′t(i). Collection of batches sharing the union set.
B ≜ Collection of batches sharing the largest reachable set

(R̄ϵq(X
B
0 ))

Bpt ≜ Collection of batches sharing the pessimistic set
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X Notations
xit ≜ Planned location of agent i at time t

xg,it ≜ Goal of agent i at time t, defined by Line 6 and Line 8 in
Algorithm 2

x̃i ≜ Greedy optimal location of agent i, Eq. (19)
Xt ≜ ∪i∈[K]{xit}, A set of agents at time t

XB
t ≜ ∪i∈B{xit}, A set of agents in batch B at time t

XB
⋆ ≜ Optimal location of agents in batch B

X⋆ ≜ ∪B∈BX
B
⋆

X1:i ≜ A set of agents 1 to i

xg,1:K1:T ≜ A set of 1 : K agents’ goal locations up to time T

Density (ρ) and Constraint (q) GP
lqt ≜ Lower confidence bound of the constraint at time t

uqt ≜ Upper confidence bound of the constraint at time t

βq
t ≜ Scaling, defined as per [16]

Lq ≜ Lipschitz constant
ϵq ≜ Statistical confidence up to which constraint function q is

learnt
d(v, z) ≜ Distance metric

σq ≜ Standard deviation of constraint observations noise
σq
t ≜ Posterior standard deviation of constraint GP

Bq ≜ Norm bound of the constraint function, ∥q∥kq ≤ Bq

ηq ≜ Noise in constraint observations
lρt ≜ Lower confidence bound of the density at time t

uρt ≜ Upper confidence bound of the density at time t

βρ
t ≜ Scaling, defined as per [16]

wt ≜
∑K

i=1 u
ρ
t−1(x

g,i
t )− lρt−1(x

g,i
t ), sum of highest uncertainty below

disks
ϵρ ≜ Accuracy threshold for learning the density, w ≤ ϵρ
σρ
t ≜ Posterior standard deviation of denisty GP

σρ ≜ Standard deviation of density observations noise
Bρ ≜ Norm bound of the density function, ∥ρ∥kρ ≤ Bρ

δ ≜ ∈ (0, 1) for high probability argument
H(yA) ≜ Shannon entropy

I(yA; ρ) ≜ H(yA)−H(yA|ρ), Information gain
γ ≜ Information capacity

γρKT ≜ supA⊂V I(YA; ρ), A is set of KT obs. γρKT := γKTρ , ρ is clear
in T .

γqKT ≜ supA⊂V I(YA; q), A is set of KT obs. γqKT := γKTq , q is clear
in T .

Tr ≜ Trace of a Matrix
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Kρ ≜ Posterior kernel matrix with density observations
λi,t ≜ Eigenvalue of the kernel matrix
ηρ ≜ Noise in the density observations

Time
t ≜ Any round of the algorithm
T ≜ Time at which the algorithm gets terminated
t⋆q ≜ Maximum number of constraint observations
t⋆ρ ≜ Maximum number of density observations
t⋆ρ

1 ≜ Maximum number of density observations for the first cover-
age phase

δt⋆ρ
n ≜ Maximum number of density obs. from (n − 1)th to nth

coverage phase
δtnρ ≜ Number of density obs. from (n− 1)th to nth coverage phase
tnρ ≜ Number of density obs. till nth coverage phase

GoOSE and Safe Expansion
pt(S) ≜ pessimistic operator {v ∈ V, |∃z ∈ S : lqt (z)− Lqd(v, z) ≥ 0}
o
ϵq
t (S) ≜ optimistic operator {v ∈ V, |∃z ∈ S : uqt (z)− ϵq−Lqd(v, z) ≥

0}
P̃t(·) ≜ Pessimistic expansion operator
Õt(·) ≜ Optimistic expansion operator

R̄ϵq({x
i
0}) ≜ Maximum safely reachable set up to ϵq, Eq. (12)

R̄ϵq(X
B
0 ) ≜ ∪i∈BR̄ϵq({x

i
0})

Sp,i
t ≜ Pessimistic set of agent i, P̃t(S

p,i
t−1)

Sp,B
t ≜ ∪i∈BSp,i

t

Sp
t ≜ Pessimistic set of all K agents

S
o,ϵq ,i
t ≜ Optimistic set of agent i, Õϵq

t (Sp,i
t−1)

S
o,ϵq ,B
t ≜ ∪i∈BS

o,ϵq ,i
t

S
o,ϵq
t ≜ Optimistic set of all K agents
Su,i
t ≜ Union set, So,ϵq ,i

t ∪ Sp,i
t

Su,B
t ≜ ∪i∈BSu,i

t

Su
t ≜ Union set of all K agents

Rsafe
ϵq (S) ≜ True safety constraint operator, Eq. (8)

Rreach
n (S) ≜ n step reachability in the graph, Eq. (9)

R̃reach(S) ≜ limn→∞Rreach
n (S)

Rn
ϵq(S) ≜ n step safely reachable set in the graph, Eq. (12)

R̄ϵq(S) ≜ limn→∞R n
ϵq (S)

W
ϵq
t ≜ Set of locations whose safety is not ϵq-accurate, Algorithm 4

G
ϵq
t (α) ≜ A set of potential immediate expanders, Algorithm 4

p ≜ Priority, Algorithm 4
h(v) ≜ Heuristic function, Algorithm 4

At(α) ≜ Subset of locations with equal priority, Algorithm 4
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Regret
F (X) ≜ F (X; ρ, V ), short notation when ρ and V are obvious

∆(xi|X1:i−1; ρ, V ) ≜ Marginal coverage gain by agent i, Eq. (17)
∆(xi|X1:i−1) ≜ ∆(xi|X1:i−1; ρ, V ), short notation when ρ and V are obvious

Regact(T ) ≜ Actual regret in unconstrained case, Eq. (3)
OPT i

l ≜ Per agent cumulative optimal, Eq. (21)
Regi(T ) ≜ Per agent regret, Eq. (22)

OPT ≜
∑T

t=1 F (X⋆)

ractt ≜ Simple actual regret, constrained case, Eq. (29)
rot ≜ Simple actual regret in union set, constrained case, Eq. (29)
rt ≜ Simple per agent regret, constrained case, Eq. (29)

Regoact(T ) ≜ Cumulative actual regret, Eq. (30)
Regol (T ) ≜ Sum of cumulative per agent regret, Eq. (30)

B.2 GoOSE operators

We denote with G = (V, E) the undirected graph describing the dependency among locations,
V indicates the vertices of the graph, i.e., the state space of the problem and E ⊆ V × V
denotes the edges. In our setting, there are K identical agents having the same transition
dynamics. Each agent can have a separate R̃ϵq({x

i
0}).

The baseline as per true safety constraint operator:

Rsafe
ϵq (S) = S ∪ {v ∈ V \S, |∃z ∈ S : q(z)− ϵq − Lqd(v, z) ≥ 0} (8)

Now, we define reachability operator as all the locations that can be reached starting from
set S.

Rreach(S) = S ∪ {v ∈ V \S, |∃z ∈ S : (z, v) ∈ E},
Rreach

n (S) = Rreach
n (Rreach

n−1 (S)) with Rreach
1 (S) = Rreach(S) (9)

R̃reach(S) = lim
n→∞

Rreach
n (S), (10)

For defining R̄ϵq(S),

Rϵq(S) = Rsafe
ϵq (S) ∩ R̃reach(S)

Rn
ϵq(S) = Rϵq(R

n-1
ϵq (S)) with R1

ϵq(S) = Rϵq(S) (11)

R̄ϵq(S) = lim
n→∞

R n
ϵq(S) (12)

Optimistic and pessimistic constrain satisfaction operators:

o
ϵq
t (S) = {v ∈ V, |∃z ∈ S : uqt (z)− ϵq − Lqd(v, z) ≥ 0}

p
ϵq
t (S) = {v ∈ V, |∃z ∈ S : lqt (z)− ϵq − Lqd(v, z) ≥ 0}

In this section, for simplicity, we have considered an undirected graph. This results in the
same reachability and returnability operators since the edges are bidirectional. The extension
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to the directed graph is easy by using the reachability, the returnability and the ergodic
operator. (Appendix A of Turchetta et al. [11] does it for the directed graph, so we did not
repeat it here)

The optimistic and pessimistic expansion operators are given by,

O
ϵq
t (S) = o

ϵq
t (S) ∩ R̃reach(S)

O
ϵq ,n
t (S) = O

ϵq
t (O

ϵq ,n−1
t (S)) with O

ϵq ,1
t (S) = O

ϵq
t (S)

Õ
ϵq
t (S) = lim

n→∞
O

ϵq ,n
t (S)

Pessimistic expansion operator

P
ϵq
t (S) = p

ϵq
t (S) ∩ R̃reach(S)

P
ϵq ,n
t (S) = P

ϵq
t (P

ϵq ,n−1
t (S)) with P

ϵq ,1
t (S) = P

ϵq
t (S)

P̃
ϵq
t (S) = lim

n→∞
P

ϵq ,n
t (S)

