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Abstract
This work addresses the problem of exploration in an unknown environment. For linear
dynamical systems, we use an experimental design framework and introduce an online greedy
policy where the control maximizes the information of the next step. In a setting with a
limited number of observations, our algorithm has low complexity and shows experimentally
competitive performances compared to more elaborate gradient-based methods. 1

1. Introduction

System identification is a problem of great interest in many fields such as econometrics,
robotics, aeronautics, or reinforcement learning (Ljung (1998); Natke (1992); Goodwin and
Payne (1977); Gupta et al. (1976); Moerland et al. (2021)). The task consists in estimating
the parameters of an unknown system by sampling trajectories from it as fast as possible.
To this end, inputs must be chosen so as to yield maximally informative trajectories. We
focus on linear time-invariant (LTI) systems. Let A ∈ Rd×d and B ∈ Rd×m be two matrices;
we consider the following discrete-time dynamics:

xt+1 = Axt +But + wt, 0 ≤ t ≤ T − 1; x0 = 0 (1)

where xt ∈ Rd is the state, wt ∼ N (0, σ2Id) is a normally distributed isotropic noise with
known variance σ2 and the control variables ut ∈ Rm are chosen by the controller with the
following power constraint:

1

T

T−1∑
t=0

‖ut‖2 ≤ γ2. (2)

The system parameters (AB) := θ ∈ Rd×q (q = d+m) are unknown initially and are to be
estimated from observed trajectories (xt). The goal of system identification is to choose the
inputs ut so as to drive the system towards the most informative states for the estimation
of θ. An example of such a system could be the motion of an aircraft (see Section 4). It may
happen that B is known by the controller, in which case θ = A, q = m and our results can
be readily adapted.

Motivation In practice, systems have complex dynamics and can only be approximated
by linear systems on short time scales, to ensure that the dynamics remains linear and
time-invariant. Moreover, long experiments can be costly (think for instance of an aircraft
test flight). In order to be practical, our identification algorithm needs to interact as little as

1. Our code is available at https://github.com/MB-29/greedy-identification
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possible with the system and to take decisions as fast as possible so that it can run online.
Hence we are interested in the regime where T is small, and attach great importance to the
computational time of the identification.
Related work System identification has been widely studied in the field of optimal design
of experiments (Fedorov et al. (1972); Pukelsheim (2006)). For LTI dynamic systems, classical
optimal design approaches provided results for single-input single-output (SISO) systems
(Goodwin and Payne (1977); Keviczky (1975); Walter et al. (1997)) or for multi-input
multi-output (MIMO) systems in the frequency domain or with randomized time-domain
inputs (Mehra (1976)). More recently, system identification received considerable attention
in the machine learning community, with the aim of obtaining finite-time bounds on the
estimation error (Jedra and Proutiere (2020a,b); Simchowitz et al. (2018)). In Wagenmaker
and Jamieson (2020) and Wagenmaker et al. (2021), the inputs are optimized in the frequency
domain to maximize an optimal design objective, with theoretical estimation rate guarantees
in the large T limit. In our approach, we directly optimize deterministic inputs in the time
domain for MIMO LTI systems.
Contributions In this work, we explore a setting for linear system identification with
hard constraints on the number of interactions with the system and on the computing
resources used for planning and estimation. To the best of our knowledge, finite-time system
identification guarantees are only available in the large T limit which makes the hypothesis
of linear time-invariant dynamics quite unlikely. Using a framework based on experimental
design, we propose a greedy online algorithm requiring minimal computing resources. The
resulting policy gives a control that maximizes the amount of information collected at the
next step. We show empirically that for short interactions with the system, this simple
approach is sample-efficient and can actually outperform more sophisticated gradient-based
methods. We compare the algorithms against each other and against an oracle, both on
average and on real-life dynamic systems.

2. Background

Notations In the rest of this work, we note θ? = (A?B?) the unknown parameter underlying
the dynamics. We define a policy π : (x1:t, u0:t−1)→ ut as a mapping from the past trajectory
to the future input. The set of policies meeting the power constraint (2) is noted Πγ .
We note τ = (x1:T , u0:T−1) a trajectory, and we extend this notation to τ(π, T ) when the
trajectory is obtained using a policy π up to time T . We denote by Eθ the average for a
dynamical system given by (1), where the randomness comes from the noise wt and possibly
from the policy inducing the control ut.

2.1 Adaptive identification

Fix an estimator θ̂ : τ 7→ θ̂(τ) ∈ Rd×q, yielding an estimate of the parameters from a given
trajectory. Our objective is to find a policy π ∈ Πγ yielding trajectories for which the
estimate θ̂(τ) is close to θ?. We measure this performance by the mean squared error:

MSE(π) =
1

2
Eθ?

[∥∥∥θ̂(τ(π, T )
)
− θ?

