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Abstract

Data-driven soft sensors are extensively used in industrial and chemical processes to pre-
dict hard-to-measure process variables whose real value is difficult to track during routine
operations. The regression models used by these sensors often require a large number of
labeled examples, yet obtaining the label information can be very expensive given the high
time and cost required by quality inspections. In this context, active learning methods can
be highly beneficial as they can suggest the most informative labels to query. However,
most of the active learning strategies proposed for regression focus on the offline setting.
In this work, we adapt some of these approaches to the stream-based scenario and show
how they can be used to select the most informative data points. We also demonstrate how
to use a semi-supervised architecture based on orthogonal autoencoders to learn salient
features in a lower dimensional space. The Tennessee Eastman Process is used to compare
the predictive performance of the proposed approaches.
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1. Introduction

In industrial operations, soft sensors are frequently used for real-time prediction of hard-to-
measure process variables, as well as to support system backup strategies, what-if analysis,
sensor validation, and fault diagnosis (Fortuna et al., 2007). Soft sensors are classified into
two types: model-driven sensors, which are used to depict the ideal steady-state of a pro-
cess under normal operating conditions, and data-driven sensors, which are used to better
approximate real process conditions (Kadlec et al., 2009). Many labeled observations are
required for training the regression models used in soft sensor development, but in industrial
contexts, data is often abundant only in an unlabeled form. Obtaining product informa-
tion can be both expensive and time consuming, as it may necessitate the intervention of a
human expert or the use of expensive testing equipment. As a result, active learning is be-
coming increasingly useful for reducing the number of labels required to achieve compelling
predictive performance. Active learning-based sampling schemes use some evaluation crite-
ria to assess the informativeness of the unlabeled data points and prioritize the labeling of
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the most useful instances for building the model. Three macro scenarios can be identified
depending on how the unlabeled instances are fed into the learner and then selected to be
labeled by an oracle (Settles, 2009). The first scenario is referred to as membership query
synthesis, and it allows the learner to query the labels of synthetically generated instances
rather than those sampled from the process distribution. The second scenario is stream-
based active learning, also known as selective sampling. It denotes a situation in which
instances are drawn sequentially and the learner must immediately decide whether to keep
the instance and query its label or discard it. The third and final scenario is pool-based
active learning, which depicts a situation where a large amount of unlabeled data is col-
lected all at once and made available to the learner, which can rank all of the data points
and select the most informative ones. While many researchers have been working on active
learning in the latest years, pool-based active learning for classification has received the
most attention (Cai et al., 2013).

In this work, we focus on stream-based active learning, which represents a more difficult
task as the learner cannot observe all of the available observations before deciding which
labels to query. We believe that this scenario accurately reflects high-volume production
processes in which samples are processed very rapidly and labels are no longer retrievable.
Stream-based active learning should be considered and prioritized for all industrial processes
with similar properties.

2. Background

In regression modeling, we try to learn a function f̂ : x ∈ Rp → y ∈ R to predict a quality
characteristic or a hard-to-measure variable y ∈ R that is related to other process variables
x ∈ Rp. Accordingly with many active learning approaches (Cai et al., 2013), we assume
a labeled dataset L = {(xi, yi)

n
i=1,xi ∈ Rp, y ∈ R} with n observations is initially available

to fit a linear regression model of the kind

f(x;β) =

p∑
i=0

βixi = βTx

where x0 = 1 is the intercept term and xi with i = 1, ..., p are the p process variables.
Parameters are estimated by minimizing a squared error loss given by

ϵ̂ =
1

n

n∑
i=1

(yi − f(xi))
2 (1)

After an initial model has been built, we aim to acquire additional observations by evaluating
the unlabeled data points, until a budget constraint is met. Some commonly encountered
approaches are presented below.

