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Abstract

Active Learning is a very common yet powerful framework for iteratively and adaptively
sampling subsets of the unlabeled sets with a human in the loop with the goal of achieving
labeling efficiency. Most real world datasets have imbalance either in classes and slices,
and correspondingly, parts of the dataset are rare. As a result, there has been a lot of
work in designing active learning approaches for mining these rare data instances. Most
approaches assume access to a seed set of instances which contain these rare data instances.
However, in the event of more extreme rareness, it is reasonable to assume that these rare
data instances (either classes or slices) may not even be present in the seed labeled set,
and a critical need for the active learning paradigm is to efficiently discover these rare
data instances. In this work, we provide an active data discovery framework which can
mine unknown data slices and classes efficiently using the submodular conditional gain and
submodular mutual information functions. We provide a general algorithmic framework
which works in a number of scenarios including image classification and object detection
and works with both rare classes and rare slices present in the unlabeled set. We show
significant accuracy and labeling efficiency gains for unknown classes (≈ 10% − 15%) and
unknown slices (≈ 5%−7%) with our approach compared to existing state-of-the-art active
learning approaches for actively discovering these unknown classes and slices.

Keywords: Data Discovery, Submodular Information Measures

1. Introduction

Machine learning based predictions have been widely used in critical real-world domains like
medical imaging and autonomous driving. Their success relies on availability of suitable
supervised training data that can represent potential scenarios during test time. Unfortu-
nately, real-world datasets are imbalanced and contain rare instances of data. These rare
instances could represent a class (e.g. cat) or a data slice (e.g. brown animals). Models
that are trained by using these imbalanced datasets are biased and perform poorly on these
rare instances. A common practice to mitigate this imbalance is to iteratively acquire more
labeled data by sampling from an unlabeled dataset by using human-in-the-loop active learn-
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ing (AL) strategies. However, these techniques require a few exemplars of rare instances
and assume knowledge about the total number of classes. In this paper, we study a new
scenario of extreme imbalance such that the rare instances are completely absent from the
labeled training dataset. Furthermore, we do not know if they even exist in the unlabeled
dataset. Hence, we call such instances as unknown instances and the problem of finding
them as the data discovery problem. This problem addresses the following question: Can
data points of unknown instances be discovered from a large unlabeled dataset in order to
train a robust machine learning model?

Instantiations of different submodular functions for active data discovery: To
address this problem, we use different submodular functions for active data discovery that
are presented in (Iyer et al., 2021; Kothawade et al., 2021). Particularly, the formulations for
facility location (Fl), graph cut (Gc) and log determinant (Logdet) are as in (Iyer et al.,
2021; Kothawade et al., 2021), and we adapt them as AL based acquisition functions for
data discovery. Each function is named as the underlying submodular function, followed by
Mutual Information (mi)/ Conditional Gain(cg)/ Conditional Mutual Information (cmi).
For instance, the Fl based Smi function is denoted as Flmi, the Scg function is denoted as
Flcg, and Scmi as Flcmi. The Gc and Logdet functions are denoted similarly. These
functions are instantiated using a pairwise similarity matrix S, where SA,B denotes similarity
between items in A and B, while Sij denotes the entry (i, j) in S.

2. Add: Our framework for Active Data Discovery

In this section, we propose Add, a novel active learning based framework for data discov-
ery. We show how Add uses a combination of conditioning via Scg functions and mutual
information via Smi functions to effectively acquire data points of unknown instances.

The main idea behind the data discovery framework follows a conditioning and target-
ing strategy. Assuming that the unlabeled set U contains some unknown instances, we find
them by conditioning on P that contains data points of only the known instances. Note
that P is initialized as L, since the initial labeled set has only known instances. Intu-
itively, by conditioning on P, we are trying to find data points that are dissimilar to the
known instances, thereby potentially finding unknown instances. We perform conditioning
by maximizing the Scg function using a greedy algorithm (Mirzasoleiman et al., 2015):
maxA⊆U ,|A|≤B f(A|P).