∥∥∥2

F

]
. (3)

Of course, this quantity depends on θ? the true parameter of the system, which is unknown.
A natural way of identifying θ? is to proceed sequentially, as follows.
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Definition 1 (Adaptive system identification) Given an estimate θ̂i of θ?, the policy
for the next sequence of inputs can be chosen so as to minimize a cost function F approximating
the MSE (3), using θ̂i as an approximation of θ?. Then, these inputs are played and θ?
is re-estimated with the resulting trajectory, and so on. We call planning the process of
minimizing F .
This approach is summarized in Algorithm 1, which takes as inputs a first guess for the
parameters to estimate θ0 and a policy π0, the problem parameters σ and γ, a sched-
ule {t0,= 0, t1, . . . , tn−1, tn = T}, a cost functional F and an estimator θ̂. An adaptive
identification algorithm is hence determined by a triplet (θ̂, F, {ti}). A natural estimator in
this linear problem is the least squares estimator which we define in Section 2.2 and which
we adopt in the rest of this work.

Example 1 (Random policy) A naive strategy for system identification consists in playing
random inputs with maximal energy at each time step. This corresponds to the choice ti = i

and πi returning ut ∼ N (0, γ
2

m Im).
Example 2 (Oracle) An oracle is a controller who is assumed to choose its policy with
the knowledge of the true parameter θ?. It can hence optimize F (π; θ, T ) = MSE(π) offline
over {ti} = {0, T}. By definition, the inputs played by the oracle are the optimal inputs for
our problem of mean squared error system identification.
The two previous examples correspond to the extreme cases where the controller has either
no or full knowledge of the system and can be seen as the starting point and the objective of
our problem respectively. Adaptive identification aims to gradually use the knowledge from
collected data to control the system towards optimally informative states.

2.2 Optimal design of experiments

By the linear structure of our problem, we have both a natural estimator for the matrix θ?
and a cost functional for planning from the theory of optimal experiment design.

Definition 2 (Ordinary least squares estimator) The ordinary least squares (OLS) es-
timator associated to the trajectory τ = (x1:T , u0:T−1) is given by

θ̂(τ)
>

= M−1
T−1

T−1∑
t=0

ztx
>
t+1, with zt =

(
xt
ut

)
and Mt =

t∑
s=0

zsz
>
s . (4)

We call the zt the covariates and Mt the Gram matrix at time t.

The theory of optimal design provides an information-theoretical criterion on the covariates
for the accuracy of least squares which takes the form of a concave function of the Gram
matrix (Pukelsheim (2006)). We can work out a derivation for our dynamic setting (see
Appendix C, Goodwin and Payne (1977) and Theorem 2.1 of Wagenmaker et al. (2021)).

Definition 3 (Optimal design functional) Let Φ(M) = −tr(M−1) (A-optimality) or
Φ(M) = log detM (D-optimality). Then the associated optimal design cost functional is
defined as

FΦ(π; θ, t) = −Φ (E [Mt]) (5)

We note that Mt is quadratic in the us so maximizing (5) efficiently is challenging even with
concavity assumptions on Φ. Recent approaches proposed gradient-based optimization of (5)
in the frequency domain, over exponentially large epochs (Wagenmaker et al. (2021)). In the
next section, we propose an algorithm where planning is performed online.
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3. Online greedy identification

A simple, natural approach for system identification consists in updating the policy at each
time-step t in a greedy fashion: the input ut is chosen with energy γ2 so as to maximize a
one-step-ahead objective. Then, a new observation xt is collected and the process repeats.
In the formalism of Section 2.1 corresponds to the schedule ti = i.

3.1 One-step-ahead objective

Following Section 2.2, we adopt the optimal design functional F = FΦ. At time t, the ut-
dependent Gram matrix is Mt−1 + Eθt [ztzt>]. Therefore, one-step-ahead planning yields the
following optimization problem:

max
u∈Rm

Φ
(
Mt−1 + z(u)z(u)>

)
such that z(u) =

(
xt
u

)
and ‖u‖2 = γ2.

(6)

The corresponding online identification algorithm is detailed in Algorithm 2. As we will see in
Section 3.2, problem (6) can be solved accurately and at a cheap cost. Moreover, Algorithm 2
offers the advantage of improving the knowledge of θ? at each time-step, so that the planning
objective is constantly corrected. This way, the bias introduced by the uncertainty about θ? is
minimized, whereas a large bias could impair the identification of the system when planning
is performed over larger time sequences.