2.1 Mahalanobis Distance

If we only examine the feature space, a desirable property that we might pursue when
collecting instances for our training set L, is to ensure diversity among the observations.
The Hotelling T 2 control chart, which is widely used in statistical process control (SPC) to
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detect anomalous data points (Hotelling, 1947), can accomplish so. As we do in SPC, in this
case we use Mahalanobis distance (Equation 2) to measure the dissimilarity between the
new unlabeled instances and the observations in the current training set L. The Hotelling
T 2 statistic for a new unlabeled instance x is computed as

T 2(x) = (x− x̄)TS−1(x− x̄) (2)

where x̄ and S correspond to the sample mean vector and sample covariance matrix of L,
respectively. This approach has been extended to a principal component regression (PCR)
model by Ge et al. (2014), who proposed a sampling index dependent on the Hotelling T 2

statistic and the squared prediction error. In this case, the sampling function is simply
represented by argmaxxT

2(x).

2.2 Query By Committee

While the previous approach only considers the feature space, query by committee (QBC)
tries to evaluate the uncertainty about the response. This strategy, initially introduced for
classification problems, was extended to regression tasks by Burbidge et al. (1997). The
main intuition is that by building an ensemble of regression models trained on bootstrap
replica of the original training set B(K) = {f1, f2, ..., fK} we can approximate the distri-
bution of the predictive variance. Once the ensemble has been built, we can measure the
variance of the predictions made by the committee members for each unlabeled observation
x. This variance, or ambiguity, is computed as

a(x) =
1

K

K∑
i=1

(fi(x)− yK(x))2 (3)

where yK(x) is the mean of the predictions made by the ensemble members. The sampling
function then simply becomes argmaxxa(x). The key intuition is that if many models
disagree on the label associated with an instance, that instance is an ambiguous one.

2.3 Expected Model Change

Introduced by Cai et al. (2013), expected model change (EMC) suggests querying the un-
labeled example that would cause the maximum change in the current model parameters,
if we knew its label. The model change is measured as the difference between the cur-
rent model parameters and the parameters obtained after fitting the model on the enlarged
training set L+ = L ∪ (x+, y+). The gradient of the loss is used to estimate the model
change. Considering the augmented training set L+, the loss function shown in Equation 1
becomes

ϵ̂ =
1

n

n∑
i=1

(yi − f(xi))
2 + (y+ − f(x+))2

where the last term, which is hereinafter referred to as ℓx+(β), represents the difference
between the loss measured with the model trained on L and the one trained on L+. The
derivative of the marginal loss ℓx+(β) with respect to the parameters β in the new point
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x+ is given by

ϵ̂ =
∂ℓx+(β)

∂β
= 2(y+ − f(x+))

∂f(x+)

∂β

= 2(y+ − f(x+))
∂βTx+

∂β

= 2(y+ − f(x+))x+

(4)

Since we do not know the true label of x+, y+ it is going to be replaced by the predictions
fi(x

+) made by the members of the bootstrap ensemble B(K). Finally, the sampling
function is given by argmaxx

1
K

∑K
i=1 ∥(fi(x)− f(x))x∥.

3. Proposed Approach

Given the impossibility of ranking unlabeled instances in real-time and deterministically
optimizing the sampling criteria, we propose leveraging unlabeled data to impose a thresh-
old, or upper control limit (UCL), on the informativeness of the incoming data points. The
unlabeled data pool can be acquired by either observing the process for a period of time
without sampling the product information y or by using data that is already available in
the form of a historical database H = {(xi),xi ∈ Rp}. The primary difference between
pool-based active learning and online active learning is that the labels of observations per-
taining to H can no longer be queried because they only exist digitally, and the associated
physical part or component is no longer available. The data in H is used to estimate the
distribution of the statistics employed by the criteria in Equations 2, 3, and 4. In this
study, we employed kernel density estimation with a Gaussian kernel. The UCL is then
determined by specifying the appropriate sampling rate α. For a given criterion J , the
threshold is defined as

P (J (x) ≥ UCL) = α (5)