This gives the optimistically and pessimistically, safe and reachable set respectively as:

S
o,ϵq
t = Õ

ϵq
t (Sp

t−1)

Sp
t = P̃ 0

t (S
p
t−1)

Now in our setting with K agents, we denote with S
o,ϵq ,i
t and Sp,i

t , the optimistic and the
pessimistic set respectively of agent i. The union set for any agent i is defined as,

Su,i
t := S

o,ϵq ,i
t ∪ Sp,i

t (13)

B.3 Batching operation

For a set of agents, we partition them in batches, such that each batch B contains the agents
that share at least a node in the union set. The total collection of batches, B, is defined as,

Bt =
⋃

i∈[K]
B′t(i) where B′t(i) = {j ∈ [K] |Su,i

t ∩ Su,j
t ̸= ∅} (14)

Analogous to Bt, we define Bpt (or B) as collection of batches where any B ∈ Bpt (or B)
contains agents which are topologically connected in the pessimistic (or maximum safely
reachable) set. Precisely,

Bpt =
⋃

i∈[K]
B′t(i) where B′t(i) = {j ∈ [K] |Sp,i

t ∩ Sp,j
t ̸= ∅} (15)

B =
⋃

i∈[K]
B′(i) where B′(i) = {j ∈ [K] | R̄ϵq({x

i
0}) ∩ R̄ϵq({x

j
0}) ̸= ∅} (16)

The resulting batch collection are mutually exclusive that is ∀ B1, B2 ∈ Bt, B1 ̸=
B2, B1 ∩B2 = ∅ and also,

∑
B∈Bt

|B| = K.
For any batch B we can define their combined union set, pessimistic set and the maximum
safely reachable set as ,

Su,B
t := ∪i∈BSu,i

t , Sp,B
t := ∪i∈BSp,i

t , R̄ϵq(X
B
0 ) = ∪i∈BR̄ϵq({x

i
0}).
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Appendix C. Disk Coverage as a submodular function

Set functions Function F : 2V → R that assign each subset A ⊆ V a value F (A).
Discrete Derivative For a set function F : 2V → R , A ⊆ V , and e ∈ V , let

∆F (e|A) := F (A ∪ {e})− F (A) is discrete derivative of F at A with respect to e.
Submodular functions A function F(.) is a submodular if, ∀A ⊆ B ⊆ V and ∀e ∈ V \B

F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B),

∆F (e|A) ≥ ∆F (e|B).

For the disk coverage function F (A), defined in Eq. (1),

F (X; ρ, V ) =
∑
xi∈X

∑
v∈Di−

ρ(v)/N,

We can write marignal gain as,

F (A ∪ {e})− F (A) =
∑

xi∈A∪{e}

∑
v∈Di−

ρ(v)/N −
∑
xi∈A

∑
v∈Di−

ρ(v)/N

=
∑
xi∈A

∑
v∈Di−

ρ(v)/N +
∑

xi∈{e}

∑
v∈Di\D1:|A|

ρ(v)/N −
∑
xi∈A

∑
v∈Di−

ρ(v)/N

=
∑

xi∈{e}

∑
v∈Di\D1:|A|

ρ(v)/N

≥
∑

xi∈{e}

∑
v∈Di\D1:|B|

ρ(v)/N (Since, A ⊆ B, |Di \D1:|A|| ≥ |Di \D1:|B||

=
∑

xi∈B∪{e}

∑
v∈Di−

ρ(v)/N −
∑
xi∈B

∑
v∈Di−

ρ(v)/N

= F (B ∪ {e})− F (B)

=⇒ F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B)

This shows that the coverage function defined in Eq. (1) is a Submodular function.
Monotonicity is directly implied by the definition of F (A), as an additive function of ρ.

Since, ρ(v) ≥ 0, ∀v ∈ V =⇒ F (A) ≤ F (B), if A ⊆ B.
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Appendix D. Agent wise regret bound

In this section, we upper bound the actual ("greedy") regret with the per agent regret in the
unconstrained and the constrained case. The proof methodology to bound with per agent
regret is motivated from [38]. We first define marginal gain and agent-wise regret. Then we
give a proposition for the submodularity rate equation, which will be central to our lemmas.
Finally, we bound the actual regret with the sum of per agent regret for unconstrained and
then constrained case in

Marginal coverage gain:

∆(xit|X1:i−1
t ; ρ, V ) = F (X1:i−1

t ∪ {xit}; ρ, V )− F (X1:i−1
t ; ρ, V )

=
∑

xi
t∈X1:i

t

∑
v∈Di−

t

ρ(v)/N −
∑

xi
t∈X

1:i−1
t

∑
v∈Di−

t

ρ(v)/N

=
∑

v∈Di−
t

ρ(v)/N (17)

Using, X1:0 = {∅}, F (X1:0) = 0, it follows that,

K∑
i=1

∆(xit|X1:i−1
t ; ρ, V ) = F (X1:K

t ; ρ, V ) (18)

Tilde Notations:

x̃i
t = argmax

xi
t

∆(xit|X1:i−1
t ; ρ, V ) (19)

Proposition 1 (Eq. (3-7), [56], Submodular rate equation) For a monotone Submod-
ular function F the following holds,

max
xi

F (X1:i−1 ∪ {xi})− F (X1:i−1) ≥ F (X⋆)− F (X1:i−1)

K
, (20)

where X1:i is the set of i agents being picked greedily and K is the number of agents in X⋆.

Proof Let X⋆ = {x1⋆, . . . , xK⋆ }

F (X⋆) ≤ F (X⋆ ∪X1:i−1) (With monotonicity of F )

= F (X1:i−1) +
K∑
j=1

∆(xj⋆|X1:i−1 ∪ {x1⋆, . . . , xj−1
⋆ }) (Telescopic sum)

≤ F (X1:i−1) +
∑
x∈X⋆

∆(x|X1:i−1) (Follows by Submodularity of F )

≤ F (X1:i−1) +
∑
x∈X⋆

(F (X1:i)− F (X1:i−1))

(since, xi is added greedily to maximize ∆(x|X1:i−1))

≤ F (X1:i−1) +K(F (X1:i)− F (X1:i−1)) (K agents in X⋆)
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=⇒ F (X⋆)− F (X1:i−1)

K
≤ F (X1:i)− F (X1:i−1)

The proposition follows directly since xi is added greedily to X1:i−1.

D.1 Unconstrained case

Note that for unconstrained case domain V and utility ρ is obvious, so for convenience we
use short hand notation, i.e, F (·; ρ, V ) = F (·) and ∆(·; ρ, V ) = ∆(·).
Locally optimal gain. Let us define OPT i

l as the local optimal coverage gained by agent i,
given all the locations of agents 1 : i− 1, formally given by,

OPT i
l =

T∑
t=1

(
max
xi
t

F (X1:i−1
t ∪ {xit})− F (X1:i−1

t )
)
=

T∑
t=1

∆(x̃i
t|X

1:i−1
t ) (21)

We denote with OPT , the optimal coverage, precisely OPT =
∑T

t=1 F (X⋆).
Per agent regret. Let us define local regret, as the difference in coverage gain in picking
state x̃i

t vs the picked location xit (this disparity is due to not knowing the actual density)

Regi(T ) =
T∑
t=1

∆(x̃i
t|X

1:i−1
t )−

T∑
t=1

∆(xit|X1:i−1
t ) = OPT i

l −
T∑
t=1

∆(xit|X1:i−1
t ) (22)

Actual regret. The actual regret is given by,

Regact(T ) =
(
1− 1

e

) T∑
t=1

F (X⋆)−
T∑
t=1

F (Xt) =
(
1− 1

e

)
OPT −

T∑
t=1

F (Xt) (23)

To prove. In this section we aim to show that actual regret bounded by sum of per agent
regret, precisely,

Regact(T ) ≤
K∑
i=1

Regi(T )

K∑
i=1

Regi(T ) ≥
(
1− 1

e

)
OPT −

T∑
t=1

F (X1:K
t ) (Using defi. of Regact(T ) from Eq. (23))

Lemma 2 For all K agents’ local per agent regret Regi(T ), we have,

T∑
t=1

∆(xit|X1:i−1
t ) ≥ 1

K

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
−Regi(T ) (24)

Proof

∆(x̃i
t|X

1:i−1
t ) = max

xi
t

F (X1:i−1
t ∪ {xi})− F (X1:i−1

t ) (Using definition)
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≥ F (X⋆)− F (X1:i−1
t )

K
(Using Eq. (20) from Lem. 1)

OPT i
l ≥

1

K

( T∑
t=1

F (X⋆)−
T∑
t=1

F (X1:i−1
t )

)
(Sum over time)

=
1

K

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
(Using definition of OPT )

T∑
t=1

∆(xit|X1:i−1
t ) ≥ 1

K

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
−Regi(T )

(Using def. of Regi(T ) Eq. (22))

Lemma 3 For any time t, Xt being the recommended location by MaCOpt, we have

T∑
t=1

F (X1:K
t ) ≥

(
1− 1

e

)
OPT −

K∑
i=1

Regi(T ) (25)

And using definition of Regact(T ) from Eq. (23), this further implies that,

Regact(T ) ≤
K∑
i=1

Regi(T ) (26)

Proof The proof is similar to the Lemma 2 from [38]. We begin to prove by induction,

OPT −
T∑
t=1

F (X1:i
t ) ≤

(
1− 1

K

)i
OPT +

i∑
m=1

Regml (T ) (27)

Our main goal, i.e, Eq. (25) can be proved by substituting i = K and using the inequality
(1− 1/K)K < 1/e in Eq. (27).

