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Abstract

We consider the problem of global optimization with noisy function evaluation oracles — a
well-motivated problem useful for various applications ranging from hyper-parameter tuning
to new material design. Existing work relies on Gaussian processes or other nonparametric
family, which suffers from the curse of dimensionality. In this paper, we assume having
access to a differentiable parametric family that contains the unknown function. We
show that under mild assumptions, and an optimization oracle that solves the maximum-
likelihood estimate, an exploration-first strategy has cumulative regret of T 2/3, and an
Upper Confidence Bound (UCB) exploration algorithm enjoys a regret of T 1/2 where T is
the time horizon. Our simulation shows the effectiveness of our algorithm compared with
classical Bayesian optimization approaches.

1. Introduction

Consider the following optimization problem. Let f : X → R be an underlying non-convex
function. Our goal is to find a global solution to, w.l.o.g., the maximization problem, i.e.,

f∗ = max
x∈X

f(x). (1)

To learn about f(x), the learner relies on zeroth-order noisy function observations, i.e., at
round t, learner selects a point xt ∈ X and receives a noisy function value yt,

yt = f(xt) + ϵt, ϵt
i.i.d.∼ N (0, σ2) (2)

where ϵt is the Gaussian noise. We define the cumulative regret to measure the performance.
After round T , the cumulative regret is defined as RT =

∑T
t=1 f

∗ − f(xt). An algorithm A
is said to be a no-regret algorithm if limT→∞RT (A)/T = 0.

In this paper, we propose the Global Optimization via Upper Confidence Bound (GO-
UCB) algorithm. The motivation is to use a parametric function fw where w ∈ W to
approximate the true function f and solve the global optimization problem. The algorithm
works closely with the parameter classW . The optimization problem is said to be “realizable”
if the true function sits in the function class controlled by W, “non-realizable” otherwise.
From algorithm design, GO-UCB has two phases: (1) Phase I: Passively and uniformly
query n data points. (2) Phase II: Actively query T − n data points.

The goal of Phase I to sufficiently explore the function and make sure the estimated
parameter ŵ is somewhat close to the true parameter w∗. However, in Phase II, queries are
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made differently. One key observation is that parametric function fw(x) is equivalent to
fx(w) which is the function of w parameterized by x. Therefore, the algorithm should be
able to switch information between parameter class W and function domain X . Specifically,
at round t, the key idea is to embed all information from previous rounds 1, ..., t− 1 into the
estimated ŵt and then use it to actively query points from X . Phase II of GO-UCB closely
follows this idea; it takes advantage of the nice properties of the neighboring region of w∗

resulted by Phase I and builds the UCB in X , i.e., the bound of |fŵ(x)− fw∗(x)|,∀x ∈ X .
Then the algorithm optimizes the objective function fw∗(x) via UCB.

To estimate ŵ efficiently, throughout this paper, we assume the algorithm has access to
the Maximum Likelihood Estimation (MLE) oracle that is able to return a estimated ŵ for
true w∗. In detail, at round t after observing a dataset {(xi, yi)}t−1

i=1,

ŵt ← MLEw∈W(x1, y1, ..., xt−1, yt−1). (3)

Then the next query point xt is selected based on ŵt. By assuming access to MLE oracle, it
allows us to avoid tediously enumerating all possible parameters in the parameter class and
establish the UCB without kernels.

In summary, our main contributions are: (1) We study the important but challenging
global non-convex optimization problem and propose the GO-UCB algorithm to solve it with
parametric function approximation. (2) GO-UCB does not rely on Gaussian process used in
Bayesian optimization which suffers from the curse of dimensionality. With only zeroth noisy
feedback, our algorithm is able to solve the global optimization problem where the objective
function is non-convex, black-boxed, and even high-dimensional and non-continuous. (3) We
prove that GO-UCB converges to the global optima with cumulative regret at the order of
Õ(

√
T log(T )) where T is the time horizon, which is better than the Õ(T 2/3) rate achieved

by the exploration-first algorithm. (4) Our simulation shows that GO-UCB works better
than classical Bayesian optimization methods in both realizable and non-realizable settings.

2. Preliminaries

2.1 Notations

We use [m] to denote the set {1, 2, ...,m}. The algorithm queries n points in Phase I and T−n
points in Phase II, so T is the total time horizon which is indexed by t. Let X ∈ Rdx denote
the function domain, w.l.o.g. Y = [0, F ] ∈ R denote the function range where F is a constant,
andW ∈ Rdw denote the parameter class. An parametric function fw is a twice differentiable
function w.r.t. w mapping from X to Y. Let L(w) = 1

t

∑t
i=1 E(x,y)∼Di

(fx(w)− y)2 denote
the expected loss function where Di denotes the data generating distribution at round i. For
a vector x, its ℓp norm is denoted by ∥x∥p = (

∑d
i=1 |xi|p)1/p for 1 ≤ p <∞. For a vector x

and a square matrix A, define ∥x∥2A = x⊤Ax. Throughout this paper, we use standard big
O notations; and to improve the readability, we use Õ to hide poly-logarithmic factors.