Using the UCL obtained from Equation 5, we should then only collect the α-percent most
informative data points, according to the specific criterion J . In this work, we test the
stream-based active learning routine using Mahalanobis distance, ambiguity, and expected
model change as sampling criteria J . Before starting the active learning routine and col-
lecting additional observations, we also propose to use a semi-supervised architecture by
training an autoencoder network on the historical data H. With semi-supervised learning,
we can exploit all the available unlabeled data and learn how to extract relevant features
that could be better predictors than the raw input features. Indeed, when variables are
highly correlated, it has been demonstrated in the literature that a PCR model can be en-
hanced with semi-supervision (Frumosu and Kulahci, 2018). With regards to deep learning
methods, autoencoders have been proposed to deal with semi-supervised learning in fault
classification (Jia et al., 2020; Jiang et al., 2017). Recently, autoencoders have also been
investigated in soft sensors applications (Yuan et al., 2018; de Almeida Moreira et al., 2021)
but their contribution to the stream-based active learning scenario has not been evaluated
yet. In this work, we propose the use of a semi-supervised architecture as the one shown
in Figure 1. An orthogonal autoencoder (OAE) is employed for feature extraction and the
encoded features are then used as predictors in a linear regression model. An OAE is an
autoencoder network that minimizes an Ortho-Loss, which is comprised of a squared recon-
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struction loss and an orthogonality regularization term (Wang et al., 2019; Cacciarelli and
Kulahci, 2022). The regularization, weighted by a parameter λ, encourages the network to
learn uncorrelated features in its bottleneck. This is particularly beneficial to alleviate the
multicollinearity issue in the regression modeling stage.

Figure 1: Semi-supervised architecture based on OAE.

The main advantage of the semi-supervised model is that the extracted features are
more expressive than the original process variables. However, if the dimensionality of the
bottleneck is lower than the one of the input features, there is an additional benefit for
active learning. Indeed, because the majority of the provided active learning approaches
are model-based, an initial number of labels is required. QBC and EMC, in particular,
employ the linear regression model’s predictions to select the data points that should be
queried. To uniquely determine the coefficients of a regression model, we need a number
of observations larger than the number of parameters β to be estimated. This initial set
of observations is usually collected at random (Cai et al., 2013). As a result, by reducing
the dimensionality of the parameters β, we will be able to anticipate the active collection
phase and get more robust estimates for the same experimental cost. The complete active
learning routine is reported Appendix A.

4. Experiments

The Tennessee Eastman Process (TEP) is considered the gold-standard benchmark for
testing process control approaches (Ricker, 1996; Capaci et al., 2019) and, recently, it has
also been used for validating active learning and soft sensor development methods (Zhu
et al., 2015; Grbić et al., 2013). For this study, we generated 50 datasets using the MATLAB
code provided by Reinartz et al. (2021) and Andersen et al. (2022). The variables that have
been used as predictors in regression modeling are the same 16 controlled process variables
used by Zhu et al. (2015) and Grbić et al. (2013), and the continuous response is Stream
9E, a composition measurement belonging to the purge stream.

Figure 2a shows how the suggested semi-supervised architecture can increase the predic-
tive performance. Data is randomly sampled in both situations, but the two linear models

5



(a) Semi-Supervised Learning (b) Active Learning

Figure 2: (a) shows the learning curves with random sampling using the original process
variables and the features extracted by the OAE and (b) shows the learning curves of
different active learning methods: random (RND), Hotelling T 2 (HOT), query by committee
(QBC), and expected model change (EMC).

are fitted using the original process variables and the features extracted by the OAE. To
ensure comparability between the two learning curves, we fitted the first model when the
number of gathered observations exceeded 16. We believe the improvement is due to the
OAE’s ability to express nonlinear relationships in data in its encoded features and to the
fact that with the extracted features, we have the same number of observations to estimate
a smaller number of parameters. In Figure 2b, we try to improve the semi-supervised result
by using the proposed active learning strategies. It is clear that EMC and QBC consistently
outperform the passive random approach in terms of recommending the most informative
data points. On the contrary, the Mahalanobis distance appears to worsen the predictive
performance. We believe this may due to the fact that data points with high T 2 statistics
may be outliers, whose inclusion in the training set eventually degrades performance. It
should be noted that in Figure 2b all the sampling strategies use the features extracted by
the OAE. Experimental setup and training details are reported in Appendix B.

