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Abstract

Computational modeling is central in gaining systems’ understanding in a broad range of
domains. Data based modeling has become an essential part of these efforts. While in
some domains labelled data is abundant, e.g., search engines queries, in other domains
labeling is time consuming, e.g., medical image analysis, comes at high financial cost and
sometimes is even safety critical, e.g., experiments in chemical reactors or test benches.
Therefore, approaches for automatic data generation under safety constraints are a key
enabler for automatic data generation in those systems. We present approaches for safe
learning and combine it with dynamic systems, systems with multiple outputs as well as
real world industrial applications.

Keywords: Safe learning, Active Learning, automatic labeling, experimental design,
Gaussian processes
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1. Introduction

Safe exploration is highly relevant in domains like robotics (Sui et al., 2018; Berkenkamp
et al., 2016; Baumann et al., 2021), energy management (Galichet et al., 2013), terrain ex-
ploraion (Moldovan and Abbeel, 2012; Turchetta et al., 2019) or engine modeling (Schreiter
et al., 2015; Zimmer et al., 2018). If a safe area of operation is known a-priori by e.g.,
domain experts, this can be easily incorporated as a constraint. The more common and
challenging scenario are unkown safe areas. Here, we focus on this aspect of how data for
machine learning models can be safely generated when the safety constraints have to be
learned on the fly during the course of the measurements.

Commonly, it is assumed that during the experiment, some feedback on the system’s safety
or health can be obtained (Schreiter et al., 2015; Zimmer et al., 2018; Turchetta et al.,
2019; Baumann et al., 2021). This feedback can be used to learn a safety model. Gaussian
processes are a favorable choice as they are a flexible modeling tool and also provide an
uncertainty quantification.

Safe learning has been combined with Bayesian optimization (Berkenkamp et al., 2016),
Active Learning (Schreiter et al., 2015) or dynamic Active Learning (Zimmer et al., 2018).
The meaning of safety or system’s health varies from crashing a drone or blowing up an
engine over some moderate harm as scratches to rather comfort-related issues as system
shutdowns. Therefore, it is beneficial to relate the potential harm and the strictness at
which the safety constraints are adhered to (Berkenkamp et al., 2016; Zimmer et al., 2018).

In this work, we contextualize recently published methods on safe Active Learning and their
real world applications.

2. Gaussian Processes

Gaussian processes (GP) are a widely used data based and probabilistic modeling technique.
Given some data set D = {z;,y;}, consisting of inputs z; and labels y;, a mean, and a
kernel function k, the GP returns a predictive distribution for novel points z* of interest
with mean pu(z*) = kL (knn +021)~'Y and covariance function ¥(z*) = k(z*, 2*) — kL (knp +
021)~ 'k, where k, = k(X,z%), knn = k(X,X), X = (z1,...,2,)7, Y = (y1,...,yn)T as
well as I is an identiy matrix and o2 is a noise level, see (Rasmussen and Williams, 2006)
and (Quifionero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006; Titsias,
2009) for sparse approximation in case of large data sets.

3. Safe Learning

We are interested in safely learning a data based model for a regression task. We assume
that aside of the regression variable y there is a possibly different safety indicator z that
can be measured during a measurement campaign. z could be for example a pressure in
an engine. We furthermore assume that domain experts can identify which levels of the
safety indicator are safe and denote these by S. While domain experts are usually able to
provide this information in the (safety) output space Z, the safe part of the input space X
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is usually unkown. In the example of the pressure, domain experts might know a critical
maximal pressure zpq, and, therefore, S = {z < 2z }-

From now on, we use two GP models: one for the regression task, denoted by p; and
Y, and one for the safety indicator, denoted by ps and ¥;. Given a new candidate for
measurement x*, the safety GP yields us the probability that the candidate is safe:

£a”) = / N (ella®), ()i (1)

If the probability of * to be safe is higher than a user defined threshold 0 < o < 1, then
measurements y* and z* for x* are conducted. The threshold o depends on the severity of
a potential violation. In case of crashes or explosion, one might choose an « close to one,
while in cases of mainly unwanted shutdowns one could choose « further away from one.