2.2 Assumptions

Assumption 1 (MLE oracle) At round i, let pw(yi|xi) denote the probability of observing
yi conditioning on xi parametrized by w. The MLE oracle returns the estimated ŵ for true
w∗ after t rounds of observations, i.e., ŵ ← argmaxw∈M

∑t
i=1 log pw(yi|xi).
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Remark 2 Following Agarwal et al. (2020), we make this assumption as a method towards
practical algorithm that avoids enumerating all possible parameters in W. In fact, the MLE
oracle assumption is common in literature (Agarwal et al., 2014; Du et al., 2019; Misra
et al., 2020) and it can be approximated in practice.

Assumption 3 (Parameter class) The parameter class W is finite and realizable, i.e.,
|W| <∞ and the true parameter w∗ ∈ W.

Assumption 4 (Loss function) At each round t ∈ [T ], ∀(x, y) ∼ Dt, ℓ(w) = E[(fx(w)−
y)2] satisfies locally self-concordance, µ-strongly convexity, and α, γ-growth condition at w∗,

∀w ∈ W,min
{µ

2
∥w − w∗∥22,

α

2
∥w − w∗∥γ2

}
≤ ℓ(w)− ℓ(w∗). (4)

Remark 5 This assumption may appear to be strong, but it does not require convexity
except in a local neighborhood near the global optimal w∗. It also does not limit the number
of spurious local minima, as the global γ growth condition only gives a mild lower bound as
we move away from w∗. Our results works even if γ is a small constant < 1. Local self-
concordance is needed for technical reasons, but again it is only required near w∗. Example 4
of Zhang et al. (2017) lists some self-concordant function examples.

Assumption 6 (Objective function) Let G,C be constants. The objective function
fx(w) is G-Lipschitz and C-smooth (C-gradient Lipschitz), i.e., ∀x ∈ X ,

∥∇fx(w)∥2 ≤ G,∀w ∈ W, (5)

fx(w1) ≤ fx(w2) + (w1 − w2)
⊤∇fx(w2) +

C

2
∥w1 − w2∥22, ∀w1, w2 ∈ W. (6)

3. Main Results

In this section, we derive the upper bound on ∥ŵ − w∗∥2 via a MLE lemma and then build
the UCB for active queries. Next, we show GO-UCB algorithm and prove its regret analysis.

3.1 MLE Oracle and Guarantees

Lemma 7 (MLE lemma (adapted from Agarwal et al. (2020))) Suppose Assumption
1 3 hold. Fix δ ∈ (0, 1), after round t, then w.p. > 1− δ, the MLE-estimated ŵ satisfies

1

t

t∑
i=1

Ex∼Di(fx(w
∗)− fx(ŵ))

2 ≤ 4σ2 log(|W|/δ)
t

. (7)

Theorem 8 (MLE guarantee) Suppose Assumption 1 3 & 4 hold. Fix δ ∈ (0, 1), after
sampling t points where t satisfies

t ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
. (8)

Then w.p. > 1− δ, the MLE-estimated ŵ satisfies ∥ŵ − w∗∥22 ≤
512σ2 log(|W|/δ)

µt .

Remark 9 Under mild assumptions, the main MLE guarantee shows that ∥ŵ − w∗∥2
converges at the order of Õ(

√
1/t). Note the bound itself doesn’t depend on anything from

previous rounds except ŵ. Detailed proofs are shown in Appendix C D.
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3.2 Our Algorithm

We first build the upper confidence bound and then present our GO-UCB algorithm.

Theorem 10 (Upper confidence bound) Suppose Assumption 1 3 4 6 hold. After uni-
formly querying n data points in Phase I where

n ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
. (9)

Then at round t in Phase II, fix δ ∈ (0, 1), w.p. > 1− δ, ∀x ∈ X ,

|fx(ŵt)− fx(w
∗)| ≤ ∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

256Cσ2 log(|W|/δ)
µt

. (10)

Remark 11 Note t is indexing over number of queries in both Phase I and II and the
sample comlexity requirement (eq. (9)) is the same as eq. (8). The theorem says that for
all x ∈ X , fŵt(x) converges to fw∗(x) at the rate of Õ(

√
1/t). Also, the second term in

Theorem 10 converges faster than the first term.

The Global Optimization via Upper Confidence Bound (GO-UCB) algorithm is shown in
Algorithm 1. Step 1-4 of Phase I are pretty standard which are doing uniform sampling. In
Phase II, Step 2 queries the MLE oracle for estimated parameter ŵt. Then in Step 3, first
term fx(ŵt) is the function parameterized by ŵt and the second and third terms measure
the uncertainty of the current estimation. Note ∇fx(ŵt) is the gradient of function w.r.t.
ŵt parameterized by x, which can be calculated for each x ∈ X .

Algorithm 1 GO-UCB

Input: Time horizon T , noise parameter σ, MLE oracle, uniform distribution U , constant
C.
Phase I (Passive query):

1: Set n ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2 , 16σ
2 log(|W|/δ)

µ2

}
.