The Scg function is instantiated using a similarity kernel SP ∈ R|P|×|U| that contains
pairwise similarities between data points in P and U in the feature space. In every round
of AL, we obtain labels via a human-in-the-loop for the selected subset A and add it to the
labeled set L. We augment the conditioning set P with AP ⊆ A containing newly selected
known instances, and Q is augmented with AQ ⊆ A containing newly selected unknown
instances. Note that A = AP ∪ AQ.

We keep a track of the unique known instances throughout AL rounds using a concept
coverage set K. Typically, K contains unique concepts like class indices if the goal is to
discover classes, or K may contain attributes (e.g. color, shape), if they goal is to discover
slices, or a combination of class and attribute (e.g. brown cat). If there are no new concepts
in the newly discovered subset AC , i.e. AC ∩ K == ∅, we conclude the conditioning phase
and start the targeting phase.
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Algorithm 1 Add: Active Data Discovery
Require: Initial Labeled set of data points: L, containing K unique known instances. Large unla-

beled dataset: U . Initial conditioning set P ← L, query set Q ← ∅. ModelM, batch size: B,
number of selection rounds: N , unknown = True

1: for selection round i = 1 : N do
2: Train modelM with loss H on the current labeled set L and obtain parameters θ
3: if unknown == True then
4: Compute SP ∈ R|P|×|U| such that: Spu ← Cosine Sim(Mθi , p, u), ∀p ∈ P,∀u ∈ U
5: Instantiate a Scg function f(A|P) based on SP .
6: Ai ← argmaxA⊆U,|A|≤Bf(A|P) {Maximize Scg if unknown instances may exist}
7: else
8: Compute SQ ∈ R|Q|×|U| such that: Squ ← Cosine Sim(Mθi , q, u), ∀q ∈ Q,∀u ∈ U
9: Instantiate a Smi function If (A;Q) based on SQ.

10: Ai ← argmaxA⊆U,|A|≤BIf (A;Q) {Maximize Smi if no more unknown instances exist can
be found}

11: end if
12: Get labels L(Ai) for batch Ai and L ← L ∪ L(Ai), U ← U −Ai

13: P ← P∪AP
i ,Q ← Q∪AQ

i {Add newly selected known instances to P and unknown instances
to Q}

14: if AC
i ∩ K == ∅ then

15: unknown = False {No new unknown instances discovered}
16: end if
17: K ← K ∪AC

i {Add newly discovered unique instances, if any}
18: end for
19: Return trained modelMθN and labeled set L augmented with newly discovered instances.

In the targeting phase, we use a query set Q containing unknown instances that were
accumulated in the conditioning phase. We maximize the mutual information with Q to
find more semantically similar unknown instances from the unlabeled set U . We do so
by maximizing the Smi function using a greedy algorithm (Mirzasoleiman et al., 2015):
maxA⊆U ,|A|≤B If (A;Q).

Similar to the targeting phase, we augment L,P and Q in every round of AL. Note that
the purpose of the conditioning phase is to find a few points that represent the unknown
instances and can serve as exemplars for the targeting phase. Note that one can continue
conditioning throughout all AL rounds using, Scg or simultaneously perform conditioning
and targeting using Scmi maxA⊆U ,|A|≤B If (A;Q|P).

However, we empirically find the combination of Scg for conditioning and Smi for tar-
geting to be most effective (see Sec. 3) and scalable. We present our active data discovery
framework in Algo. 1. The Add framework is generic and can be applied for any task. The
only step that changes across tasks is the computation of pairwise similarity kernels SP and
SQ. In this paper, we apply Add for image classification and object detection. Next, we
discuss the similarity kernel computation for these tasks.

Similarity kernel for image classification: In order to represent each data point, we
extract features from the penultimate layer of the modelM that is trained using L. Next,
the cosine similarity kernels for an image classification discovery task can be computed
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easily by computing the dot product between the feature vectors. One can efficiently use
off-the-shelf functions1 for efficiently computing a vectorized dot product.

