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Abstract

Bayesian optimization (BO) is a popular paradigm for global optimization of expensive
black-box functions, but there are many domains where the function is not completely a
black-box. The data may have some known structure and/or the function can yield useful
intermediate information. We propose performing BO on complex, structured problems
by using multi-output Bayesian neural networks. We demonstrate BO on a number of
realistic problems in physics and chemistry, including topology optimization of photonic
crystal materials using convolutional neural networks, and chemical property optimization
of molecules using graph neural networks. On these complex tasks, we show that neural
networks often outperform GPs as surrogate models for BO in terms of both sampling
efficiency and computational cost.

1. Introduction

Bayesian optimization (BO) is a methodology well-suited for global optimization of expen-
sive, black-box functions. However, in many domains, the system is not a complete black
box. For example, complex, high-dimensional input spaces such as images or molecules
have some known structure, symmetries and invariances. In addition, the function may be
a composite function in which it may provide intermediate or auxiliary information from
which the objective function can be cheaply computed. For example, a scientific experi-
ment or simulation may produce a high-dimensional observation or multiple measurements
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simultaneously, such as the optical scattering spectrum of a nanoparticle over a range of
wavelengths, or multiple quantum chemistry properties of a molecule from a single den-
sity functional theory (DFT) calculation. All of these physically-informed insights into the
system are potentially useful and important factors for designing surrogate models through
inductive biases, but they are often not fully exploited in existing methods and applications.

BO relies on specifying a surrogate model which are typically Gaussian Processes (GPs),
as the posterior distribution of GPs can be expressed analytically. Multi-output GPs have
been used to apply BO to synthetic problems that can be decomposed into composite
functions (Astudillo and Frazier, 2019). GP kernels have also been formulated for complex
input spaces including convolutional kernels (Van der Wilk et al., 2017; Novak et al., 2020;
Wilson et al., 2016) and graph kernels (Shervashidze et al., 2011; Walker and Glocker,
2019). However, (1) time complexity of GPs scales with the number of observations and
output dimensionality, limiting their use to smaller problems, and (2) GPs operate most
naturally over continuous input spaces, so kernels for high-dimensional, structured data
must be carefully formulated and tuned by hand for each new domain.

In contrast, neural networks and Bayesian neural networks have been proposed as an
alternative to GPs in BO due to their scalability and flexibility (Snoek et al., 2015; Sprin-
genberg et al., 2016). This approach also enables BO in more complex settings including
transfer learning across multiple tasks and modeling of auxiliary signals to improve perfor-
mance (Perrone et al., 2018).

This work demonstrates the use of deep learning to enable BO for complex, real-world
scientific datasets. In particular, (1) we take advantage of auxiliary or intermediate informa-
tion from composite functions, (2) we demonstrate BO on complex input spaces including
images and molecules using convolutional and graph neural networks, respectively, and (3)
we apply BO to several realistic scientific datasets, including topology optimization of a
photonic crystal material, and chemical property optimization of molecules from the QM9
dataset. We show that neural networks are often able to significantly outperform GPs
as surrogate models on these problems, and we believe that these strong results will also
generalize to other contexts and enable BO to be applied to a wider range of problems.

We present limited results here for brevity, and more complete results can be found in
Kim et al. (2021).

2. Bayesian Optimization

We formulate our optimization task as a maximization problem in which we wish to find
the input x∗ = argmaxx f(x). In iteration N , a Bayesian surrogate model M is trained on
a labeled dataset Dtrain = {(xn, yn)}Nn=1. An acquisition function α then uses M to suggest
the next data point to label, xN+1 = argmaxx∈X α (x;M,Dtrain), which is then evaluated
and added to Dtrain.

We use the expected improvement (EI) acquisition function αEI (Jones et al., 1998).
When the posterior predictive distribution of the surrogate model M is a normal distribu-
tion, EI can be expressed analytically. For surrogate models that do not give an analytical
form for the posterior predictive distribution, we sample from the posterior NMC times and
use a Monte Carlo approximation of EI (Wilson et al., 2018).
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2.1 Continued Training with Learning Rate Annealing

To minimize the training time of BNNs in each optimization loop, we use the model that has
been trained in the Nth optimization loop iteration as the initialization (also known as a
“warm start”) for the (N+1)th iteration, rather than training from a random initialization.
In particular, we use the cosine annealing learning rate proposed in Loshchilov and Hutter
(2016).

2.2 Auxiliary Information

Here we consider the case where f is a composite function and can be decomposed as
f(x) = h(g(x)) where g : X → Z is the expensive labeling process, and h : Z → Y is
a known objective function that can be cheaply computed (Astudillo and Frazier, 2019;
Balandat et al., 2020). The evaluation function thus provides some intermediate or auxiliar
information z ∈ Z. In this case, we train M : X → Z to model g, and the approximate EI
acquisition function becomes

αEI-MC-aux(x) =
1

NMC

NMC∑
i=1

max
(
h
(
µ(i)(x)

)
− ybest, 0

)
. (1)

which can be seen as a Monte Carlo version of the acquisition function presented in Astudillo
and Frazier (2019). We denote models trained using auxiliary information with the suffix
“-aux.”