2: for t = 1, ..., n do
3: Sample xt ∼ U(X ).
4: Observe yt = f(xt) + ϵt.
5: end for

Phase II (Active query):

1: for t = n+ 1, ..., T do
2: MLE query: ŵt ← argmaxw∈W

∑t−1
i=1 log p(yi|xi, w, σ).

3: Select xt = argmaxx∈X fx(ŵt) + ∥∇fx(ŵt)∥2
√

512σ2 log(|W|/δ)
µt + 256Cσ2 log(|W|/δ)

µt .

4: Observe yt = f(xt) + ϵt.
5: end for

Output: x̂ = argmaxx∈{x1,...,xT } y(x).
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3.3 Regret Analysis

Theorem 12 (Cumulative regret of GO-UCB) Suppose Assumption 1 3 4 6 hold. Af-

ter uniformly querying n data points in Phase I where n ≥ max{2
3+γσ2 log(|W|/δ)

αµγ/2 , 16σ
2 log(|W|/δ)

µ2 }.
Then fix δ ∈ (0, 1), after T rounds in total, w.p. > 1− δ,

RT ≤ nF + 2G
√
T − n

√
512σ2 log(|W|/δ) log(T/n)

µ
+

512Cσ2 log(|W|/δ) log(T/n)
µ

, (11)

where α, γ, µ, F,G,C are constants. Moreover, by choosing n = Θ(
√
T ), RT ≤ Õ(

√
T log(T )).

Cumulative regret of GO-UCB is Õ(
√
T ), which is the same rate achieved by GP-UCB.

However, no Gaussian process assumption is needed in our algorithm.

Remark 13 (Choice of n) The success of GO-UCB relies on the careful choice of n. The
choice of n plays two role here. First, as a sufficiently large number in eq. (9), the choice of n
guarantees that the MLE-estimated ŵ lies in the neighboring region of w∗ of the loss function
L(w) with high probability. The neighboring region of w∗ has nice properties, e.g., strong
convexity, which allow us to transfer the predictive MLE bound into the ℓ2-distance between
ŵ and w∗. Second, in Phase I we are doing uniform sampling therefore the cumulative regret
can only be bounded by O(n). The choice of n makes sure the cumulative regret is smaller
than the one incurred in Phase II.

Remark 14 (Bonus term) In Step 3 of Algorithm 1, UCB relies on ∥∇fx(ŵt)∥2, which
can be understood as a bonus term. Here in our analysis, we simply assume it is smaller
than some constant G, however, if it has faster convergence than constant, it leads to an
improved cumulative regret bound, potentially Õ(log(T )). See further discuss in Appendix E.

For comparison, we also include a cumulative regret bound of the exploration-first
algorithm, which also has two phases. In Phase I, it is the same as GO-UCB, and then in
Phase II, it relies on the convergence bound of ŵn, rather than ŵt, to actively query T − n
points. Note ŵn doesn’t change after Phase I.

Lemma 15 (Cumulative regret of exploration-first algorithm) Suppose Assumption
1 3 4 6 hold. In Phase I the number of queries n satisfies eq. (9). Then fix δ ∈ (0, 1), after T

rounds in total, w.p. > 1− δ, RT ≤ nF +2(T −n)G
√

512σ2 log(|W|/δ)
µn . Moreover, by choosing

n = Θ(T 2/3), RT ≤ Õ(T 2/3).

The exploration-first algorithm is also a no-regret algorithm that achieves the Õ(T 2/3)
cumulative regret after careful choice of n. However, it is worse than the Õ(

√
T log(T )) rate

of GO-UCB. It shows the effectiveness of using UCB in Phase II.

4. Simulation

In this section, we present simulation results on two 1-dimensional functions:

f1 = 1 +
1

1 + e−(x+1)
, f2 = sin(x/4), (12)
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where the domain is X = [−2π, 2π]. We compare our algorithm GO-UCB with three
Bayesian optimization methods: GP-EI (Jones et al., 1998), GP-PI (Kushner, 1964), and
GP-UCB (Srinivas et al., 2010). The GP-EI, GP-PI, and GP-UCB are implemented by the
scikit-optimize package (Head et al., 2021) with default settings under the BSD license.

Our model is a 2-layer neural network parameterized by w = [w1, b1, w2, b2] ∈ R4:

f̂ =
w2

1 + e−(w1x+b1)
+ b2, (13)

which has two linear layers and a sigmoid activation function. Therefore, optimizing f1 is a
realizable task because when f̂ = f1 if w = [1, 1, 1, 1]. Optimizing f2 is a non-realizable task.