If more than one point z* is to be selected, the GP predictive distribution (equation 1) is
multi-variate, rendering the problem analytically intractable due to the integration over a
multivariate Gaussian. While simple Monte-Carlo is an approach, expectation propagation
(Genz, 1992) or adaptive discretization (Zimmer et al., 2020) can be more sophisticated
answers.

Above, the safety condition has been defined as a regression task. While a classification
of safety probability is also possible (Schreiter et al., 2015), our approach is aware of the
distance to the critical level and approaches the safety boundary slowly (Figure 1).

3.1 Safe Active Learning

Test bench time is scarce and valuable so experimenters want to get the most out of it.
Active Learning (AL) is a form of sequential experimental design that chooses information
optimal points given some preceding model, updates the model, and continues by choosing
the next set of information optimal points.

Combining Safe with Active Learning means combining the information maximization with
a safety constraint, mathematically leading to a constrained optimization problem for new
points z*:

¥ = argmax,Z(z)

st. &(z)>1—a

with an information criterion based on e.g., entropy or mutual information. While mutual
information has benefits (Krause et al., 2008), in case of GP entropy is easy to compute
as it is proportional to the predictive co-variance and, therefore, Z(z) = det(Xs(x)). As
computational speed matters in real world applications, we focus on entropy in the following.

3.2 Dynamic Safe Active Learning

Some applications require dynamic modeling, e.g., the same speed of an engine might lead
to different pressures depending on whether one is speeding up or slowing down. Nonlinear
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autoregressive GPs model such dynamic behavior and parametrized trajectories containing
m+1 discretization points 7(n) = (2o, 1, . . ., Tm = 1) can explore the space (Zimmer et al.,
2018). n could, for example, contain start and end point of a ramp (see Al).

3.3 Safe Active Learning for multi-output

Many systems allow simultaneously measuring multiple outputs. Multi-output GPs (MOGP)
exploit the correlation between the output to increase model accuracy. (Li et al., 2022)
showed that Safe AL for MOGP (SAL-MOGP) exploits the correlation leading to an even
more efficient data generation. The correlation also allows for non-synchronous data mea-
surement of different outputs. The model can thus explore individual data domains for each
output, which provides further flexibility in the measurement processes.

4. Applications
4.1 A toy example

We first illustrate how the safe area is learned on the fly. We start with a few meaurements
in a small rectangular area that we assume can be determined as safe by domain experts.
Then, our safe AL technology automatically decides for new safe measurments and upon
receiving labels of the safety indicator extends the knowlegde of the safe area.
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Figure 1: Illustration how the safe area is learned on the fly. Left: based on initial data
(black line) a safety GP is trained. With its help the green area that is safe with high
probability can be determined. Middle: a new measuerment is selected (purple) and
based on its labels, the safety GP updated (green area becomes bigger). Right: with
more measurements the safety GP is able to correctly identify the safe area. Inlay figures:
test RMSE of regression problem is decreasing. Figure from (Zimmer et al., 2018).

4.2 High Pressure Fuel Supply System modeling

When calibrating combustion engines, models are used to speed up the calibration process,
reduce the risk of damaging expensive prototypes, and reduce the time the real system
needs to be available. One example is the high pressure fuel supply system of a gasoline
engine. When considering no-load operation, this system features two inputs (engine speed
and fuel pump actuation) and one output (rail pressure), which must not exceed a given
limit for safe operation.
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Figure 2: The first two pictures from the left show the comparison of the SAL-NX (red line) with
random selection with safe constraints (blue line), with respect to model approximation
(lower RMSE is better) and coverage of safe regions (higher coverage is better). The last
two pictures show the impact of the safety threshold on the approximation error, and
failures during exploration.

We first consider a simulator for this high pressure fuel supply system that allows us to
carry out various analyses how quickly the safe area is learned (Figure 2 middle left), the
effect of the safety value o (Figure 2 middle right and right) as well as AL (Figure 2 left).
Next, we demonstrate that the dynamic safe AL algorithm (DSAL) can be successfully and
safely used to conduct safe and information optimal experiments at the high pressure fuel
supply system in a real car (Figure 3).

