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Abstract

Automated Machine Learning (AutoML) is used more than ever before to support users in
determining efficient hyperparameters, neural architectures, or even full machine learning
pipelines. However, users tend to mistrust the optimization process and its results due to a
lack of transparency, making manual tuning still widespread. We introduce DeepCAVE,
an interactive framework to analyze and monitor state-of-the-art optimization procedures
for AutoML easily and ad hoc. By aiming for full and accessible transparency, Deep-
CAVE builds a bridge between users and AutoML and contributes to establishing trust.
Our framework’s modular and easy-to-extend nature provides users with automatically
generated text, tables, and graphic visualizations. We show the value of DeepCAVE in
an exemplary use-case of outlier detection, in which our framework makes it easy to iden-
tify problems, compare multiple runs and interpret optimization processes. The package is
freely available on GitHub https://github.com/automl/DeepCAVE.

1. Introduction

Experimental design can be tedious and error-prone in practice, particularly if there is little
feasible insight into the metric to be optimized and high-dimensional problems with many
(hyper-)parameters are tackled. A typical scenario of experimental design is the tuning
of machine learning systems, including data processing, various architectures of deep neu-
ral networks, and several hyperparameters for all components in the pipeline. Automated
Machine Learning (AutoML; see Hutter et al., 2019, for an overview) has alleviated practi-
tioners from this manual task and support users in achieving peak performance of machine
learning (ML) systems. However, since the selection of these ML design decisions is auto-
matically made by the optimization process, the transparency decreases, and the question
of how and why a particular pipeline or configuration was chosen remains open. The lack
of insights in current AutoML systems (Drozdal et al., 2020) goes so far that some users
even prefer manual tuning as they believe they can learn more from this process (Hasebrook
et al., 2022). Even more importantly, in safety-critical applications like automated driving
or the medical domain, transparency and interpretability of both the ML model and the
AutoML process are strongly needed to gain trust in the systems.
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The brisk development of machine learning (Pedregosa et al., 2022) and AutoML (e.g.
Lindauer and Hutter, 2020, for neural architecture search) creates new challenges for in-
terpretation and analysis tools. For example, multi-objective optimization (see, e.g., Miet-
tinen, 1998) allows for simultaneously optimizing all possible non-dominated trade-offs of
multiple objectives (e.g., minimizing network size while maximizing classification accuracy
(Benmeziane et al., 2021)). Further, incorporating multiple budgets into the process (a.k.a.
multi-fidelity optimization) is used to speed-up optimization by estimating the final per-
formance on lower budgets such as epochs (Falkner et al., 2018; Li et al., 2018) or subsets
of the data (Jamieson and Talwalkar, 2016; Klein et al., 2017). Given these multitudes
of different approaches and considering that optimization runs may still take several days,
depending on the problem, interpretation tools for AutoML need to be flexible, interactive,
and ad-hoc.

We introduce DeepCAVE, successor of CAVE 1 (Biedenkapp et al., 2018), an interac-
tive dashboard for analyzing AutoML runs to bring the human back into the loop. Our
framework mainly focuses on Hyperparameter Optimization (Bischl et al., 2021, HPO) but
can also be used with Neural Architecture Search (Elsken et al., 2019, NAS) and Combined
Algorithm and Hyperparameter Selection (Thornton et al., 2013, CASH) by encoding ar-
chitectural, algorithmic choices or ML pipelines as part of the configuration. DeepCAVE
enables users to interactively explore and analyze outputs of optimizers in the form of texts,
tables, and graphics already while the optimization process is running. Users can dive deeper
into their particular interesting topics as our proposed framework is structured in modules
(or plugins), all of which complement each other to get an idea of what happened behind
the black-box facade of the optimizer.

DeepCAVE is designed with AutoML for deep learning in mind, a.k.a. AutoDL. First,
the real-time monitoring of DeepCAVE allows users to quickly gain insights even for costly
and long-running optimization runs, as a typical trait of AutoDL. Second, pure black-box
optimization is too expensive for training several DNNs; hence, multi-fidelity optimization
is one of the key approaches to making AutoDL feasible (Zimmer et al., 2021). DeepCAVE
is the first tool to support analysis of multi-fidelity optimization procedures. Last, with the
diverse applications of deep learning, several objectives need to be taken into account by
AutoDL. Therefore, we believe that DeepCAVE is well suited to become a go-to tool for
deep learning practitioners using AutoML.

In this paper, we explain how certain framework design decisions benefit the users and
why DeepCAVE can be easily used by different user groups, including researchers, data sci-
entists, and machine learning engineers. Finally, we show how our framework can be utilized
to answer crucial questions: Have there been any issues in the optimization process? How
much of the space is already covered? Are the selected budget steps efficient? Which con-
figuration should be selected if multiple objectives are important? Which hyperparameters
and design decisions are the most important ones?

Our contributions are twofold: i) We present a novel framework that enables analysis of
AutoML optimization processes while increasing the transparency and bringing the human
back in the loop. ii) In an exemplary study on outlier detection, we show how our framework
can be used to answer questions typically faced when using AutoML tools.