To run GO-UCB in practice, we set a constant U = 10 and use the following surrogate

criterion to select xt at the round t: xt = argmaxx∈X fx(ŵt) + σ∥∇fx(ŵt)∥2
√

U
t + U

t . The

MLE oracle is approximated by gradient descent algorithm with 500 iterations. Phase I
number of data points N is set to be 5 and total time horizon T is set as 20. The whole
simulation is repeated for 100 times, and the average regret (the lower the better) in Phase
II is reported by mean and error bar in the following figures. The error bar is measured
by Wald’s test with 98% confidence. From Figure 1, we learn that in both realizable and
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(a) Realizable case (f1)
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(b) Non-realizable case (f2)

Figure 1: Algorithm comparison between GP-EI, GP-PI, GP-UCB, and GO-UCB.

non-realizable tasks, our algorithm GO-UCB performs significantly better than all other
Bayesian optimization approaches. Surprisingly, GO-UCB performs even better (with error
bar gaps) in non-realizable tasks where non-parametric Bayesian optimization is expected
to do well. Though there are only 15 rounds in Phase II, we can still observe that error
bars are becoming smaller as the number of round goes up. Among Bayesian optimization
methods, GP-UCB uses the same UCB idea as ours and it performs similarly as our method.

5. Discussion

We include a section discussing related work in Appendix A and a section showing all
auxiliary lemmas in Appendix B. Future work includes understanding the bonus term
∥∇fx(ŵ)∥ and doing more experiments on high dimensional functions optimization.
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Appendix A. Related Work

In this section, we briefly review related work to our paper. Global non-convex optimization
is an important problem that can be found in a lot of research communities and real-world
applications, e.g., optimization (Rinnooy Kan and Timmer, 1987a,b), machine learning
(Bubeck et al., 2011; Malherbe and Vayatis, 2017), hyperparameter tuning (Hazan et al.,
2018), neural architecture search (Kandasamy et al., 2018; Wang et al., 2020), and material
discovery (Frazier and Wang, 2016).

Generally speaking, solving a global non-convex optimization is NP-hard. Bayesian
optimization (Shahriari et al., 2015; Frazier, 2018) or Gaussian process bandit optimization
(Cai and Scarlett, 2021) is one line of research focusing on zeroth-order optimization with
noisy feedback. The objective function is usually modeled by Gaussian Process (Williams
and Rasmussen, 2006) using some kernels and then acquisition functions are used to actively
selected data points to query. Popular choices of acquisition functions are Upper Confidence
Bound (UCB) (Srinivas et al., 2010), expected improvement (Jones et al., 1998; Bull, 2011),
knowledge gradient (Frazier et al., 2009), probability of improvement (Kushner, 1964), and
Thompson sampling (Thompson, 1933). Among them, GP-UCB (Srinivas et al., 2010) is
the closest to our paper because our algorithm also actively selects data points in a UCB
style but the construction of UCB in our paper is different since we are not working with
kernels. Scarlett et al. (2017) proves lower bounds on regret for noisy Gaussian process
bandit optimization. One drawback of Bayesian optimization is that it suffers from curse of
dimensionality.

Without Gaussian process, Wang et al. (2018) solves the smooth function optimization in
a candidate removal way which resembles the disagreement-based active learning (Hanneke
et al., 2014). There is also a line of research on dependent arm bandit problems. Li et al.
(2019) studies the linearly parameterized contextual bandit and then Foster and Rakhlin
(2020) goes beyond the linear function. All of these are contextual bandit settings which is
different to our work. Russo and Van Roy (2013) studies the sample complexity of multi-arm
bandit and propose the Eluder dimension to capture the dependence among action arms.
Recent work (Zhao et al., 2022) builds upon it and captures contextual linear bandits and
generalized linear bandits as special cases. By contrast, our work considers non-convex
function with noisy zeroth order feedback.

A collection of research papers considers the global non-convex optimization with first-
order feedback where gradient information is available (Agarwal et al., 2017). Wu et al.
(2017) and Shekhar and Javidi (2021) studies Bayesian optimization with gradient feedback.
Kesari and Honorio (2021) shows that first-order methods take exponential time to converge
to global optima.

The MLE oracle assumption was introduced in reinforcement learning literature (Agarwal
et al., 2014) which allows algorithm designer to avoid tedious enumerations over all parameters
in the large parameter class. Because of this, MLE oracle assumption becomes a common
assumption later in reinforcement. See Du et al. (2019); Misra et al. (2020) and Agarwal
et al. (2020). However, to the best of our knowledge, this assumption has never been used
in global non-convex optimization before. In this paper, we show that with MLE oracle
assumption, we can propose a UCB-style no-regret algorithm that efficiently solves the
problem with parametric function approximation.
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Appendix B. Auxiliary Lemmas

In this section, we list auxiliary lemmas that are used in the main paper.