For i = 0, corresponds to no agent case. So it’s trivial.
Let’s consider gap to optimal value, when i elements are already selected,

δi = OPT −
T∑
t=1

F (X1:i
t ) (LHS of Eq. (27))

= OPT −
T∑
t=1

i∑
m=1

∆(xmt |X1:m−1
t ) (Sum marginal gain; Using Eq. (18))

δi−1 = OPT −
T∑
t=1

i−1∑
m=1

∆(xmt |X1:m−1
t )
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=⇒ δi = δi−1 −
T∑
t=1

∆(xit|X1:i−1
t ) (Subtract δi−1 from δi)

=⇒
T∑
t=1

∆(xit|X1:i−1
t ) = δi−1 − δi (28)

This says that the gap to optimal reduces by
∑T

t=1∆(xit|X1:i−1
t ) after adding element xit ∀ t.

T∑
t=1

∆(xit|X1:i−1
t ) ≥ 1

K
(δi−1)−Regi(T ) (From Eq. (24) and δi definition)

=⇒ δi−1 − δi ≥ 1

K
(δi−1)−Regi(T ) (From Eq. (28))

=⇒ δi ≤
(
1− 1

K

)
δi−1 +Regi(T )

≤
(
1− 1

K

)2
δi−2 +

2∑
m=1

Regi(T )

(Subs δi−1, Doing the telescopic bound)
...

≤
(
1− 1

K

)i
δ0 +

i∑
m=1

Regi(T )

=
(
1− 1

K

)i
OPT +

i∑
m=1

Regi(T )

OPT −
T∑
t=1

F (X1:i
t ) ≤

(
1− 1

K

)i
OPT +

i∑
m=1

Regml (T ) (Using δi definition)

Hence proved.

D.2 Constrained case

Simple regret. We define for a particular t, simple regret ractt and per agent local regret rt
respectively as:

ractt = (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))−

∑
B∈Bt

∑
i∈B

∆(xit|X1:i−1
t ; ρ, Su,B

t ),

rot = (1− 1

e
)
∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t )−
∑
B∈Bt

∑
i∈B

∆(xit|X1:i−1
t ; ρ, Su,B

t )

rt =
∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t ) (29)
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Cumulative regret. The actual cumulative regret Regoact(T ) and the per agent cumulative
regret Regol (T ) are respectively given by,

Regoact(T ) =
T∑
t=1

ractt and Regol (T ) =
T∑
t=1

rt (30)

On bounding per batch regret.
Optimal coverage in a batch B

OPTt = F (XB
⋆ ; ρ, Su,B

t )

OPT i
t = max

xi
F (X1:i−1

t ∪ {xi}; ρ, Su,B
t )− F (X1:i−1

t ; ρ, Su,B
t )

= max
xi

∆(xi|X1:i−1
t ; ρ, Su,B

t ) = ∆(x̃i|X1:i−1
t ; ρ, Su,B

t )

riB(t) = ∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t ) (31)

To prove:

F (XB
t ; ρ, Su,B

t ) ≥
(
1− 1

e

)
OPTt −

∑
i∈B

riB(t) (32)

Proposition 4 Let KB be the number of agents in batch B and for all such agents per agent
regret is riB(t). Then the following holds,

∆(xit|X1:i−1
t ; ρ, Su,B

t ) ≥ 1

KB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
− riB(t) (33)

Proof

∆(x̃i
t|X

1:i−1
t ; ρ, Su,B

t ) = max
xi
t

F (X1:i−1
t ∪ {xi}; ρ, Su,B

t )− F (X1:i−1
t ; ρ, Su,B

t )

(Using definition)

≥ F (X⋆; ρ, S
u,B
t )− F (X1:i−1

t ; ρ, Su,B
t )

KB

(Using Eq. (20) from Lem. 1)

OPT i
t ≥

1

KB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
(Using definition of OPTt and OPT i

t )

∆(xit|X1:i−1
t ; ρ, Su,B

t ) ≥ 1

KB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
− riB(t)

(Using def. of riB(t) Eq. (31))

Lemma 5 For any time t, XB
t being the recommended location by SafeMaC in the union

set Su,B
t , we have

F (XB
t ; ρ, Su,B

t ) ≥
(
1− 1

e

)
OPTt −

∑
i∈B

riB(t), (34)
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Proof The proof is similar to the Lemma 2 from [38]. We begin to prove by induction,

OPTt − F (X1:i
t ; ρ, Su,B

t ) ≤
(
1− 1

KB

)i
OPTt +

i∑
m=1

riB(t) (35)

For i = 0, corresponds to no agent case. So it’s trivial.
Let’s consider gap to optimal value, when i elements are already selected,

δi = OPTt − F (X1:i
t ; ρ, Su,B

t ) (LHS of Eq. (35))

= OPTt −
i∑

m=1

∆(xmt |X1:m−1
t ; ρ, Su,B

t ) (sum of marginal gain)

δi−1 = OPTt −
i−1∑
m=1

∆(xmt |X1:m−1
t ; ρ, Su,B

t )

=⇒ δi = δi−1 −∆(xit|X1:i−1
t ; ρ, Su,B

t ) (Subtract δi−1 from δi)

=⇒ ∆(xit|X1:i−1
t ; ρ, Su,B

t ) = δi−1 − δi (36)

This says that the gap to optimal reduces by ∆(xit|X1:i−1
t ; ρ, Su,B

t ) after adding element xit.

∆(xit|X1:i−1
t ; ρ, Su,B

t ) ≥ 1

KB
(δi−1)− riB(t) (From Eq. (33) and δi definition)

=⇒ δi−1 − δi ≥ 1

KB
(δi−1)− riB(t) (From Eq. (28))

=⇒ δi ≤
(
1− 1

KB

)
δi−1 + riB(t)

≤
(
1− 1

KB

)2
δi−2 +

2∑
m=1

riB(t)

(Subs δi−1, Doing the telescopic bound)
...

≤
(
1− 1

KB

)i
δ0 +

i∑
m=1

riB(t)

=
(
1− 1

KB

)i
OPTt +

i∑
m=1

riB(t)

OPTt − F (X1:i
t ; ρ, Su,B

t ) ≤
(
1− 1

KB

)i
OPTt +

i∑
m=1

riB(t) (Using δi definition)

Our main goal, i.e, Eq. (34) can be proved by substituting i = K and using the inequality
(1− 1/K)K < 1/e in Eq. (35). Hence proved.

On combining all the batches.
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Lemma 6 For any time t, Xt being the location recommended by SafeMaC, we have

ractt ≤ rot ≤ rt (37)

This further implies that,

Regoact(T ) ≤ Regol (T ) (38)

Proof For a batch B of agents, using Eq. (35) from Lem. 5 and substituting riB(t) from
Eq. (31) we know that,

(1− 1

e
)F (XB

⋆ ; ρ, Su,B
t )−

∑
i∈B

∆(xit|X1:i−1
t ; ρ, Su,B

t )

≤
∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t )

By summing over all the B ∈ Bt, we get

rot = (1− 1

e
)
∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t )−
∑
B∈Bt

∑
i∈B

∆(xit|X1:i−1
t ; ρ, Su,B

t )

≤
∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t ) (39)

Note that in Eq. (29), both the XB
⋆ represents optimal agent’s location in their respective

coverage set i.e, R̄ϵq(x
i
0) and Su,B

t , hence both the XB
⋆ are different. Since,

⋃
i∈B R̄ϵq({x

i
0}) ⊆

S
o,ϵq ,B
t ⊆ Su,B

t =⇒
∑

B∈B F (XB
⋆ ; ρ, R̄ϵq(X

B
0 )) ≤

∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t ),
Moreover on using Eq. (29), Eq. (39) and we can conclude,

ractt ≤ rot ≤ rt.

This further implies Eq. (38) using definition in Eq. (30). Hence Proved
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Appendix E. Proof. for Theorem 1 (MaCOpt)

Theorem 1 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + ln(1/δ). With

probability at least 1− δ, MaCOpt’s regret defined in Eq. (3) is bounded by O(
√

Tβρ
Tγ

ρ
KT ),

Pr

{
Regact(T ) ≤ K

√
8Tβρ

Tγ
ρ
KT

log(1 +Kσ−2
ρ )

}
≥ 1− δ. (6)

Proof The proof for Theorem 1 goes in the following steps:

1. We first exploit the conditional linearity of the submodular objective to bound the
cumulative regret defined in Eq. (3) with a sum of per agent regrets (

∑K
i=1Regi(T )).