1. CAVE stands for Configuration, Evaluation, Visualization and Evaluation
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Figure 1: Relation between user, optimizer and DeepCAVE.

2. Framework

We begin by giving an overview of DeepCAVE and describe how a typical workflow looks
like. Finally, we explain how certain requirements shaped the implementation.

Overview The interconnection between a user, optimizer, and DeepCAVE is shown in
Figure 1. After starting DeepCAVE, the user can select optimizer runs or stagger runs as
groups. DeepCAVE accesses the optimizer data on the file system via converters, which
monitor both finished processes and running processes that regularly write new results to
disk, as long as a suitable converter is available. At release, DeepCAVE natively sup-
ports well-known AutoML packages such as BOHB (Falkner et al., 2018), DEHB (Awad
et al., 2021), SMAC (Lindauer et al., 2022), Auto-Sklearn (Feurer et al., 2022), and Auto-
PyTorch (Zimmer et al., 2021), but also provides a Python interface to record the optimizer’s
output directly. After converting the data, the user can start interpreting the optimization
process through the plugins, all of which can incorporate texts, tables, and interactive
graphics to show useful information such as simple statistics, hyperparameter importance,
or how an optimization run behaves over time. Since some plugins might require more
heavy computation, a worker queue ensures responsiveness at all times.

Design Decisions DeepCAVE is implemented on top of Dash (Plotly Technologies Inc.,
2015) and supports interactive visualizations natively provided by Plotly. With the ease
of extensibility in mind, our framework is written purely in Python as it is the most com-
mon programming language in the field of ML (Raschka et al., 2020). Thus, (Auto)ML
researchers have a low barrier of entry when designing new plugins for DeepCAVE. More-
over, we structured plugins into input, filter, and output blocks, all of which are rendered
by easy-to-understand HTML-like elements. All plugins have access to various base func-
tionalities due to a unified run interface, which is instantiated based on the selected runs
or groups by a converter at runtime. We integrated a powerful interface to provide max-
imal flexibility to all plugins: The run instance holds meta data, configurations λ ∈ Λ
from the configuration space Λ, objectives C = {c1, . . . , cn}, budgets B = {b1, . . . , bm}
and further helper methods. Additionally, the whole optimization history with its K trials
{λk, bk, C(λk, bk), status, additional}Kk is saved, in which each trial consist of a configura-
tion λk ∈ Λ, a budget bk ∈ B , and the obtained objective values C(λk, bk). Furthermore,
trials are marked with a status (e.g., successful, crashed or timed-out) and equipped with
additional information (e.g., traceback).
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Figure 2: DeepCAVE plots using a group of three SMAC runs on the highest budget.

DeepCAVE’s dynamically generated texts, hover tooltips, and integrated documenta-
tion enables and assist users in understanding the plugins and interpreting the data effi-
ciently. Finally, the integrated cache ensures the quality of life improvements as repeated
requests do not trigger redundant computation with the current state of the run in mind.
In particular, hashes of the optimizer’s outputs are compared, deciding whether both the
cache and run instance are up-to-date or have to be updated.

3. Exemplary Study using DeepCAVE

In the following, we demonstrate DeepCAVE’s capabilities and answer questions that
typically arise when using AutoML tools. We emphasize that DeepCAVE is a modular
system that can potentially answer many more questions than we explore in this example
study. We provide example questions for each plugin in the documentation (https://
automl.github.io/DeepCAVE) to help the user to choose the right plugin for each question.

Experimental Setup Our exemplary ML-task is outlier-detection on the pendigits (Keller
et al., 2012) dataset with a contamination ratio of 15%. We use two HPO optimizers
SMAC3 (Lindauer et al., 2022) and DEHB (Awad et al., 2021), both of which maximize the
area under the precision-recall (AUPR) curve to determine a well-performing DL pipeline.
Since the optimizers minimize by default, we refer to cost as 1−AUPR in the following. The
configuration space consists of 39 hyperparameters, in which the optimizer has to select a
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model between AE (Rumelhart et al., 1985), VAE (Kingma, 2013), DASVDD (Hojjati and
Armanfard, 2021), and DAGMM (Zong et al., 2018). The optimizers make use of epochs
for multi-fidelity optimization with budgets {11, 33, 100}.

Q1: Have there been any issues in the optimization process? The question can be
answered using the Overview plugin. In addition to displaying meta data, the optimizer’s
budgets and objectives, DeepCAVE dynamically generates a short status report:

Taking all evaluated trials into account, 96.66% have been successful. The other tri-
als are crashed (3.24%). Moreover, 47.96%/30.11%/21.78% of the configurations were
evaluated on budget 11.11/33.33/100.0, respectively.

The status report is further supported by a barplot and a heatmap and is ideal for
sanity checks. The heatmap (see Figure 2a) shows the status of trials. In particular,
crashed configurations are not evaluated on higher budgets, and only some configurations
are performing well enough to invest more computational resources. The plugin offers
further details to understand why certain trials have failed. Unsuccessful configurations are
listed with their status and traceback, making it straightforward to identify the issue.