Lemma 16 (Lemma 24 of Agarwal et al. (2020)) Let D = {(xi, yi)}ti=1 be a dataset
of t examples, and let D′ = {(x′i, y′i)}ti=1 be a tangent sequence where x′i ∼ Di(x1:i−1, y1:i−1)
and y′i ∼ p(·|x′i). Let Q(p,D) =

∑t
i=1 q(p, (xi, yi)) be a function that decomposes additively

across examples where q is any function, and let p̂(D) be any estimator taking as input
random variable D and with range P. Then

ED[exp(Q(p̂(D), D)− logED′ exp(Q(p̂(D), D′))− log |P|)] ≤ 1. (14)

Lemma 17 (Hessian of self-concordant function (Lemma 8 of Zhang et al. (2017)))
Let f(x) be a self-concordant function, and ∥h∥∇2f(x) =

√
h⊤∇2f(x)h. Then, for a given

point x and for any h with ∥h∥∇2f(x) ≤ 1, we have

(1− ∥h∥∇2f(x))
2∇2f(x) ⪯ ∇2f(x+ h) ⪯ ∇2f(x)

(1− ∥h∥∇2f(x))
2
. (15)

Lemma 18 (KL divergence between Gaussian distributions) Let p(x), q(x) denote
the pdf of N (µ1, σ1),N (µ2, σ2), respectively. Then the KL divergence KL(p, q) between them
is

KL(p, q) = −1

2
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

+ log
(σ2
σ1

)
. (16)

Proof By definiton of KL divergence,

KL(p, q) =

∫
p(x) log

(p(x)
q(x)

)
dx (17)

=

∫
1√
2πσ1

exp
(
− (x− µ1)

2

2σ2
1

)((x− µ2)
2

2σ2
2

+
1

2
log(2π)− log(σ2)

− (x− µ1)
2

2σ2
1

+
1

2
log(2π)− log(σ1)

)
dx (18)

=

∫
1√
2πσ1

exp
(
− (x− µ1)

2

2σ2
1

)((x− µ2)
2

2σ2
2

− (x− µ1)
2

2σ2
1

+ log
(σ2
σ1

))
dx (19)

= Ep

[
(x− µ2)

2

2σ2
2

− (x− µ1)
2

2σ2
1

+ log
(σ2
σ1

)]
(20)

=
Ep[(x− µ1 + µ1 − µ2)

2]

2σ2
2

− Ep[(x− µ1)
2]

2σ2
1

+ log
(σ2
σ1

)
(21)

=
Ep[(x− µ1)

2 + 2(x− µ1)(µ1 − µ2) + (µ1 − µ2)
2]

2σ2
2

− 1

2
+ log

(σ2
σ1

)
(22)

=
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
+ log

(σ2
σ1

)
. (23)

where eq. (18) is due to pdf function of Gaussian distribution, eq. (20) is due to definition
of expectation, and eq. (22) (23) are due to definition of variance.
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Appendix C. Intermediate Results of MLE Guarantees

Corollary 19 Suppose Assumption 1 3 hold. Fix δ ∈ (0, 1), after round t, then w.p. > 1−δ,
the MLE-estimated ŵ satisfies

L(ŵ)− L(w∗) ≤ 4σ2 log(|W|/δ)
t

. (24)

Proof Plug in the definition of loss function L(w) and we have

L(ŵ)− L(w∗) =
1

t

t∑
i=1

EDi(fx(ŵ)− y)2 − (fx(w
∗)− y)2 (25)

=
1

t

t∑
i=1

EDi(fx(ŵ)− fx(w
∗) + fx(w

∗)− y)2 − (fx(w
∗)− y)2 (26)

=
1

t

t∑
i=1

EDi(fx(ŵ)− fx(w
∗))2 + 2(fx(ŵ)− fx(w

∗))(fx(w
∗)− y) (27)

=
1

t

t∑
i=1

EDi(fx(ŵ)− fx(w
∗))2 + 2(fx(ŵ)− fx(w

∗))ϵi (28)

=
1

t

t∑
i=1

EDi(fx(ŵ)− fx(w
∗))2 (29)

≤ 4σ2 log(|W|/δ)
t

, (30)

where eq. (28) (29) are due to Gaussian noise model (eq. (2)) and eq. (30) holds because of
Lemma 7.

Lemma 20 Suppose Assumption 1 3 hold. Fix δ ∈ (0, 1), after round t, then w.p. > 1− δ,
the MLE-estimated ŵ satisfies

∥ŵ − w∗∥2∇2L(w̃) ≤
8σ2 log(|W|/δ)

t
, (31)

where w̃ is a point on the line segment between ŵ and w∗.

Proof Use Taylor expansion on loss function L(ŵ) at w∗,

L(ŵ) = L(w∗) + (ŵ − w∗)⊤∇L(w∗) +
1

2
∥ŵ − w∗∥2∇2L(w̃), (32)

where w̃ is on the line segment between ŵ and w. Rearrange the equation,

1

2
∥ŵ − w∗∥2∇2L(w̃) = L(ŵ)− L(w∗) + (w∗ − ŵ)⊤∇L(w∗). (33)

12



By Assumption 4, we know that L(w∗) is convex function. Due to the first order optimal
condition of convex function, (w∗ − ŵ)⊤∇L(w∗) ≤ 0. Therefore,

1

2
∥ŵ − w∗∥2∇2L(w̃) ≤ L(ŵ)− L(w∗). (34)

The proof completes by plugging in Corollary 19.