Precisely, we show Regact(T ) ≤
∑K

i=1Regi(T ) in Lem. 3.

2. We next bound the per agent regret with the information capacity γρKT , a quantity that
measures the largest reduction in uncertainty about the density that can be obtained
from KT noisy evaluations of it.

• For this, We quantify the information MaCOpt acquires through the noisy density
observations in Lem. 7, through the information gain I(yA; ρ) = H(yA)−H(yA|ρ),
where H denotes the Shannon entropy and A is the set of locations evaluated by
MaCOpt.

• Next we bound the per agent regret Regi(T ) with the information gain Lem. 8-9
which is in turn bounded by the information capacity.

Finally, Theorem 1 is a direct consequence of Lem. 3 and Lem. 9.

In the end of the section, we proof Corollary 1 which guarantees near optimal result in finite
time.

Proposition 7 The information gain for the points observed by MaCOpt can be expressed
as:

I(Y
xg,1:K
1:T

; ρ) =
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:K
t

)) =
1

2

T∑
t=1

K∑
i=1

log(1 + σ−2
ρ λi,t),

where xg,1:K1:T is the set of goal locations set by MaCOpt for all 1 : K agents up to time
T . Kρ

xg,1:K
t

is the positive definite kernel matrix formed by the observed locations and λi,t

represents eigenvalue of the matrix.

Proof We can precisely quantify this notion through the information gain

I(Y
xg,1:K
1:T

; ρ) = H(Y
xg,1:K
1:T

)−H(Y
xg,1:K
1:T
|ρ) (40)

where H denotes the Shannon entropy. It can be defined as,

H(Y
xg,1:K
1:T

) = H(Y 1:K
T |Y

xg,1:K
1:T−1

) +H(Y
xg,1:K
1:T−1

) (Defined Y 1:K
T := {y1T , y2T , ..., yKT })
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=
1

2
log(det(2πe(σ2I +Kρ

xg,1:K
T

))) +H(Y 1:K
T−1|Yxg,1:K

1:T−2
) + ... (41)

=
1

2
K log(2πeσ2) +

1

2
log(det(I + σ−2

ρ Kρ

xg,1:K
T

)) +H(Y 1:K
T−1|Yxg,1:K

1:T−2
) + ... (42)

=
1

2

T∑
t=1

K log(2πeσ2) +
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:K
t

)) (43)

For Eq. (41), we used that, Y 1:K
T ∼ N (µρ

T−1(x
g,1:K
T ), σ2I +Kρ

xg,1:K
T

) is jointly a multivariate

Gaussian. Eq. (42) follows by simplifying det, precisely, 1
2 log(det(2πe(σ

2I +Kρ

xg,1:K
T

))) =
1
2 log((2πeσ

2)
K
det(I + σ−2

ρ Kρ

xg,1:K
T

)) and finally Eq. (43) by recursively repeating above 2

steps till t = 1. H(Y
xg,1:K
1:T
|ρ) = 1

2

∑T
t=1K log(2πeσ2) is the entropy because of the noise. On

substituting this, with Eq. (43) in Eq. (40) we obtain,

I(Y
xg,1:K
1:T

; ρ) =
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:K
t

))

=
1

2

T∑
t=1

log(

K∏
i=1

(1 + σ−2
ρ λi,t)) (Using Eq. 45)

=
1

2

T∑
t=1

K∑
i=1

log(1 + σ−2
ρ λi,t) (44)

Hence Proved.

Log mat inequality:

log(det(I + σ−2
ρ Kρ)) = log(det(RR⊤ + σ−2

ρ RΛR⊤)) (Kρ = RΛR⊤, RR⊤ = I)

= log(det(R(I + σ−2
ρ Λ)R⊤))

= log(det(RR⊤)) + log(det(I + σ−2
ρ Λ)) (k is dimension of Kρ)

= log(

k∏
i=1

(1 + σ−2
ρ λi)) (45)

Lemma 8 Till any time T , if |ρ(v)− µρ
t−1(v)| ≤ β

1/2
t σρ

t−1(v) for all v ∈ V , then the agent
wise cumulative regret Regi(T ), is bounded by

∑T
t=1 2

√
βρ
t maxv∈Di−

t
σρ
t−1(v) for agent i.

Proof For notation convenience: Di−
t := Di

t\D1:i−1
t and D̃i−

t := D̃i
t\D1:i−1

t

In MaCOpt xit is defined such that,

xit = argmax
v

∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v) (46)
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Due to our picking strategy,∑
v∈D̃i−

t

ρ(v) ≤
∑

v∈D̃i−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
≤

∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(47)

This first inequality follows due to upper bound and the second one follows based on how xit
is picked (Eq. (46)).

Regi(T ) =

T∑
t=1

∆(x̃i
t|X

1:i−1
t )−

T∑
t=1

∆(xit|X1:i−1
t ) (with definition Eq. (22))

=

T∑
t=1

( ∑
v∈D̃i−

t

ρ(v)−
∑

v∈Di−
t

ρ(v))
)
/N (Using defi. ∆(.|X1:i−1

t ) Eq. (17))

≤
T∑
t=1

( ∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)−

∑
v∈Di−

t

ρ(v)
)
/N (From Eq. (47))

≤
T∑
t=1

( ∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)−

∑
v∈Di−

t

µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

)
/N

(Since, ρ(v) ≥ µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v) ∀ v)

=

T∑
t=1

2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/N ≤

T∑
t=1

2
√

βρ
t max
v∈Di−

t

σρ
t−1(v) (48)

The last inequality follows since
∑

v∈Di−
t

σρ
t−1(v) ≤ N maxv∈Di−

t
σρ
t−1(v) and |Di−

t | ≤ N .

Lemma 9 Let δ ∈ (0, 1) and let βρ
t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ). Then for K agents,

∀T ≥ 1 the following holds with probability 1− δ,

(
K∑
i=1

Regi(T ))2 ≤
8TK2βρ

T I(Yxg,1:K
1:T

; ρ)

log(1 +Kσ−2
ρ )

≤
8TK2βρ

TγKT

log(1 +Kσ−2
ρ )

Proof By sum over all the K agents from Lem. 8, we get

K∑
i=1

Regi(T ) ≤
K∑
i=1

T∑
t=1

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) (49)

Let’s consider,

wt := 2
√
βρ
t

K∑
i=1

max
v∈Di−

t

σρ
t−1(v) (part of Eq. (49))

w2
t = 4βρ

t

( K∑
i=1

max
v∈Di−

t

σρ
t−1(v)

)2
(Square operation)
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≤ 4βρ
tK

K∑
i=1

(
σρ
t−1(x

g,i
t )

)2
(Cauchy-Schwarz inequality, xg,it = argmax

v∈Di−
t

σ2
ρt−1

(v))

= 4βρ
tK

K∑
i=1

λi,t (
∑K

i=1(σ
ρ
t−1(x

g,i
t ))2 = Tr(Kρ) =

∑K
i=1 λi,t)

= 4βρ
tK

K∑
i=1

σ2
ρσ

−2
ρ λi,t ≤ 4βρ

tK

K∑
i=1

σ2
ρC1 log(1 + σ−2

ρ λi,t)

(Since, s ≤ C1 log(1 + s) for s ∈ [0,Kσ−2
ρ ], where C1 = Kσ−2

ρ / log(1 +Kσ−2
ρ ) ≥ 1)

(Here, s = σ−2
ρ λi,t ≤ σ−2

ρ λmax ≤ σ−2
ρ

∑
i λi,t = σ−2

ρ Tr(Kρ) ≤ σ−2
ρ K, (wlog k(v, v) ≤ 1))

≤ 8K2βρ
t

log(1 +Kσ−2
ρ )

K∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (50)

From Eq. (49) and rt definition,( K∑
i=1

Regi(T )
)2
≤

( T∑
t=1

wt

)2
≤ T

T∑
t=1

w2
t (Using Cauchy-Schwarz inequality)

≤ T
T∑
t=1

8K2βρ
t

log(1 +Kσ−2
ρ )

K∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (Using Eq. (50))

=
8TK2βρ

T

log(1 +Kσ−2
ρ )

I(Y
xg,1:K
1:T

; ρ)

(Since βρ
t is non-decreasing, using Eq. (44))

≤
8TK2βρ

TγKT

log(1 +Kσ−2
ρ )

(γKT = sup
xg,1:K
1:T ⊂V

I(Y
xg,1:K
1:T

; ρ))

=⇒
K∑
i=1

Regi(T ) ≤
T∑
t=1

wt ≤
(
T

T∑
t=1

w2
t

)1/2
≤ K

√
8TK2βρ

TγKT

log(1 +Kσ−2
ρ )

(51)

Hence Proved.