Algorithm 1 Adaptive identification
1: inputs initial guess θ0, π0, noise vari-

ance σ2, power γ2, cost functional F , esti-
mator θ̂

2: output final estimate θT
3: for 0 ≤ i ≤ n− 1 do
4: run the true system ti+1 − ti steps
5: with inputs ut = πi(x1:t, u1:t−1)
6: θi = θ̂(x1:ti , u1:ti−1) . estimation
7: πi solves min

π∈Πγ
F (π; θi, ti+1) . planning

8: end for

Algorithm 2 Greedy identification
1: inputs initial guess θ0, noise vari-

ance σ2, power γ2, time horizon T
2: output final estimate θT
3: for 0 ≤ t ≤ T − 1 do
4: ut ∈ argmax

‖u‖22=γ2
Φ
(
Mt−1+z(u)z(u)>

)
5: play ut, observe xt+1

6: Mt+1 = Mt + zt+1zt+1
>

7: θt+1
> = M−1

t+1

(
Mtθt + ztzt

>)
8: end for

3.2 Solving the one-step D-optimal design problem

We show that the one-step-ahead planning for online system identification is equivalent to
an optimization program which can be solved efficiently.

Proposition 4 For D-optimality, there exists a symmetric matrix Q ∈ Rm×m and b ∈ Rm
such that the problem (6) is equivalent to

min
‖u‖22=γ2

u>Qu− 2b>u (7)

The coefficients Q and b can easily be obtained in terms of Mt−1 and θt (see Appendix B).
Furthermore, the minimizers of Problem (7) can be characterized in the following way.
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Proposition 5 Note {αi} the eigenvalues of Q, and ui and bi the coordinates of u∗ and b
in a corresponding orthonormal basis. Then a minimizer u∗ of norm γ satisfies the following
equations for some nonzero scalar µ:

ui = bi/(αi + µ) and
∑
i

bi
2

(αi + µ)2
= γ2. (8)

Our greedy planning problem (7) can hence be solved efficiently at the cost of a scalar
root-finding search and an eigenvalue decomposition. Hager (2001) provides bounds that
allow for an efficient initialization of the root-finding search.

4. Performance study

We compare our greedy algorithm to the TOPLE algorithm of Wagenmaker et al. (2021).
We also implement a gradient-based planning algorithm where we directly optimize the
inputs in the time domain, and refer to it as "gradient" (see Appendix D.2 for details). As
the gradient-based approaches trade speed for accuracy when the number of gradient steps
increases, an important performance factor is the computational time.
Performance The performance of a policy π is measured by the average estimation error
over the experiments: ε = MSE(π). The two resources that may be limited are the number
of observations T and the computational cost C. Since all algorithms have linear time
complexity, we also introduce the computational rate c = C/T so that ε = ε(c, T ). In
practice, we find that cgreedy � cgradient, where cgradient is the computational rate needed for
the gradient descent to converge.

4.1 Computational complexity

In order to compare the performances of gradient and greedy as a function of the computation
resource, we analyze them in a (T,C) diagram.
Experiment We build an experimental diagram where we plot the average estimation error
for θ? = A? with known B?, as a function of T and C for the gradient algorithm. Increasing C
allows for more gradient steps. We run trials with random matrices A? of size d = 4,
with B = Id. We set γ = 1, σ = 10−2, T ∈ [60, 220]. The gradient algorithm optimizes
the A-optimality functional (5) with {ti} = {0, 10, T/2, T}. The obtained performances
are compared with those of the greedy algorithm, which has a fixed, small computational
rate cgreedy. Our diagrams are plotted on Fig. 1a.
Results Our diagrams show that the greedy algorithm is preferable in a phase of low
computational rate: C < c0×T . The phase-separating rate c0 corresponds to a relatively high
number of gradient steps: the iso-performance along this line are almost vertical, meaning
that the gradient descent has almost converged. Furthermore, the maximum performance
relative gain of the gradient algorithm is of 10%. This suggests that the greedy approach is
competitive and that a gradient approach comes with a large cost for a moderate improvement.

4.2 Average performance

We now test the performances of our algorithms on random matrices, with the same settings
as in the previous experiment.
Experiment For each matrix A?, we test our greedy approach against the gradient-based
algorithm. We also run an oracle optimal control (see Appendix D.2), and a random input
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(a) Experimental (T,C) diagram. Left. Performance of
the gradient algorithm, with varying T and C (varying
number of gradient steps). Right. Relative perfor-
mance of the gradient algorithm with respect to the
greedy algorithm: positive means that greedy performs
better.
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(b) Identification error for random A?

averaged over 1000 samples.