Q2: How much of the space is already covered? The plugin Configuration Footprint
reveals the structure and coverage of the configuration space. Using the multi-dimensional
scaling (MDS), it generates a 2D projection of the configuration space (Biedenkapp et al.,
2018; Zöller et al., 2022), see Figure 2b. Both evaluated (orange) and unevaluated configura-
tions are shown in the plot, with the latter further divided into border2 (green) and random
(purple) configurations. Border configurations ensure that the entire space is spanned,
whereas the random configurations highlight unexplored areas. The plot thus helps users
to see if the optimizer already densely sampled the space or might need more evaluations
to achieve better coverage. We note that, in this example, not all parts of the MDS space
can be covered because of the hierarchical structure induced by the configuration space.

Q3: Are the selected budget steps efficient? For multi-fidelity optimization, it is
desirable to use budgets such that the performance across budgets is strongly correlated
since multi-fidelity allows an optimizer to discard poorly performing configurations on the
lower budgets quickly. In the plugin Budget Correlation, the correlation between all budget
combinations is shown. DeepCAVE tells us directly that all of our budget combinations
have a very strong correlation in our example. Hence the chosen budgets are appropriate –
not shown here.

Q4: Which configuration should be selected if both cost and time are important?
DeepCAVE can highlight the best configurations with respect to both objectives using the
plugin Pareto Front. The lines in Figure 2c depict the Pareto front for cost and (training)
time. Depending on the application, a user could easily choose a configuration optimized
for time, cost, or somewhere in between. This plugin also supports comparison between
multiple runs or groups so that, in our case, SMAC and DEHB can be quickly compared.
Hovering over a point reveals the configuration, its objective values on the highest budget,
and selected hyperparameters. The points are clickable, taking the user directly to a detailed
page with information about its origin, objective values, hyperparameter visualizations, and
auto-generated code that can be directly copied to use the configuration in Python.

2. A border configuration uses only hyperparameters with min and/or max bounds.
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Q5: Which hyperparameters are the most important ones? The plugin Impor-
tances let us choose between LPI (Biedenkapp et al., 2018) and fANOVA (Hutter et al.,
2014). The plugin’s output (see fANOVA results in Figure 2d) shows that the learning rate,
batch size, and model have the largest impact on performance. However, the plot does not
reveal, e.g., which model was used in the best-performing configurations. For this, we can
use the Configuration Footprint (Figure 2b) again. Having a closer look at the incumbent,
i.e., the best performing configuration, and using hover information from its neighbors, we
find that DAGMM is the best choice on the given dataset. In a further optimization run,
we could utilize this information, e.g., to prune the configuration space, focusing only on
more promising regions that include the incumbent’s neighborhood.

4. Related Work

The design of DeepCAVE is driven by the need to make AutoML more trustworthy by
means of increasing transparency. Other tools, such as CAVE (Biedenkapp et al., 2018)
for algorithm configuration, IOHanalyzer (Doerr et al., 2020) for discrete optimization and
XAutoML (Zöller et al., 2022) for AutoML, strive for similar goals, but have major limita-
tions compared toDeepCAVE. First of all, all three can only be used after the optimization
process has finished. This restriction prevents users from discovering potentially non-fatal
errors while the optimizer is running. Furthermore, DeepCAVE is the only tool that is
designed with multi-objective and multi-fidelity optimization in mind.

CAVE only generates static reports, which have several drawbacks, e.g., it is nigh on
impossible to explore a specific problem deeper. Since CAVE is designed for experts only,
it is challenging for inexperienced users to understand the given information. Our novel
framework mitigates these shortcomings by providing an interactive interface, intuitive vi-
sualization, and online documentation directly available where users need it, i.e., when
making choices and when results are presented. Thus, we view DeepCAVE as a tool that
is both accessible and useful for AutoML users of all experience levels.

XAutoML focuses on analysis for classification tasks and does not support multi-fidelity
or multi-objective optimization. DeepCAVE mitigates these shortcomings by being opti-
mizer agnostic, enabling the use of multi-fidelity and multi-objective optimization, thereby
avoiding a strong focus on specific target applications. Although DeepCAVE is built for
AutoML, in principle, it can be used to analyze any black-box function optimizer.

5. Conclusion

We introducedDeepCAVE, an interactive framework to analyze AutoML runs in real-time,
and discussed in detail how our design decisions make our framework easy to use with any
multi-fidelity AutoML optimizer as well as its extensibility through design. Based on an
exemplary study of outlier detection, we demonstrated how central questions commonly
faced by users of AutoML tools could be answered. This study further shows how our
tool improves the transparency of AutoML and how the application aids the user’s under-
standing of the optimization process in-depth. Finally, we believe that our interactive tool
DeepCAVE and its diverse collection of default plugins bring us closer to human-centered
AI and will help to increase the trustworthiness of AutoML tools.
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