Theorem 1 follows from Lem. 8, Lem. 9 and Eq. (26),

Regact(T ) ≤
K∑
i=1

Regi(T ) ≤ K

√
8Tβρ

TγKT

log(1 +Kσ−2
ρ )

Proof for the corollary 1:

Corollary 1 Let t⋆ρ be the smallest integer, t⋆ρ
βt⋆ρ

γKt⋆ρ

≤ 8K2

log(1+Kσ−2)ϵ2ρ
, then there exists a t < t⋆ρ

such that w.h.p, MaCOpt terminates and achieves, F (Xt; ρ, V ) ≥ (1− 1
e )F (X⋆; ρ, V )− ϵρ.

Proof The proof for the corollary goes in the following 2 steps. First, we show that once
wt ≤ ϵρ implies F (Xt; ρ, V ) ≥ (1− 1

e )F (X⋆; ρ, V )−ϵρ. Secondly, in Lem. 10 we show MaCOpt

achieves wt ≤ ϵρ, at t < t⋆ρ where t⋆ρ be the smallest integer satisfying t⋆ρ
βt⋆ρ

γKt⋆ρ

≤ 8K2

log(1+Kσ−2)ϵ2ρ
.
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Similar to steps in Lem. 8 for a fix t, (Eq. (48)), we get

∆(x̃i|X1:i−1
t )−∆(xit|X1:i−1

t ) ≤ 2
√
βt max

v∈Di−
t

σρ
t−1(v)

From Eq. (37) (for constrained case) one can show for unconstrained case,

(1− 1

e
)F (X⋆; ρ, V )−

K∑
i

∆(xit|X1:i−1
t ) ≤

K∑
i

∆(x̃i|X1:i−1
t )−∆(xit|X1:i−1

t )

≤
K∑
i

2
√
βt max

v∈Di−
t

σρt−1(v) ≤ ϵρ

=⇒ F (Xt; ρ, V ) ≥ (1− 1

e
)F (X⋆; ρ, V )− ϵρ

Lemma 10 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ) and

t⋆ρ is the smallest integer such that t⋆ρ
βt⋆ρ

γKt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
, then with probability 1− δ that

there exists tρ < t⋆ρ such that wtρ+1 ≤ ϵρ, where wt =
∑

B∈Bt

∑
i∈B

2
√

βρ
t max
v∈Di−

t

σρ
t−1(v) ≤ ϵρ.

Proof Since,

t⋆ρ
βt⋆ργKt⋆ρ

≥ 8K2

log(1 +Kσ−2)ϵ2ρ

=⇒ K

√
8βt⋆ργKt⋆ρ

t⋆ρ log(1 +Kσ−2)
≤ ϵρ (Rearranging terms)

∑t⋆ρ
t=1wt

t⋆ρ
≤ K

√
8βt⋆ργKt⋆ρ

t⋆ρ log(1 +Kσ−2)
≤ ϵρ (From Eq. (51) in Lem. 9)

=⇒ min
t∈[1,t⋆ρ]

wt ≤ ϵρ (
t⋆ρ min

t∈[1,t⋆ρ]
wt

t⋆ρ
≤

∑t⋆ρ
t=1 wt
t⋆ρ

)

Hence there exists tρ < t⋆ρ, such that wtρ+1 ≤ ϵρ.
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Appendix F. Proof. for Theorem 2 (SafeMaC)

Theorem 2 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ)

and t⋆ρ be the smallest integer such that t⋆ρ
βt⋆ρ

γKt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
. Let βq

t and t⋆q be defined

analogously. Then, there exists t < t⋆q + t⋆ρ, such that with probability at least 1− δ∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ. (7)

Proof The proof for Theorem 2 goes in the following two steps:

1. SafeMaC’s coverage is near-optimal at the convergence

• We first bound the actual regret with the sum of per agent regret in Lem. 6.
Precisely, we show the following (Eq. (38)),

Regoact(Tρ) ≤ Regol (Tρ)

• Next, we establish in Lem. 11 that the Regol (Tρ) grows sublinear with the density
measurements.

• Next, we show that if wt < ϵρ, the coverage is near optimal (Lem. 12). The
condition wt < ϵρ will eventually happen since Regol (Tρ) is sublinear and hence
over time will shrink to zero.

• Finally using Lem. 17, the near optimality in the pessimistic set can be estab-
lished at convergence when the 2nd termination condition is satisfied, precisely
{So,ϵq ,i

t \Sp,i
t ) ∩Di

t,∀i ∈ [K]} = ∅

2. SafeMaC converges in a finite time t < t⋆q+t⋆ρ, where t⋆ρ be the smallest integer such that
t⋆ρ

βt⋆ρ
γKt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
and t⋆q be the smallest integer such that t⋆q

βt⋆q
γKt⋆q

≥ C1|R̄0(X0)|
ϵ2q

,

with C1 = 8/ log(1 + σ−2
q ).

• Since SafeMaC runs by iterating between the coverage and the exploration phase,
we decouple it and analyze both the phases separately. Starting with the coverage
phase, In Lem. 13, we establish a bound on density samples required to terminate
the first coverage phase

• Next, in the Lem. 14, we show that cumulative regret grows sublinear with the
density measurements for any coverage phase and utilizes this to bound the density
samples between two consecutive coverage phases in Lem. 15

• Utilizing the above two statements, we present the sample complexity bound to
terminate the nth coverage phase till convergence, using that the information gain
is additive for consecutive coverage phases in Lem. 16

• For the exploration phase, the worst case time complexity bound is given by the
multi-agent version of the GoOSE in Lem. 22 when the agents safely explore the
complete domain. The resulting worst case time bound for SafeMaC is sum of
the time bound of the coverage and the exploration phase.
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So, near optimality at convergence in Theorem 2 is a direct consequence of Lem. 12 and
Lem. 17 and the finite time argument of Theorem 2 is a direct consequence of Lem. 16 and
Lem. 22.

Lemma 11 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σ
√
γρt + 1 + ln(1/δ).

With probability at least 1− δ, SafeMaC’s sum of per agent regret Regol (Tρ) is bounded by

O(
√

Tρβ
ρ
Tγ

ρ
KT ). Precisely,

Regol (Tρ) ≤ K

√
8Tρβ

ρ
t γ

ρ
KT

log(1 +Kσ−2)

where Tρ is density samples per agent and Regol (Tρ) =
∑Tρ

t=1 rt where rt =
∑

B∈Bt

∑
i∈B ∆(x̃i|X1:i−1

t ; ρ, Su,B
t )−

∆(xit|X1:i−1
t ; ρ, Su,B

t )

Proof Given.

Regol (Tρ) =

Tρ∑
t=1

rt

=

Tρ∑
t=1

∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t )

WLOG, every batch B, is indexed by iterator i = 1 to |B| sequentially.
Let x̃i = argmax∆(xit|X1:i−1

t ; ρ, Su,B
t ) and D̃i

t is a disk around x̃i. For notation convenience:
Di−

t := Di
t\D1:i−1

t ∩ Su,B
t and D̃i−

t := D̃i
t\D1:i−1

t ∩ Su,B
t

SafeMaC picks the agent at xit greedily in the set B. Following the steps in Lem. 12 we
can bound simple agent-wise local regret as rt or simply from Eq. (56) by summing over all
the B ∈ Bt, we get,

rt =
∑
B∈Bt

∑
i∈B

∆(x̃it|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t )

≤
∑
B∈Bt

∑
i∈B

2
√

βρ
t max
v∈Di−

t

σρ
t−1(v) = wt (From Eq. (56))

On bounding simple regret.

rt ≤ wt =
∑
B∈Bt

∑
i∈B

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) = 2

√
βρ
t

K∑
i=1

σρ
t−1(x

g,i
t ) (xg,it = argmax

v∈Di−
t

σρ
t−1(v))

w2
t ≤ 4βρ

tK
K∑
i=1

(σρ
t−1(x

g,i
t ))2 (Using Cauchy–Schwarz inequality)

= 4βρ
tK

K∑
i=1

λi,t (
∑K

i=1(σ
ρ
t−1(x

g,i
t ))2 = Tr(Kρ) =

∑K
i=1 λi,t)
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= 4βρ
tK

K∑
i=1

σ2σ−2λi,t

≤ 4βρ
tK

K∑
i=1

σ2C2 log(1 + σ−2λi,t)

(Since, s ≤ C2 log(1 + s) for s ∈ [0,Kσ−2], where C2 = Kσ−2/ log(1 +Kσ−2) ≥ 1)

(Here, s = σ−2λi,t ≤ σ−2λmax ≤ σ−2
∑

i λi,t = σ−2Tr(Kρ) ≤ σ−2K, (wlog k(v, v) ≤ 1))

≤ 8K2βρ
t

log(1 +Kσ−2)

K∑
i=1

1

2
log(1 + σ−2λi,t) (52)

On bounding cumulative regret with mutual information.( Tρ∑
t=1

wt

)2
≤ Tρ

Tρ∑
t=1

w2
t (Using Cauchy–Schwarz inequality)

≤ Tρ

Tρ∑
t=1

8K2βρ
t

log(1 +Kσ−2)

K∑
i=1

1

2
log(1 + σ−2λi,t) (Using Eq. (52))

=
8TρK

2βρ
T

log(1 +Kσ−2)

Tρ∑
t=1

K∑
i=1

1

2
log(1 + σ−2λi,t)