Table 1: Performances of different algorithms.

Random TOPLE Gradient Greedy
Average c 1 ∼ 100 ∼ 50 2.36

Aircraft error 1.1× 10−1 8.6× 10−2 8.3× 10−2 8.2× 10−2

Aircraft computation time 1 55.7 25 1.8

baseline (Example 1). We measure the average running time over the trials, from which we
deduce c.
Results The performances over time are plotted on Figure 1b. Both the gradient algorithm
and the greedy algorithm closely approach the oracle. However, the computational cost of
the gradient algorithm is far larger, as shown in Table 1 (first row).

4.3 Identification of an aircraft system

Experiment We now study a more realistic system from the field of aeronautics: the
dynamics of the lateral motion of a Lockheed Jet star. We use the numerical values issued in
a report from the NASA (Gupta et al. (1976)), which are summarized in Appendix E. In
this setting, the number of observations is limited: T = 150. We apply the algorithms under
study to this LTI system. Our results are summarized in Table 1 (second and third rows).
Results The greedy algorithm outperforms the gradient-based ones, both in accuracy and
in compute. With small T , the estimate of A? is too inaccurate for long-term planning to be
efficient. It is more effective to update the estimate and the policy frequently. We obtain
similar results for the longitudinal system of a C-8 Buffalo aircraft (Gupta et al. (1976)).

5. Conclusion
In this work, we explore a setting for linear system identification with hard constraints on
the number of interactions with the real system and on the computing resources used. We
introduce a fast, greedy online algorithm and show empirically that it can actually outperform
more sophisticated gradient-based methods in this setting. Interesting directions of future
research include finding a stopping time condition and extending this approach to the optimal
control of an unknown LQR system.
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Appendix A. Notations

The data-generating distribution knowing the parameter θ can be computed using the
probability chain rule with the dynamics (1):

p(τ |θ) =
1√

2πσ2
exp

[
− 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

]
. (9)

We define the log-likelihood (up to a constant):

`(τ, θ) = − 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

= − 1

2σ2
‖Y − Zθ>‖2F,

(10)

where we have noted Y = (y0 . . . yT−1)> ∈ RT×d and Z = (z0 . . . zT−1
>) ∈ RT×q the

observations and the covariates associated to the parameter θ. If θ = (AB), then

yt = xt+1, zt =

(
xt
ut

)
. If θ = A, then yt = xt+1 − But and zt = xt. We also note

U = (u0 . . . uT−1
>) ∈ RT×m the input matrix and X = (x0 . . . xT−1

>) ∈ RT×d the state
matrix. Note that Z>Z = MT .

Appendix B. Proofs

B.1 Proof of Definition 2

The least squares estimator minimizes the quadratic loss

1

2

T−1∑
t=0

‖xt+1 −Axt −But‖22, (11)

which writes
1

2

∥∥∥Y − Zθ>∥∥∥2

F
=

1

2

d∑
j=1

‖Yj − Zθj‖22 (12)

with Yj the j-th column of Y and θj the j-th row of θ. The d terms of the sum can
be minimized independently, with each θj minimizing the least squares of the vectorial
relation Yj = Zβ. The solution for θj is equal to θ̂j = (Z>Z)−1Z>Yj (see e.g. Boyd and
Vandenberghe (2018)). By concatenating the columns, we obtain that θ̂> = (Z>Z)−1Z>Y ,
which proves (4). Note here that a controllability assumption on (A?, B?) is sufficient to
ensure that Z can be made full rank, and hence that the moment matrix Z>Z is invertible.

B.2 Proof of Proposition 4

By the matrix determinant lemma, we find that

log det
(
Mt−1 + z(u)z(u)>

)
= log detMt−1

+ log
(
1 + z(u)>M−1

t−1z(u)
)
.

(13)
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Maximizing this quantities with respect to u amounts to maximizing z(u)>M−1
t−1z(u). The

matrix M−1
t−1 is symmetric because Mt−1 is symmetric, and so are its diagonal subma-

trices. Given the affine dependence of z in u and the (possible) block structure of z
and Mt−1, z(u)>M−1

t−1z(u) is of the form u>Qu− 2b>u, up to a constant. Matrices Q and b
are obtained with the sub-matrices of Mt−1.

Partially known dynamics If B? is known, the one-step-ahead Gram matrix at time t
is Mt instead of Mt−1, and z(u) = Atxt +Bu. This leads to

Q = −B>Mt
−1B, b = B>Mt

−1Atxt. (14)

B.3 Proof of Propostion 5

By the Lagrange multiplier theorem there exists a nonzero scalar µ such thatQu∗ − b = −µu∗,
where µ can be scaled such that Q+ µIm is nonsingular. Inverting the optimal condition
and expanding the equality constraint gives the two conditions.