3. Results

For the BNN, we use an ensemble of NMC = 10 neural networks with identical archi-
tectures, and use Eq. 1 for acquisition. We have experimented with multiple BNN ap-
proximations including variational inference (VI) approaches (such as Bayes by Backprop
(Blundell et al., 2015) and Multiplicative Normalizing Flows (MNF) (Louizos and Welling,
2017)), SGHMC as implemented by BOHAMIANN (Springenberg et al., 2016), Neural Lin-
ear (Snoek et al., 2015), and infinite-width/ensemble approximations (Novak et al., 2020),
and found that ensembles perform better and more consistently over other types of BNNs.

For our baselines, we use GP to refer to a specific, standard specification that uses
a Matérn 5/2 kernel. To operate on images, we use a convolutional kernel, labeled as
ConvGP, where the implementation is the infinite-ensemble limit of a convolutional neural
network (Novak et al., 2020). Finally, to operate directly on graphs, we use the Weisfeiler-
Lehman (WL) kernel as implemented by (Ru et al., 2021). Additionally, we compare against
GP-aux which use multi-output GPs for composite functions (Astudillo and Frazier, 2019).

All BO results are averaged over multiple trials, and the shaded area in the plots repre-
sents ± one standard error over the trials.

3.1 Photonic Crystal Topology

Next we look at a more complex, high-dimensional domain that contains symmetries not
easily exploitable by GPs. Photonic crystals (PCs) are nanostructured materials that are en-
gineered to exhibit exotic optical properties not found in bulk materials, including photonic
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Figure 1: (a) A 2D photonic crystal (PC). The black and white regions represent different
materials, and the periodic unit cells are outlined in red. Examples of PC unit
cells. (c) Example of a PC density of states (DOS). (d, e) BO results.

band gaps and negative index of refraction (John, 1987; Yablonovitch, 1987; Joannopoulos
et al., 2008). As advanced fabrication techniques are enabling smaller and smaller feature
sizes, there has been growing interest in inverse design and topology optimization to design
even more sophisticated PCs (Jensen and Sigmund, 2011; Men et al., 2014; Piggott et al.,
2015; Lin et al., 2019).

Here we consider 2D PCs consisting of periodic unit cells represented by a 32× 32 pixel
image, as shown in Figure 1(a), with white and black regions representing vacuum (or air)
and silicon, respectively. Because optimizing over raw pixel values may lead to pixel-sized
features or intermediate pixel values that cannot be fabricated, we have parameterized the
PCs with a level-set function that converts x ∈ R51 into an image v ∈ R32×32 that represents
the PC.

The optical properties of PCs can be characterized by their photonic density of states
(DOS), e.g. see Figure 1(c). We choose an objective function h that aims to minimize the
DOS in a certain frequency range while maximizing it everywhere else, which corresponds
to opening up a photonic band gap in said frequency range. While we train GPs directly
on the level-set parameters X , we can train the Bayesian convolutional NNs (BCNNs) on
the more natural unit cell image space V. BCNNs can also be trained to predict the full
DOS as auxiliary information z ∈ R500, in which we use Equation 1 for acquisition.

The BO results in Figure 1(d), show that BCNNs outperform GPs by a significant mar-
gin on both datasets, which is due to both the auxiliary information and the inductive
bias of the convolutional layers, as shown in Figure 1(e). Because the behavior of PCs is
determined by their topology rather than individual pixel values or level-set parameters,
BCNNs are much better suited to analyze this dataset compared to GPs. Additionally,
BCNNs can be made much more data-efficient since they directly encode translation invari-
ance and thus learn the behavior of a whole class of translated images from a single image.
Because GP-aux is extremely expensive compared to GP (500× longer on this dataset), we
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Figure 2: (a) Quantum chemistry task BO resultsfor various properties. (b) Time per BO
iteration. (Note the logarithmic scale on the y-axis.) GraphGP takes orders of
magnitudes longer than BGNNs for moderate N .

are only able to run GP-aux for a small number of iterations, where it performs comparably
to random sampling. ConvGP only performs slightly better than random sampling, which
is likely due to a lack of auxiliary information and inflexibility to learn the most suitable
representation for this dataset.

3.2 Organic Molecule Quantum Chemistry

Finally, we optimize the chemical properties of molecules. Chemical optimization is of
huge interest with applications in drug design and materials optimization (Hughes et al.,
2011; Gómez-Bombarelli et al., 2018; Korovina et al., 2020). This is a difficult problem
where computational approaches such as density functional theory (DFT) can take days
for simple molecules and are intractable for larger molecules; synthesis is expensive and
time-consuming, and the space of synthesizable molecules is large and complex.

Here we focus on the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014),
which consists of 133,885 small organic molecules along with their geometric, electronic,
and thermodynamics quantities that have been calculated with DFT. Instead of optimizing
over a continuous space, we draw from the fixed pool of available molecules and iteratively
select the next molecule to add to Dtrain. We use a Bayesian graph neural network (BGNN)
for our surrogate model. For the GP baseline, we encode the molecules as a continuous
vector using the Smooth Overlap of Atomic Positions (SOAP) descriptor (De et al., 2016;
Himanen et al., 2020).