(Since βρ
t is non-decreasing & βρ

T := βρ
Tρ

)

=
8TρK

2βρ
T I(Yxg,1:K

1:Tρ

; ρ)

log(1 +Kσ−2)
(Using Eq. (44))

≤
8TρK

2βρ
Tγ

ρ
KT

log(1 +Kσ−2)
(γρKT = supXm

1:Tρ
⊂V I(YXm

1:Tρ
; ρ))

=⇒
Tρ∑
t=1

wt ≤

√
8TρK2βρ

Tγ
ρ
KT

log(1 +Kσ−2)
(53)

=⇒ Regol (Tρ) ≤

√
8TρK2βρ

Tγ
ρ
KT

log(1 +Kσ−2)
(Since Regol (Tρ) =

∑Tρ

t=1 rt ≤
∑Tρ

t=1wt)

This lemma nicely connects the near optimal coverage in the reachable set i.e, (1 −
1
e )

∑
B∈B F (XB

⋆ ; ρ, R̄ϵq(X
B
0 )), with the coverage in a possibly disjoint optimistic sets. (Note

that the only requirement is that the optimistic set needs to always superset R̄ϵq(X0).
The agents observe the location only if all the agents can reach the max uncertain point

under their disk i.e, 2
√
βρ
t maxv∈Di−

t
σρ
t−1(v). (Accordingly, information gain is defined, and

Tρ above is a counter when all the agents obtain density measurements).

Lemma 12 (SafeMaC Near-Optimality) For any t ≥ 1, if wt ≤ ϵρ at SafeMaC’s
recommendation Xt then with high probability,∑

B∈Bt

F (XB
t ; ρ, Su,B

t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ,
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where wt =
∑

B∈Bt

∑
i∈B 2

√
βρ
t maxv∈Di−

t
σρ
t−1(v).

Proof Given. SafeMaC recommends a location for the agent i ∈ B greedily in the Su,B
t

set as per,

xit = argmax
v

∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v) (54)

Let x̃i
t = argmax∆(xit|X1:i−1

t ; ρ, Su,B
t ) and D̃i−

t := D̃i
t\D1:i−1

t ∩ Su,B
t , where D̃i

t is a disk
around x̃i. Based on this picking strategy,∑

v∈D̃i−
t

ρ(v) ≤
∑

v∈D̃i−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(Follows due to upper confidence bound)

≤
∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(Since, Eq. (54), xit is greedily picked)

∑
v∈D̃i−

t

ρ(v) ≤
∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(55)

On bounding simple regret. With definition rt =
∑

B∈Bt

∑
i∈B ∆(x̃it|X1:i−1

t ; ρ, Su,B
t )−

∆(xit|X1:i−1
t ; ρ, Su,B

t ).
Consider,

∆(x̃it|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t )

=
( ∑

v∈D̃i−
t

ρ(v)−
∑

v∈Di−
t

ρ(v)
)
/N (Note Di−

t and D̃i−
t )

≤
( ∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−

∑
v∈Di−

t

ρ(v)
)
/N

(Using Eq. (55))

≤
(∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−
(
µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

))
/N

(Since, ρ(v) ≥ µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v) ∀ v)

= 2
√

βρ
t

∑
v∈Di−

t

σρ
t−1(v)/N

≤ 2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) (56)

The last inequality follows since
∑

v∈Di−
t

σρ
t−1(v) ≤ N maxv∈Di−

t
σρ
t−1(v) and |Di−

t | ≤ N .Now,

rt =
∑
B∈Bt

∑
i∈B

∆(x̃it|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; ρ, Su,B

t )
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≤
∑
B∈Bt

∑
i∈B

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) (from Eq. (56))

= wt ≤ ϵρ

From Eq. (37), (1− 1
e )

∑
B∈B F (XB

⋆ ; ρ, R̄ϵq(X
B
0 ))−

∑
B∈Bt

F (XB
t ; ρ, Su,B

t ) = ractt ≤ rt

=⇒
∑
B∈Bt

F (XB
t ; ρ, Su,B

t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ

Proposition 13 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ +4σρ

√
γρKt + 1 + ln(1/δ)

and t⋆ρ
1 is the smallest integer such that t⋆ρ

1

βρ

t⋆ρ
1I(Yx

g,1:K

1:t⋆ρ
1

;ρ)
≥ 8K2

log(1+Kσ−2)ϵ2ρ
, then with probability

1−δ that there exists t1ρ < t⋆ρ
1 such that wt1ρ+1 ≤ ϵρ, where wt =

∑
B∈Bt

∑
i∈B

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) ≤

ϵρ.

Proof Since,

t⋆ρ
1

βρ
t⋆ρ

1I(YXm

1:t⋆ρ
1
; ρ)
≥ 8K2

log(1 +Kσ−2)ϵ2ρ
(57)

=⇒ K

√√√√ 8βρ
t⋆ρ

1I(YXm

1:t⋆ρ
1
; ρ)

t⋆ρ
1 log(1 +Kσ−2)

≤ ϵρ (Rearranging terms)

∑t⋆ρ
1

t=1wt

t⋆ρ
1 ≤ K

√√√√ 8βρ
t⋆ρ

1I(YXm

1:t⋆ρ
1
; ρ)

t⋆ρ
1 log(1 +Kσ−2)

≤ ϵρ (From Eq. (53) in Lem. 11)

=⇒ min
t∈[1,t⋆ρ1]

wt ≤ ϵρ (
t⋆ρ

1 min
t∈[1,t⋆ρ

1]

wt

t⋆ρ
1 ≤

∑t⋆ρ
1

t=1 wt

t⋆ρ
1 )

Hence there exists t1ρ < t⋆ρ
1, such that wt1ρ+1 ≤ ϵρ.

For notation convenience we denote with Regol (δt
⋆
ρ
n) := Regol (t

n−1
ρ +δt⋆ρ

n)−Regol (t
n−1
ρ ) =∑tn−1

ρ +δt⋆ρ
n

t=tn−1
ρ +1

rt and I(Yδt⋆ρn ; ρ) = I(Y
xg,1:K

tn−1
ρ +1:tn−1

ρ +δt⋆ρ
n
; ρ).

Lemma 14 Let the coverage phase be terminated for the (n− 1)th time at tn−1
ρ , and δt⋆ρ

n be
the maximum number of density measurements required to terminate coverage phase for the
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nth time. Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ), then

with probability at least 1− δ the following inequality holds,

Regol (δt
⋆
ρ
n) ≤

(
δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t

)1/2
≤

√√√√8δt⋆ρ
nK2βρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρn ; ρ)

log(1 +Kσ−2)

Proof With definitions,

Regol (δt
⋆
ρ
n) =

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

rt ≤
tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

wt

=⇒
(
Regol (δt

⋆
ρ
n)
)2 ≤ tn−1

ρ +δt⋆ρ
n∑

t=tn−1
ρ +1

wt ≤ δt⋆ρ
n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t

(Using, Cauchy-Schwarz inequality)

Now, the RHS of the inequality can be simplified as,

δt⋆ρ
n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t ≤ δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

8K2βρ
t

log(1 +Kσ−2)

K∑
i=1

1

2
log(1 + σ−2λi,t) (using Eq. (52))

≤
8δt⋆ρ

nK2βρ

tn−1
ρ +δt⋆ρ

n

log(1 +Kσ−2)

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

K∑
i=1

1

2
log(1 + σ−2λi,t)

(since, βρ
t is non-decreasing and using definition of mutual information we get,)

=⇒ Regol (δt
⋆
ρ
n) ≤

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

wt ≤
(
δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t

)1/2
≤

√√√√8δt⋆ρ
nK2βρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρn ; ρ)

log(1 +Kσ−2)
(58)

Lemma 15 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ) and

δt⋆ρ
n is the smallest integer after tn−1

ρ such that δt⋆ρ
n

βρ

tn−1
ρ +δt⋆ρ

n
I(Yδt⋆ρ

n ;ρ)
≥ 8K2

log(1+Kσ−2)ϵ2ρ
, then we

know with probability 1 − δ that there exists δtnρ < δt⋆ρ
n such that w

tn−1
ρ +δtnρ+1

≤ ϵρ, where

wt =
∑

B∈Bt

∑
i∈B 2

√
βρ
t maxv∈Di−

t
σρ
t−1(v) ≤ ϵρ.

Proof Given,

δt⋆ρ
n

βρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρn ; ρ)
≥ 8K2

log(1 +Kσ−2)ϵ2ρ
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=⇒ K

√√√√8βρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρn ; ρ)

δt⋆ρ
n log(1 +Kσ−2)

≤ ϵρ

∑tn−1
ρ +δt⋆ρ

n

tn−1
ρ +1

wt

δt⋆ρ
n ≤ ϵρ (Using Eq. (58) in Lem. 14)

=⇒ min
t∈[tn−1

ρ +1,tn−1
ρ +δt⋆ρ

n]
wt ≤ ϵρ

Hence there exists δtnρ < δt⋆ρ
n, such that w

tn−1
ρ +δtnρ+1

≤ ϵρ.