Appendix C. Optimal design of experiments

In the theory of optimal design, the informativeness of an experiment is measured by the
size of the expected Fisher information.

Definition 6 (Fisher information matrix) Let `(τ, θ) = log p(τ |θ) denote the log-likelihood
of the data-generating distribution knowing the parameter θ. The Fisher information matrix
is defined as

I(θ) = −Eθ
[
∂2`(τ, θ)

∂θ2

]
∈ Rqd×qd. (15)

Proposition 7 For the LTI system (1),

I(θ) =
T

σ2
diag(ΓT , . . . ,ΓT ), (16)

the number of blocks being d, and with

Γt =
1

t
Eθ[Mt−1]. (17)

Proof The log-likelihood (10) can be separated into a sum over the θj as in (12). The
quadratic term in θj is ‖Zθj‖22 = θj

>Z>Zθj and the other terms are constant or linear.
Differentiating twice and taking the expectation gives Eθ[Z>Z], which yields the desired
result after dividing by −σ2.

Definition 8 (Design criteria) In the field of optimal design of experiments, the size of
the information matrix is measured by some criterion Φ : S+

n (R)→ R+, which is a functional
of its eigenvalues λ1, . . . , λd ≥ 0. The quantity Φ(I) represents the amount of information
brought by the experiment and should be maximized.
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The criteria are required to have properties such as homogeneity, monotonicity and concavity
in the sense of the Loewner ordering, which can be interpreted in terms of information theory:
monotonicity means that a larger information matrix brings a greater amount of information,
concavity means that information cannot be increased by interpolation between experiments.
We refer to Pukelsheim (2006) for more details.

Table 2: Alphabetical design criteria.

Optimality Φ(λ1, . . . , λd)

A-optimality −
(
1/λ1 + · · ·+ 1/λd

)
D-optimality log λ1 + . . . log λd
E-optimality λ1

Appendix D. Gradient-based identification

In this section, we propose a gradient-based approach to planning. In a sequential identifica-
tion scheme of Algorithm 1, the cost functions (3) and (5) can be optimized by projected
gradient descent. This builds on the following remark. The gradients with respect to U can
either be derived analytically (see Goodwin and Payne (1977), section 6 for the derivation of
an adjoint equation) or automatically in an automatic differentiation framework. We rescale
U at each step to ensure the power constraint is met. The ti are chosen arbitrarily. The
computational complexity of the algorithm is linear in T : each gradient step backpropagates
through the planning time interval.

D.1 Gradient-based optimal design

We propose a gradient-based method to optimize U by performing gradient descent directly
on U in functional (5). Note that we optimize the inputs directly in the time domain, whereas
other approaches such as Wagenmaker et al. (2021) perform optimization in the frequency
domain by restricting the control to periodic inputs.

D.2 Gradient through the oracle MSE

Given the true parameters θ? = (A?B?), the optimal control for the MSE minimizes the MSE
cost (3), as explained Example 2. However, the dependency between Z and W makes this
functional complicated to evaluate and to minimize with respect to the inputs, even when
the true parameters θ? are known. We propose a numerical method to minimize (3) using
automatic differentiation an Monte-Carlo sampling. Given one realization of the noise and
inputs U , the gradient of the MSE can be computed automatically in an automatic differenti-
ation framework. Then, one can sample a batch of b noise matrices W1, . . . ,Wb ∼ N (0, σ2I)
and approximate the gradient of (3) by

∇MSE(U) ' 1

b

b∑
i=1

∇U tr
[
Z(Z>Z)−2Z>WiWi

>
]
. (18)

11
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Although we do not have convergence guarantees due to the lack of structure of the objective
function, the gradient descent does converge in practice, to a control that outperforms the
adaptive controls.

Algorithm 3 Planning by projected gradient descent
inputs At, σ, γ, T , η
output control U ∈ R(T−t)×m

for 0 ≤ j ≤ ngradient do
U = U − η∇F (U)
U = (γ

√
T/‖U‖F)× U

end for

Appendix E. Experimental details

The linear dynamics for an aircraft flying at 573.7 meters/sec at 6.096 meters are given by
the following matrix, obtained after discretization and normalization of the continuous-time
system described in Gupta et al. (1976):

A? =


.955 −.0113 0 −.0284

0 1 .0568 0
−.25 0 −.963 .00496
.168 0 −.00476 −.993

 , B? = 0.1×


0 0.0116
0 0

1.62 .789
0 −.87

 , (19)

and σ = 1, γ ' 4 deg.
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