Figure 4 left shows the excitation signals created by DSAL. Note that the maximum pressure
of 18 MPa is never exceeded. Figure 4 right compares the modeling performance of DSAL
with space-filling ramp and chirp signals on different test data sets. DSAL always performs
on par or better than the other signal type, which does not directly match the test signal
type. The modeling error is comparatively high, because a very simple NX structure was
used, which is not sufficient for this system. See (Schillinger, 2019) for more details.

Figure 3: Dynamic safe Active Learning steering a car’s engine to conduct measure-
ments for a railpressure system. Experimental set-up connecting the car’s engine to
the Matlabe based algorithm.
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Figure 4: Left: Output (top) and inputs (middle and bottom) for a dynamic SAL measure-

ments at a high pressure fuel supply system. The maximum allowed pressure was
set to 18 MPa and never exceeded.
Right: normalized root mean square error on three test datasets with three differ-
ent excitation signals. Top: DSAL data as test data, middle: ramps as test data,
bottom: chirps as test data. Solid line: DSAL training data, dashed line: ramp
training data, dotted line: chirp training data. Images from Schillinger (2019).

4.3 Emission modeling

The role of virtual sensors in the automotive industry has been growing tremendously over
the past years and their applications can be found in numerous disciplines, such as engine
calibration, diagnostic tools or validation tests. Here, we are concerned with building a
virtual sensor over the emissions of a car’s engine while keeping the total number of mea-
surements low!. More concretely, we aim at modeling the outputs channels hydrocarbon
(HC) and oxygen (02) simultaneously while considering it safety critical that the temper-
ature of the engine stays below a certain threshold. Since HC and O2 are known to be
physically related, our SAL-MOGP framework is highly suitable for this task. We compare
our approach with conventional safe AL or MOGP without AL in Figure A1l. Our results
confirm that combining AL with MO learning achieves a smaller test error when keeping
the number of samples fixed.

5. Outlook

We believe in the relevance of real world Active Learning. Many challenges will come up
and their solution will lead to further academic results and the real world impact. To
support the progress of the field, relatistic simulators or even better collaborative access
to test benches are needed to allow for scientifically accurate benchmarking. The interface
between test bench and algorithm is a (more engineering related) challenge that needs
standardized answers to scale the research communities methods to wide applicability.

1. Data is available at https://github.com/boschresearch/Bosch-Engine-Datasets/tree/master/genginel
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Figure Al: SAL for MOGP even more data efficient. The test error of SAL for MOGP con-
sidering correlation between outputs decreases even faster than those for conventional
SAL or MOGP without AL.
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Appendix A1l. Selection of new points in the dynamic scenario

As mentioned in section 3.2 we use GPs with a nonlinear autoregressive structure. Denoting
the controls of the test bench - the variables that we can choose - with u, each input x of
the GP consists of the current and past values of u as well as possibly in case of output
feedback also past values of the output y.

Let ¢ denote the length of the considered output history and d the length of the considered
history of u. Then, an input point takes the following form:

Tk = (Yk—1, -+ > Yhegqs Uk> Uk—1, - - -, Uk—d))-

In this work, we consider the case of ¢ = 0 and d > 0 (no output feedback). We plan
trajectories of m + 1 points 7(n) = (zg, 21, . . ., Ty = 1) with z; as above and appropriately
choose the parameter . We denote 7, = (z1,..., 2, = 1) as a trajectory without xg.

In the case of ramps, the parameter 7 could simply be the end point of the ramp (uy). Now,
we determine 7 similar to section 3.1 by solving a constrained optimization problem:

*

n* = argmax, Z(7z(n))
st. E(r(n) >1—«

Note that we use 7, for the information gain as the information from x( has already been
counted by the previous trajectory. We use 7 for the safety as the piece between xg (last
point of previous trajectory) and x; should also be checked for safety.

Note that in the case of ¢ > 0 (output feedback), calculating the information (predictive
variance) of the m! point of a trajetory requires the output value 4, 1 which has not
yet been observed as it is in the future. One can use the predictive mean of the GP as
a surrogate for this output value y,,—1 and others in the future. While this would ignore
the uncertainty of the predicted y,,—1, moment matching methods or sampling could be
used for a proper consideration of this uncertainty. Note that the input excitation is still
performed through the manipulated variable uj even in the case of output feedback.
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