5. Conclusion

Industrial data is often only available unlabeled as quality inspections and manual anno-
tation tasks are costly and time-consuming. In this work, we proposed a semi-supervised
model based on OAEs for extracting relevant features and reducing multicollinearity. On
top of this, we reviewed and adapted for the online setting some of the most widely used
active learning strategies for linear regression. The analysis demonstrates how properly
using the historical data and taking into account the expected response allows for a faster
reduction of the prediction error. For future research, we will consider more advanced ar-
chitectures such as LSTM autoencoders or transformers to obtain encoded features that
take into account the temporal dependency in the data.
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Appendix A. Online Active Learning Routine

Algorithm 1

Require: a historical unlabeled dataset H, a labeled dataset L, a data stream S, a budget
b, and a criterion J .

1: Train an OAE on H
2: Encode observations in H and L: x ∈ Rp −→ z ∈ Rk

3: Fit a linear regression model on the encoded features z and labels y obtained from L
4: Compute J on the encoded features z pertaining to H and estimate a threshold (UCL)

using Equation 5
5: i← 0, c← 0
6: while c ≤ b and i ≤ |S| do
7: Encode ith observation from the stream S: xi ∈ Rp −→ zi ∈ Rk

8: if J (z) ≥ UCL then
9: Ask for the label yi and augment the labeled dataset: L+ = L ∪ (zi, yi)

10: c← c+ 1
11: Update model (repeat Step 3)
12: Update threshold (repeat Step 4)
13: else
14: Discard xi

15: end if
16: i← i+ 1
17: end while

Appendix B. Experimental Setup and Training Details

The data is generated using the MATLAB code provided by Reinartz et al. (2021) and
Andersen et al. (2022) with the Ricker closed-loop simulation model. No faults have been
introduced throughout the 50 simulation runs, which are generated providing different seeds
to the simulator. The variables used are reported in table 1. Sample rate was set to 1 minute.

The active learning routine was tested once on each of the 50 simulation runs. Figure
2 reports the mean and standard deviation for each method across these 50 runs (shaded
regions indicate ± 1 standard deviation).

With regards to the autoencoder structure, we used an encoder whose dimensionality of
the layers corresponds to [16, 160, 80, 40, 20, 10]. The decoder is symmetrical to the en-
coder. The penalty term corresponding to the weight of the orthogonality regularization in
the loss function was set to 0.10. No fixed number of epochs was used for the training as
we followed an early stopping approach, setting a patience of 10 on the number of accepted
epochs without improvement on the validation loss (20% of the training data is used for
validation). Finally, the bandwidth used for the kernel density estimation of the UCL is
found using Scott’s rule (Scott, 1992).
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Process Variable ID

A Feed (Stream 1) XMEAS 1
D Feed (Stream 2) XMEAS 2
E Feed (Stream 3) XMEAS 3

A and C Feed (Stream 4) XMEAS 4
Recycle Flow (Stream 8) XMEAS 5

Reactor Feed Rate (Stream 6) XMEAS 6
Reactor Temperature XMEAS 9
Purge Rate (Stream 9) XMEAS 10
Separator Temperature XMEAS 11
Separator Pressure XMEAS 13

Product Separator Underflow (Stream 10) XMEAS 14
Stripper Pressure XMEAS 16

Stripper Temperature XMEAS 18
Stripper Steam Flow XMEAS 19

Reactor Cooling Water Outlet Temperature XMEAS 21
Separator Cooling Water Outlet Temperature XMEAS 22

Table 1: Monitored variables of the TEP.
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