Lemma 21 Suppose Assumption 1 3 4 hold, then L(w∗) is a µ-strongly convex function.
Also, fix δ ∈ (0, 1), after sampling t points where t satisfies

t ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
, (35)

where α, γ, µ are constants, then w.p. > 1− δ, the MLE-estimated ŵ satisfies

∥ŵ − w∗∥∇2L(w∗) ≤
1

2
. (36)

Proof By definition of L(w∗) and Assumption 4, L(w∗) is a µ-strongly convex function,
then λmin(∇2L(w∗)) ≥ µ. Therefore,

∥ŵ − w∗∥2∇2L(w∗) ≤
∥ŵ − w∗∥22

λmin(∇2L(w∗))
≤ ∥ŵ − w∗∥22

µ
. (37)

Next, we discuss two cases of relationships between ŵ and w∗.
Case I. If ŵ is far away from w∗, by growth condition (Assumption 4) and Corollary 19,

α

2
∥ŵ − w∗∥γ2 ≤ L(ŵ)− L(w∗) ≤ 4σ2 log(|W|/δ)

t
, (38)

∥ŵ − w∗∥∇2L(w∗) ≤
∥ŵ − w∗∥2√

µ
≤ 1
√
µ

(8σ2 log(|W|/δ)
αt

) 1
γ
. (39)

Therefore, set 1√
µ(

8σ2 log(|W|/δ)
αt )

1
γ ≤ 1

2 will result in a sample complexity bound on t, i.e.,

t ≥ 23+γσ2 log(|W|/δ)
αµγ/2

. (40)

Case II. If ŵ is close to w∗, by local strong convexity (Assumption 4) and Corollary 19,

µ∥ŵ − w∗∥22 ≤ L(ŵ)− L(w∗) ≤ 4σ2 log(|W|/δ)
t

(41)

∥ŵ − w∗∥∇2L(w∗) ≤
1
√
µ
∥ŵ − w∗∥2 ≤

√
4σ2 log(|W|/δ)

µ2t
. (42)

Therefore, set
√

4σ2 log(|W|/δ)
µ2t

≤ 1
2 will also lead to a sample complexity bound on n, i.e.,

t ≥ 16σ2 log(|W|/δ)
µ2

. (43)

Combining eq. (40) (43) completes the proof.
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Corollary 22 Suppose Assumption 1 3 4 hold. Fix δ ∈ (0, 1), after sampling t points where
t satisfies eq. (35), then w.p. > 1− δ, the MLE-estimated ŵ satisfies

λmin(∇2L(ŵ)) ≥ µ

4
. (44)

Proof As a result of Assumption 4 and Lemma 17 in Appendix B,

(1− ∥ŵ − w∗∥∇2L(w∗))
2∇2L(w∗) ⪯ ∇2L(ŵ). (45)

Plugging in Lemma 21 completes the proof.

Lemma 23 Suppose Assumption 1 3 4 hold. Fix δ ∈ (0, 1), after sampling t points where t
satisfies eq. (35), then w.p. > 1− δ, the MLE-estimated ŵ satisfies

∥ŵ − w∗∥2∇2L(ŵ) ≤
128σ2 log(|W|/δ)

t
. (46)

Proof As a result of Assumption 4 and Lemma 17 in Appendix B, L(w) is also a self-
concordant function at w∗, which means

(1− ∥w̃ − w∗∥∇2L(w∗))
2∇2L(w∗) ⪯ ∇2L(w̃), (47)

(1− ∥ŵ − w∗∥∇2L(w∗))
2∇2L(ŵ) ⪯ ∇2L(w∗). (48)

Put them together,

(1− ∥w̃ − w∗∥∇2L(w∗))
2(1− ∥ŵ − w∗∥∇2L(w∗))

2∇2L(ŵ) ⪯ ∇2L(w̃), (49)

(1− ∥ŵ − w∗∥∇2L(w∗))
4∇2L(ŵ) ⪯ ∇2L(w̃), (50)

where the last inequality holds because w̃ lies on the line between ŵ and w∗ and ∇2L(w∗) ≻ 0
by Assumption 4. Multiply ŵ − w∗ to both sides and we get

∥ŵ − w∗∥2∇2L(ŵ) ≤
8σ2 log(|W|/δ)

n(1− ∥ŵ − w∗∥∇2L(w∗))
4

≤ 128σ2 log(|W|/δ)
t

,

where the first inequality holds because of Lemma 20 and the second inequality is due to
Lemma 21.