3. Experiments

In this section, we empirically evaluate the effectiveness of Add on a diverse set of datasets
for image classification Sec. 3.1. Using these experiments, we show that existing AL ap-
proaches are not efficient for data discovery and that a conditioning and targeting ap-
proach as proposed in Add is essential. In addition to standard bench-marking datasets,
we also conduct experiments on a real-world medical dataset for discovering unknown classes
(Sec. 3.1.1), and for a realistic unknown slices setting (Sec. 3.1.2). Sec. 3.1 For all exper-
iments using the Add framework, we use the same underlying submodular function f for
Scg and Smi and is denoted as Scg+mi in the legend. For e.g., we use facility location
based variants Flcg and Flmi for one experiment and denote it as Flcg+mi. Note that
we use the same f for simplicity of the experiments, and this is not a requirement for the
Add framework. To ensure a fair treatment for all the methods, we use a common training
procedure and set of hyper-parameters. We run all experiments 3× on a V100 GPU and
provide error bars (standard deviation).

Baselines in all experiments: We compare Add with several uncertainty and di-
versity based baselines since they are the most intuitive solutions for the data discovery
problem. Particularly, we compare against three uncertainty based baselines: Entropy
(Settles, 2009), Margin (Roth and Small, 2006) and Least-Conf (Wang and Shang,
2014), and a recent diversity based baseline, Badge (Ash et al., 2020). Lastly, we compare
with Random sampling.

3.1 Image Classification

In this section, we present the results for data discovery in the context of image classification
tasks. We evaluate the performance of Add with existing AL acquisition functions for
discovering unknown classes (Sec. 3.1.1) and unknown slices (Sec. 3.1.2). We do so by:
1) comparing the cumulative number of unknown data points selected by each acquisition
function, and 2) comparing the mean accuracy obtained for the unknown classes or slices
by training a model with the selected data points. For all the classification experiments, we
train a ResNet-18 (He et al., 2016) model using an SGD optimizer with an initial learning
rate of 0.01, momentum of 0.9 and weight decay of 5e-4. In every round of AL, we reinitialize
the weights of our model using Xavier initialization and train the model till 99% accuracy
is reached, or 200 epochs are complete. For evaluation, we use the default test set which
contains both, the known and unknown instances.

3.1.1 Unknown Classes

Datasets and Experimental Setup: For discovering unknown classes, we apply our
framework to the standard MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky et al.,
2009) bench-marking datasets. We also conduct experiments on Path-MNIST (Yang et al.,
2021; Kather et al., 2019), a real-world medical imaging dataset for colorectal cancer clas-

1. np.tensordot or torch.tensordot
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Figure 1: Active Data Discovery for unknown classes on MNIST. We observe that the
Scg+mi (Flcg+mi and Logdetcg+mi) and Scg+cmi (Flcg+cmi) variants outperform
other methods in terms of the average accuracy on the unknown classes. Flcg+cmi selects
all data points from the unknown classes, the fastest, by 5th round of AL.

sification. To consider a realistic scenario for data discovery, we create a labeled set L
containing data points from K randomly chosen known classes. The unlabeled set U con-
tains data points from X classes, where X = K + Y , i.e. U contains Y additional unknown
classes. Realistically, U needs to be imbalanced and have lesser number of data points that
belong to the unknown classes. Hence, we create an imbalance in the unlabeled set such
that |Uk| = ρ|Uy|, where k is a class from the K known classes and y is a class from the Y
unknown classes, and ρ is an imbalance factor. For MNIST and CIFAR-10 (X = 10), we
set the first 7 classes as known (K = 7) and the last three as unknown classes (Y = 3). The
number of data points in the labeled dataset |L| = 7000, and unlabeled dataset |U| = 7150
using an imbalance factor ρ = 20, and a batch size B = 50. For CIFAR10, we use |L| = 7000,
and |U| = 21900 using an imbalance factor ρ = 10 and B = 50. For Path-MNIST, there
exist a total of 9 classes (X = 9), we set the first 7 classes as known (K = 7) and the last
two as unknown classes (Y = 2). We use |L| = 3500, and |U| = 7200 and an imbalance
factor ρ = 10.