We compare two different optimization objectives derived from the QM9 dataset: the
isotropic polarizability α and (α−ϵgap) where ϵgap is the HOMO-LUMO energy gap. Because
many of the chemical properties in the QM9 dataset can be collectively computed by a
single DFT or molecular dynamics calculation, we can treat a group of labels from QM9
as auxiliary information z and train our BGNN to predict this entire group simultaneously.
The objective function h then simply picks out the property of interest.

As shown in Figure 2(c), BGNNs and GraphGPs significantly outperform GPs, showing
that the inductive bias in the graph structure leads to a much more natural representation
of the molecule and its properties. In the case of maximizing the polarizability α, including
the auxiliary information improves BO performance, showing signs of positive transfer. As
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seen in Figure 2(b), we also note that the GraphGP is relatively computationally expensive
(15× longer than GPs for small N and 800× longer than BGNNs for N = 100) and so we are
only able to run it for a limited N in a reasonable time frame. BGNNs perform comparably
or better than GraphGPs despite incurring a fraction of the computational cost.

4. Discussion

We have demonstrated global optimization on multiple tasks using a combination of deep
learning and BO. In particular, we have shown how BNNs can enables the scaling of BO to
large datasets and provides the flexibility to incorporate a wide variety of inductive biases
and auxiliary information. We note that our method is not necessarily tied to any particular
application domain, and can lower the barrier of entry for design and optimization.

We conjecture that the additional information forces the BNN to learn a more consistent
physical model of the system since it must learn features that are shared across the multi-
dimensional auxiliary information, thus enabling the BNN to generalize better. It is also
possible that the loss landscape for the auxiliary information is smoother than that of the
objective function and that the auxiliary information acts as an implicit regularization that
improves generalization performance.

There is an interesting connection between how well BNNs are able to capture and
explore a multi-modal posterior distribution and their performance in BO. For example, we
have noticed that larger batch sizes tend to significantly hurt BO performance. On the one
hand, larger batch sizes may be resulting in poorer generalization as the model finds sharper
local minima in the loss landscape. Another explanation is that the stochasticity inherent in
smaller batch sizes allows the BNN to more easily explore the posterior distribution, which
is known to be highly multi-modal (Fort et al., 2019). Indeed, BO often underperforms for
very small dataset sizes N but quickly catches up as N increases, indicating that batch size
is an important hyperparameter which must be balanced with computational cost.

When comparing BNN architectures, we find that ensembles tend to consistently per-
form among the best, which is supported by previous literature showing that ensembles
capture uncertainty much better than variational methods (Ovadia et al., 2019; Gustafsson
et al., 2020) especially in multi-modal loss landscapes (Fort et al., 2019). Ensembles are
also attractive because they require no additional hyperparameters and they are simple to
implement.

Future work will consider using stochastic training approaches such as SG-MCMC meth-
ods for exploring posterior distributions (Welling and Teh, 2011; Zhang et al., 2019) as well
as other continual learning techniques to further minimize training costs, especially for
larger datasets (Parisi et al., 2019). Future work will also investigate more complex BNN
architectures with stronger inductive biases. For example, output constraints can be placed
through unsupervised learning (Karpatne et al., 2017) or by variationally fitting a BNN
prior (Yang et al., 2020). Custom architectures have also been proposed for partial differ-
ential equations (Raissi et al., 2017; Lu et al., 2020), many-body systems (Cranmer et al.,
2020), and generalized symmetries (Hutchinson et al., 2020), which will enable effective BO
on a wider range of tasks. The methods and experiments presented here enable BO to be
effectively applied in a wider variety of settings.
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Lauri Himanen, Marc O. J. Jäger, Eiaki V. Morooka, Filippo Federici Canova, Yashasvi S.
Ranawat, David Z. Gao, Patrick Rinke, and Adam S. Foster. DScribe: Library of
descriptors for machine learning in materials science. Computer Physics Communi-
cations, 247:106949, 2020. ISSN 0010-4655. doi: 10.1016/j.cpc.2019.106949. URL
https://doi.org/10.1016/j.cpc.2019.106949.

James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of
early drug discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. arXiv preprint
arXiv:2012.10885, 2020.

Jakob Søndergaard Jensen and Ole Sigmund. Topology optimization for nano-photonics.
Laser & Photonics Reviews, 5(2):308–321, 2011.

8

https://doi.org/10.1016/j.cpc.2019.106949


John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade. Pho-
tonic Crystals: Molding the Flow of Light (Second Edition). Princeton University Press,
2 edition, 2008. ISBN 0691124566.

Sajeev John. Strong localization of photons in certain disordered dielectric superlattices.
Physical review letters, 58(23):2486, 1987.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998.
ISSN 1573-2916. doi: 10.1023/A:1008306431147. URL https://doi.org/10.1023/A:

1008306431147.

Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-guided neu-
ral networks (pgnn): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431, 2017.

Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Soljačić.
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