Lemma 16 Let δ ∈ (0, 1) and βρ
t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ) and t⋆ρ is the smallest

integer such that t⋆ρ
βρ
t⋆ρ
γρ
Kt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
, then for any n ≥ 1, tn−1

ρ + δtnρ < t⋆ρ.

Proof

tn−1
ρ + δtnρ <

8K2βρ

tn−1
ρ

I(Y
xg,1:K

1:tn−1
ρ

; ρ)

log(1 +Kσ−2)ϵ2ρ
+

8K2βρ

tn−1
ρ +δtnρ

I(Yδtnρ ; ρ)

log(1 +Kσ−2)ϵ2ρ
(using Eq. (57), since t1ρ < t⋆ρ

1)

<
8K2βρ

tn−1
ρ +δtnρ

log(1 +Kσ−2)ϵ2ρ
(I(Y

xg,1:K

1:tn−1
ρ

; ρ) + I(Yδtnρ ; ρ)

(Since, βρ
t is non decreasing function)

=

8K2βρ

tn−1
ρ +δtnρ

I(Y
xg,1:K

1:tn−1
ρ +δtnρ

; ρ)

log(1 +Kσ−2)ϵ2ρ
(Since mutual info is additive)

<
8K2βρ

tn−1
ρ +δtnρ

γρ
K(tn−1

ρ +δtnρ )

log(1 +Kσ−2)ϵ2ρ
(59)

Using Eq. (59) and since, t⋆ρ ≥
8K2βρ

t⋆ρ
γρ
Kt⋆ρ

log(1+Kσ−2)ϵ2ρ
, we get tn−1

ρ + δtnρ < t⋆ρ.

Lemma 17 When SafeMaC converges, i.e, U := {So,ϵq ,i
t \Sp,i

t ) ∩Di
t,∀i ∈ [K]} = ∅, then

the following inequality holds,∑
B∈Bt

F (XB
t ; ρ, Sp,B

t ) =
∑
B∈Bt

F (XB
t ; ρ, Su,B

t )

Proof Since, U = ∅,

{(So,ϵq ,i
t \Sp,i

t ) ∩Di
t, ∀i ∈ [K]} = ∅

=⇒ (S
o,ϵq ,i
t ∩Di

t) ⊆ (Sp,i
t ∩Di

t) ∀i ∈ [K]
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= (Su,i
t ∩Di

t) ∀i ∈ [K] (Since Su,i
t := Sp,i

t ∪ S
o,ϵq ,i
t )

Based on the last equality, it directly follows,∑
B∈Bt

F (XB
t ; ρ, Sp,B

t ) =
∑
B∈Bt

F (XB
t ; ρ, Su,B

t ).

F.1 Intermediate recommendation is near-optimal at SafeMaC’s convergence

Lemma 18 Let δ ∈ (0, 1) and βρ
t as in [16], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρKt + 1 + ln(1/δ)

and t⋆ρ be the smallest integer such that t⋆ρ
βt⋆ρ

γKt⋆ρ

≥ 8K2

log(1+Kσ−2)ϵ2ρ
. Let βq

t and t⋆q be defined

analogously. Then, there exists t < t⋆q + t⋆ρ, such that with probability at least 1− δ∑
B∈BT

F (XB
T ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ (60)

where,

XT = argmax
XT ,Xl

T ,T∈[1,t]

{ ∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T ),

∑
B∈Bp

T

F (X l,B
T ; lρT−1, S

p,B
T )

}
s.t.XT ∈ Sp

T

(61)

and X l,B
t , i.e., the greedy solution w.r.t. the worst-case objective, F (·; lρt−1, S

p,B
t ) ∀B ∈ Bpt .

Proof We prove the lemma in two parts. First, we prove the near optimality of SafeMaC’s
solution Xt but evaluated using lρt−1 instead of ρ. This will imply the near optimality at
convergence of the 1st term (

∑
B∈Bp

T
F (XB

T ; lρT−1, S
p,B
T )) in the above recommendation rule.

Secondly, due to the argmax operator, the near optimality of the 1st term is sufficient to
establish the optimality of the recommendation rule in Eq. (61).
Notations. Xt = ∪B∈BtX

B
t , ∆(·; ρ, V ) as defined in Eq. (17).

Given. From Theorem 2, for t < t⋆q + t⋆ρ with probability at least 1− δ ,∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ (62)

and ∑
B∈Bt

∑
i∈B

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) ≤ ϵρ

Near-optimality of SafeMaC’s Xt evaluated using lρt−1.

∆(x̃it|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; lρt−1, S

u,B
t )
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=
( ∑

v∈D̃i−
t

ρ(v)−
∑

v∈Di−
t

lρt−1(v)
)
/N (Note Di−

t and D̃i−
t )

≤
(∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−
(
µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

))
/N

(Using Eq. (55) and definition of lρt−1(v))

= 2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/N

≤ 2
√
βρ
t max
v∈Di−

t

σρ
t−1(v) (63)

∑
B∈Bt

∑
i∈B

∆(x̃it|X1:i−1
t ; ρ, Su,B

t )−∆(xit|X1:i−1
t ; lρt−1, S

u,B
t ) ≤

∑
B∈Bt

∑
i∈B

2
√
βρ
t max
v∈Di−

t

σρ
t−1(v)

≤ ϵρ

Using the following two statements,

• (1− 1
e )F (X⋆; ρ, S

u,B
t ) ≤

∑
i∈B ∆(x̃i|X1:i−1

t ; ρ, Su,B
t ) from Eq. (39)

•
⋃

i∈B R̄ϵq({x
i
0}) ⊆ Su,B

t =⇒
∑

B∈B F (X⋆; ρ, R̄ϵq(X0)) ≤
∑

B∈Bt
F (X⋆; ρ, S

u,B
t )

we get,

=⇒
∑
B∈Bt

F (XB
t ; lρt−1, S

u,B
t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ (64)

Near-optimality of recommendation as per Eq. (61).
Let’s consider the following recommendation rule,

XT = argmax
XT ,T∈[1,t]

{ ∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T )

}
s.t.XT ∈ Sp

T (65)

At convergence, Sp,i
t ∩ Di

t = Su,i
t ∩ Di

t =⇒ (So,ϵq\Sp,i
t ) ∩ Di

t = ∅, using this SafeMaC
recommendation Xt can be written as,∑

B∈Bt

F (XB
t ; lρt−1, S

u,B
t ) =

∑
i∈[K]

∆(xit|X1:i−1
t ; lρt−1, S

p,i
t ) =

∑
B∈Bp

t

F (XB
t ; lρt−1, S

p,B
t )

∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T ) ≥

∑
B∈Bp

t

F (XB
t ; lρt−1, S

p,B
t )

(since, XB
T = argmax

XB
T ,T∈[1,t]

∑
B∈Bp

T
F (XB

T ; lρT−1, S
p,B
T ))

=⇒
∑

B∈Bp
T

F (XB
T ; lρT−1, S

p,B
T ) ≥

∑
B∈Bt

F (XB
t ; lρt−1, S

u,B
t )

(Combining the above 2 equations)
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=⇒
∑

B∈Bp
T

F (XB
T ; lρT−1, S

p,B
T ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ (using Eq. (64))

Hence, the recommendation of Eq. (65) evaluated with lower bound is near optimal
(at convergence XT ∈ Sp

T ). Further, due to argmax operator Eq. (65) also implies near-
optimality of recommendation rule in Eq. (61) evaluated with the lower bound. So now using
XT chosen as per Eq. (61) and at convergence, ∀i, (Sp,i

t ∩Di
t) ⊆ (R̄0({xi0}) ∩Di

t), we get,∑
B∈Bp

T

F (XB
T ; ρ, Sp,B

T ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ (lρt−1(v) ≤ ρ(v)∀v)

∑
B∈Bp

T

F (XB
T ; ρ, R̄0(X0)) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq(X

B
0 ))− ϵρ

Hence Proved.
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Appendix G. Multi-agent GoOSE version

This section presents our fundamental lemma for the multi-agent version of goose. The result
is built upon Theorem 1 of [11]. Since agents are sharing the observations among all in our
case, we first derive a finite time bound for learning constrained function up to ϵq-accuracy
under the cooperative sharing setting. Later, we present our key Lem. 22, which guarantees
complete exploration by each agent under finite time while preserving safety.

Lemma 19 Let δ ∈ (0, 1) and let (βq
t )

1/2 = Bq+4σq

√
γqKt + 1 + ln(1/δ). Then the following

hols with probability at least 1− δ,∑
t

ω2
t ≤ C1β

q
t I(YA; q) ≤ C1β

q
t γ

q
KT ,

where C1 = 8/ log(1 + σ−2
q ), ωt = 2

√
βq
t σ

q
t−1(x

i
t), and xit is the location visited by some agent

i at time t. A is the set of locations visited by agents to collect constraint observations.
I(YA; q) is information gain due to these interactions and γqKT is the information capacity.