Appendix D. Missing Proofs in Main Paper

Lemma 24 (Restatement of Lemma 7) Suppose Assumption 1 3 hold. Fix δ ∈ (0, 1),
after round t, then w.p. > 1− δ, the MLE-estimated ŵ satisfies

1

t

t∑
i=1

Ex∼Di(fx(w
∗)− fx(ŵ))

2 ≤ 4σ2 log(|W|/δ)
t

. (51)
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Proof Combine Lemma 16 in Appendix B with the Chernoff method and we obtain an
exponential tail bound: w.p. > 1− δ,

− logED′ exp(Q(p̂(D), D′)) ≤ −Q(p̂(D), D) + log(|P|/δ), (52)

− logED′ exp(Q(p̂(D), D′)) ≤ −Q(p̂(D), D) + log(|W|/δ), (53)

where the second inequality is due to the fact each parameter w ∈ W determines a probability
function p ∈ P. Now we set

Q(p̂, D) =

t∑
i=1

−1

2
log

(pw∗(yi|xi)
pŵ(yi|xi)

)
, (54)

where pw∗(·|x), pŵ(·|x) denote the probability density function ofN (fx(w
∗), σ2),N (fx(ŵ), σ2),

respectively. With this choice, RHS of eq. (53) is

t∑
i=1

1

2
log

(pw∗(yi|xi)
pŵ(yi|xi)

)
+ log(|W|/δ) ≤ log(|W|/δ), (55)

since pŵ is the empirical maximum likelihood estimator. And LHS of eq. (53) is

− logED′

[
exp

( t∑
i=1

−1

2
log

(pw∗(yi|xi)
pŵ(yi|xi)

))∣∣∣∣D]

= −
t∑

i=1

logEx,y∼Di exp

(
− 1

2
log

(pw∗(y|x)
pŵ(y|x)

))
, (56)

where eq. (56) holds because pŵ is independent of dataset D′. Then LHS of eq. (53) becomes

−
t∑

i=1

logEx,y∼Di

√
pŵ(y|x)
pw∗(y|x)

= −
t∑

i=1

Ex,y∼Di log

√
pŵ(y|x)
pw∗(y|x)

(57)

= −
t∑

i=1

∫
x∼Di

pw∗(·|x) log

√
pŵ(·|x)
pw∗(·|x)

dx (58)

=
1

2

t∑
i=1

∫
x∼Di

pw∗(·|x) log pw∗(·|x)
pŵ(·|x)

dx (59)

=
1

2

t∑
i=1

Ex∼DiKL(N (fx(w
∗), σ2)||N (fx(ŵ), σ

2)) (60)

=
1

2

t∑
i=1

Ex∼Di

(fx(w
∗)− fx(ŵ))

2

2σ2
, (61)

where eq. (58) is due to definition of expectation, eq. (60) is due to definition of KL
divergence, and eq. (61) is due to Lemma 18 is Appendix B. Therefore, combining LHS and
RHS of eq. (53), we have

1

4tσ2

t∑
i=1

Ex∼Di(fx(w
∗)− fx(ŵ))

2 ≤ log(|W|/δ)
t

. (62)
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The proof completes by rearrangement.

Theorem 25 (Restatement of Theorem 8) Suppose Assumption 1 3 4 hold. Fix δ ∈
(0, 1), after sampling t points where t satisfies eq. (8), then w.p. > 1− δ, the MLE-estimated
ŵ satisfies

∥ŵ − w∗∥22 ≤
512σ2 log(|W|/δ)

µt
. (63)

Proof First we use minimum eigenvalue to upper bound ∥ŵ − w∗∥22:

∥ŵ − w∗∥22 ≤
∥ŵ − w∗∥2∇2L(ŵ)

λmin(∇2L(ŵ))
. (64)

Then the proof is completed by Corollary 22 and Lemma 23.

Theorem 26 (Restatement of Theorem 10) Suppose Assumption 1 3 4 6 hold. After
uniformly querying n data points in Phase I where

n ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
. (65)

Then at round t in Phase II, fix δ ∈ (0, 1), w.p. > 1− δ, ∀x ∈ X ,

|fx(ŵt)− fx(w
∗)| ≤ ∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

256Cσ2 log(|W|/δ)
µt

. (66)

Proof With the C-smoothness Assumption (Assumption 6), then ∀x ∈ X ,

|fx(ŵt)− fx(w
∗)| ≤ |(ŵt − w∗)⊤∇fx(ŵt)|+

C

2
∥ŵt − w∗∥22 (67)

≤ ∥ŵt − w∗∥2∥∇fx(ŵt)∥2 +
C

2
∥ŵt − w∗∥22, (68)

where the last inequality holds due to Holder’s inequality. The proof completes by plugging
in Theorem 8.

Lemma 27 (Instant regret) Suppose Assumption 1 3 4 6 hold. In Phase I the number of
uniform queries n satisfies eq. (9). Then fix δ ∈ (0, 1), at round t in Phase II, w.p. > 1− δ,
∀x ∈ X ,

rt ≤ 2∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

512Cσ2 log(|W|/δ)
µt

. (69)
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Proof By definition of instant regret,

rt = fw∗(x∗)− fw∗(xt) (70)

≤ fŵ(x
∗)− fw∗(xt) + ∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

256Cσ2 log(|W|/δ)
µt

(71)

≤ fŵ(xt)− f(xt) + ∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

256Cσ2 log(|W|/δ)
µt

(72)

≤ 2∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

512Cσ2 log(|W|/δ)
µt

, (73)

where the first and third inequalities are due to Theorem 10 and the second inequality is
due to the selection criterion of xt.