Results: We present the results for discovering unknown classes on MNIST in Fig. 1.
We observe that the conditioning and targeting strategy as in Add using scg+mi and
scg+cmi acquisition functions outperforms the uncertainty and diversity based methods
by ≈ 5 − 15% in terms of the average accuracy on the unknown classes (see Fig. 1 (a)).
They obtain this gain in accuracy quickly, in the early rounds of AL and maintain it till
the end. This is due to the fact that Add based strategies are able to select more data
points from the unknown classes (see Fig. 1(b,c,d)). Particularly, Flcg+cmi finds all the
data points from the unknown classes in early rounds of AL. However, as we discussed in
Sec Sec. 2, Flcmi is computationally much more expensive than Flmi, and as we can see
in Fig. 1(a), Flmi eventually obtains the same accuracy in the later rounds of AL.

In Fig. 2, we compare the computationally cheaper strategy ofAdd (scg+mi) for discov-
ering unknown classes on two additional datasets - CIFAR10 (Fig. 2(a,b)) and Path-MNIST
(Fig. 2(c,d)). We observe that the best performing methods are scg+mi variants which
model representation (Fl) and diversity (Logdet) in addition to relevance. Particularly,
Flcg+mi and Logdetcg+mi outperform other methods by ≈ 5 − 15% in terms of the
average accuracy on the unknown classes. Importantly, they acquire the best subset of un-
known class data points in the early AL rounds (see Fig. 2(b,d)), thereby quickly reaching
high accuracy values (see Fig. 2(a,c)).
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Figure 2: Active Learning for discovering unknown classes on CIFAR-10 (Krizhevsky et al.,
2009) (left col.) and Path-MNIST (Yang et al., 2021; Kather et al., 2019)(center col.),
and for discovering unknown slices on Multi-MNIST (Jiang, 2020)(right col). Flcg+mi
and Logdetcg+mi discovers the best subset of unknown class data points in early rounds
of AL, thereby quickly gaining high accuracy for unknown classes. Gccg+mi discovers the
best subset of unknown slices and obtains high accuracy for unknown slices.

3.1.2 Unknown Slices

Datasets and Experimental setup: For discovering rare slices, we apply our framework
to Multi-MNIST, a dataset of images of digits from multiple languages. We consider two
languages, English and Kannada, and try to train a single digit classification model for
both the languages. In order to simulate unknown slices, we create a labeled set L which
is missing data points for a few digits only for the Kannada language - 1,5, and 6 in our
experiments. Note that L contains data points for all digits for the English language. We
refer to these missing digits from the Kannada language as the unknown slice of data. Since
these Kannada digits are unknown in L, we create an imbalance for the Kannada language
digits in the unlabeled set U , as done in Sec. 3.1.1. For the labeled set, we use |Len| = 10K,
|Lka| = 7K, and for the unlabeled set , we use |Uen| = 10K, |Uka| = 7.6K, an imbalance
factor ρ = 5, and a batch size B = 50. The superscripts en and ka denote the English and
Kannada data slices, respectively.

Results: We present the results for discovering rare slices in Fig. 2. We observe that
functions that model relevance to the query set Q outperform other functions in discovering
rare slices. Particularly, Gccg+mi followed by Logdet+mi outperforms other methods
by ≈ 5 − 15% in terms of average accuracy on the rare slices (see Fig. 2(e)). This is due
to the fact that Gccg+mi selects the most number of data points from the unknown slices
(see Fig. 2(f)).
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4. Conclusion

In this paper, we propose Add an active learning based framework for data discovery.
We show the effectiveness of Add for image classification tasks in discovery of unknown
instances across classes and slices for a wide range of diverse datasets. Our experiments
show that using a combination of Scg and Smi is the most effective and scalable, and
obtains a ≈ 5% − 15% gain compared to existing baselines. The main limitation of this
work is that the known instances need to be well represented in the feature space so that
they are not mixed with the unknown instances. A potential negative societal impact of
Add is that it can be used to discover and incorporate new biases in the dataset.
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