Proof Using ωt = 2
√
βq
t σ

q
t−1(x

i
t),

ω2
t = 4βq

t (σ
q
t−1(v))

2 = 4βq
t σ

2
qσ

−2
q (σq

t−1(x
i
t))

2

≤ 4βq
t σ

2
qC2 log(1 + σ−2

q (σq
t−1(x

i
t))

2)

(Since, s ≤ C2 log(1 + s) for s ∈ [0, σ−2
q ], where C2 = σ−2

q / log(1 + σ−2
q ) ≥ 1)

(Since, s = σ−2
q σq

t−1(v)
2 ≤ σ−2

q kq(v, v) ≤ σ−2
q , (wlog kq(v, v) ≤ 1))

≤ C1β
q
t

1

2
log(1 + σ−2

q (σq
t−1(x

i
t))

2) (C1 = 8σ2
qC2)

≤ C1β
q
t

1

2
log(1 + σ−2

q

K∑
i=1

(σq
t−1(x

i
t))

2) (Since, (σq
t−1(x

i
t))

2 ≤
∑K

i=1(σ
q
t−1(x

i
t))

2)

= C1β
q
t

1

2
log(1 + σ−2

q

K∑
i

λi,t) (
∑K

i=1(σ
ρ
t−1(x

i
t))

2 = Tr(Kq) =
∑K

i=1 λi,t)

≤ C1β
q
t

K∑
i=1

1

2
log(1 + σ−2

q λi,t)

(log(1 + x1 + x2) ≤ log(1 + x1) + log(1 + x2), for x1, x2 ≥ 0)

= C1β
q
t I(YA; q) (I(; q) is defined analogous to I(; ρ) in Eq. (44))

≤ C1β
q
t γ

q
KT (γqKT = supA⊂V ;|A|=KT I(YA; q))

Hence Proved.

Similar to Lem. 8 of Turchetta et al. [11], Let us denote T v
t = {τ1, ..., τj} the set of steps

where the constraint q is evaluated at v by step t.

Lemma 20 For any t ≥ 1 and for any v ∈ V , it holds that wt(v) ≤
√

C1β
q
t γ

q
Kt

|T v
t | , with

C1 = 8/ log(1 + σ−2
q ).
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Proof

|T v
t |w2

t (v) ≤
∑
τ∈T v

t

w2
τ (v) (66)

≤
∑
τ∈T v

t

4βq
τ (σ

q
t−1(x

i
t))

2

≤
∑
τ∈t

4βq
τ (σ

q
t−1(x

i
t))

2

≤ C1β
q
t γ

q
Kt

Eq. (66), follows due to intersection of confidence interval arguments, Lemma 1 of Turchetta
et al. [11] and the inequality follows due to Lem. 19.

Let us denote with Tt, the smallest positive integer such that Tt

βq
t+Tt

γq
K,t+Tt

≥ C1
ϵ2q

, with

C1 = 8/ log(1 + σ−2
q ) and with t⋆ the smallest positive integer such that t⋆ ≥ |R̄0(X0)|Tt⋆ .

Lemma 21 For any t ≤ t⋆, for any x ∈ V such that |T v
t | ≥ Tt⋆, it holds that wt(v) ≤ ϵq.

Proof Since Tt is an increasing function of t [49], we have |T v
t | ≥ Tt⋆ ≥ Tt. Therefore using

Lem. 20 and the definition of Tt, we get,

wt(v) ≤

√
C1β

q
t γ

q
Kt

Tt
≤

√
C1β

q
t γ

q
Ktϵ

2
q

C1γ
q
K,t+Tt

βq
t+Tt

≤

√
βq
t γ

q
Kt

γqK,t+Tt
βq
t+Tt

ϵq ≤ ϵq.

The last inequality follows from the fact that both βq
t and γqt are non-decreasing function of

t.

Lemma 22 Assume that q(·) is Lq-Lipschitz continuous w.r.t d(.,.) with ∥q∥k ≤ Bq, X0 ̸= ∅,
q(xi0) ≥ 0 for all i ∈ [K]. Let (βq

t )
1/2 = Bq + 4σq

√
γqKt + 1 + ln(1/δ), then, for any

heuristic ht : V → R, with probability at least 1 − δ, we have q(x) ≥ 0, for any x visited
by any agent in SafeMaC. Moreover, let γqKt denote the information capacity associated
with the kernel kq and let t⋆q be the smallest integer such that t⋆q

βt⋆q
γKt⋆q

≥ C1|R̄0(X0)|
ϵ2q

, with

C1 = 8/ log(1 + σ−2
q ), then there exists t ≤ t⋆q such that, with probability at least 1 − δ,

R̄ϵq({x
i
0}) ⊆ So,ϵq ,i ⊆ Sp,i ⊆ R̄0({xi0}) for all i ∈ [K].

Proof In SafeMaC, each agent have a record for its optimistic and pessimistic set.The lemma
is similar to K instances of Theorem 1 of Turchetta et al. [11]; each instance corresponds
to per agent case. Safety is a direct consequence of Theorem 2 of Turchetta et al. [51].
Finite time bound while agents are sharing information is consequence of Lem. 19-21. The
convergence of the pessimistic and optimistic approximation of the safe sets for each agent is
a direct consequence of Lemmas 16-18 of Turchetta et al. [11].

For a detailed discussion, we refer the reader to Appendix D Completeness of Turchetta
et al. [11].
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Figure 4: Compares MaCOpt and UCB on the Gorilla (a) and the GP (b,c) environment.
a,b) Compares simple regret rt Eq. (29) in the unconstrained case (domain V ). c) Plots total
coverage achieved by both the algorithms.
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Figure 5: a) The contours show the synthetic density and the obstacles marked by the black
blocks. b,c) Comparison of SafeMaC with PassiveMaC and Two-Stage in the Obstacle and
the GP environment during optimization

Appendix H. Experiments

Implementation details. We implemented all our algorithms with BoTorch [57] and
GPyTorch [58] frameworks, built on top of Pytorch [59]. The code for both the algorithms
will be made public along with the competitive baselines. We limit the maximum number
of rounds to 300, and with the selected hyperparameters and the given environments, it
terminates before that. This roughly takes 10 min of training for SafeMaC on a single core
CPU. The code is written for running a single instance of the experiment. In practice, we
launch nearly 1000 such instances simultaneously on the cluster in parallel to get results
about different environments, noise realizations and initializations.
Gorilla Environment. The gorilla environment (Fig. 2a) is defined in a grid of 34× 34,
with each grid cell being a square of length 0.1. The K = 3 agents perform the coverage
task, with each having a sensing region defined as a set of locations agents that can travel
in 5 steps in the underlying transition graph (Precisely, Di = Rreach

5 ({xi}), Eq. (9)). We
considered 10 gorilla environments each differ in the initial location of the agents. The nest
density is obtained by fitting a smooth rate function [18] over Gorilla nest site locations
which were provided by the Wildlife Conservation Society Takamanda-Mone Landscape
project (WCS-TMLP) Funwi-gabga and Mateu [19]. As a proxy for bad weather, we use
the cloud coverage data over the Kagwene Gorilla Sanctuary from OpenWeather [55]. The
density and the constraint function used are available in our code base. The code for fitting a

49



rate function is available here (https://github.com/Mojusko/sensepy) under the MIT license.
We used a lengthscale of 1 for the density and of 2 for the constraint function. The noise
variance is set to 10−3 and 7× 10−3 for density and the constraint respectively. However,
the performance in the experiments is not sensitive to the hyperparameters and is easily
reproducible with other sensible parameters as well.
Obstacles Environment. The obstacle environment (Fig. 5a) is defined on a grid of 30×30,
with each grid cell being a square of length 0.1. The sensing region and number of agents
are defined similarly to the Gorilla environment. The obstacle is completely defined by the
location of its top right corner and the bottom left corner. The obstacle environment is
generated by combining a set of such obstacles. The density is directly sampled from a GP
with the parameters same as synthetic data. We produced ten instances of environments, each
having a different set of obstacles and GP sample and initialization. We used a lengthscale
of 2 for both density and the constraint function. The noise variance is set to 10−3. Similar
to earlier environments, performance is not sensitive to hyperparameters.
Experiment results.

Unconstrained case Fig. 4a and Fig. 4b plots the simple regret rt for each round t, precisely,
defined as

∑K
i=1∆(x̃|X1:i−1; ρ, V ) − ∆(xit|X1:i−1; ρ, V ). This quantity upper bounds the

actual regret and provides intuition for the convergence rate. We see in the plots that the
simple regret goes to zero for MaCOpt, but gets stuck for the UCB algorithm. Due to this,
we also observe that MaCOpt can achieve higher coverage value as compared to UCB in
Fig. 4c.

Constrained case Fig. 5b and Fig. 5c compares coverage of area attained by SafeMaC,
PassiveMaC and the two stage algorithm. Precisely the intermediate locations are recom-
mended as per Eq. (61). We see that SafeMaC finds a comparable solution to two stage
more efficiently without exploring the whole environment, where as PassiveMaC gets stuck
in the local optimum.
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