Theorem 28 (Restatement of Theorem 12) Suppose Assumption 1 3 4 6 hold. After
uniformly querying n data points in Phase I where

n ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
. (74)

Then fix δ ∈ (0, 1), after T rounds in total, w.p. > 1− δ,

RT ≤ nF + 2G
√
T − n

√
512σ2 log(|W|/δ) log(T/n)

µ
+

512Cσ2 log(|W|/δ) log(T/n)
µ

, (75)

where α, γ, µ, F,G,C are constants. Moreover, by choosing n = Θ(
√
T ), RT ≤ Õ(

√
T log(T )).

Proof By definition of cumulative regret, plug in Lemma 27,

RT =
n∑

t=1

rt +
T∑

t=n+1

rt (76)

≤ nF +
T∑

t=n+1

2∥∇fx(ŵt)∥2

√
512σ2 log(|W|/δ)

µt
+

512Cσ2 log(|W|/δ)
µt

(77)

≤ nF + 2

√√√√ T∑
t=n+1

∥∇fx(ŵt)∥22︸ ︷︷ ︸
(i)

√√√√ T∑
t=n+1

512σ2 log(|W|/δ)
µt︸ ︷︷ ︸

(ii)

+

T∑
t=n+1

512Cσ2 log(|W|/δ)
µt︸ ︷︷ ︸

(iii)

,

(78)

where the last inequality follows the Cauchy-Schwarz inequality. Next, we bound these three
terms separately.
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In (i), by Assumption 6,

(i) =

√√√√ T∑
t=n+1

∥∇fx(ŵt)∥22 ≤

√√√√ T∑
t=n+1

G2 ≤ G
√
T − n. (79)

To bound (ii), we use
∑b

i=a 1/i ≤ log(b/a) and we have

(ii) =

√√√√ T∑
t=n+1

512σ2 log(|W|/δ)
µt

≤

√
512σ2 log(|W|/δ) log(T/n)

µ
. (80)

Again, we use the same trick to bound (iii),

(iii) =

T∑
t=n+1

512Cσ2 log(|W|/δ)
µt

≤ 512Cσ2 log(|W|/δ) log(T/n)
µ

. (81)

Therefore,

RT ≤ nF + 2G
√
T − n

√
512σ2 log(|W|/δ) log(T/n)

µ
+

512Cσ2 log(|W|/δ) log(T/n)
µ

(82)

≤ Õ(n+
√
(T − n) log(T/n) +

√
log(T/n)). (83)

When n is chosen as n = Θ(
√
T ), the cumulative regret bound is

RT ≤ Õ(
√
T log(T )). (84)

Lemma 29 (Restatement of Lemma 15) Suppose Assumption 1 3 4 6 hold. In Phase
I the number of queries n satisfies eq. (9). Then fix δ ∈ (0, 1), after T rounds in total, w.p.
> 1− δ,

RT ≤ nF + 2(T − n)G

√
512σ2 log(|W|/δ)

µn
. (85)

Moreover, by choosing n = Θ(T 2/3), RT ≤ Õ(T 2/3).
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Proof Follow the definition of cumulative regret,

RT =

n∑
t=1

rt +

T∑
t=n+1

rt (86)

≤ nF +
T∑

t=n+1

fw∗(x∗)− fw∗(x̂t) (87)

≤ nF +
T∑

t=n+1

fw∗(x∗)− fŵ(x
∗) + fŵ(x

∗)− fŵ(x̂t) + fŵ(x̂t)− fw∗(x̂t) (88)

≤ nF +

T∑
t=n+1

fw∗(x∗)− fŵ(x
∗) + fŵ(x̂t)− fw∗(x̂t), (89)

where F is a constant bounding the function range and the second inequality is due to
optimal choice of x̂t in UCB. Then by Lipschitz assumption (Assumption 6),

RT ≤ nF + 2(T − n)G∥ŵ − w∗∥2 (90)

≤ nF + 2(T − n)G

√
512σ2 log(|W|/δ)

µn
(91)

≤ Õ
(
n+

T√
n
−
√
n
)

(92)

The bound is minimized by setting n = Θ(T 2/3), which leads to

RT ≤ Õ(T 2/3). (93)

Appendix E. Discussion on the Bonus term

Define the empirical Hessian matrix of the estimated parameter ŵ as follows.

Ĥ(ŵ) = ∇2L̂(ŵ) =
1

t

t∑
i=1

∇2(fxi(ŵ)− yi)
2. (94)

Following Theorem 10, there is another way to establish an upper confidence bound.

Lemma 30 (Upper confidence bound) Suppose Assumption 1 3 4 6 hold. After uni-
formly querying n data points in Phase I where

n ≥ max
{23+γσ2 log(|W|/δ)

αµγ/2
,
16σ2 log(|W|/δ)

µ2

}
. (95)

Then at round t in Phase II, fix δ ∈ (0, 1), w.p. > 1− δ, ∀x ∈ X ,

|fx(ŵt)− fx(w
∗)| ≤ ∥ŵt − w∗∥Ĥ∥∇fx(ŵt)∥Ĥ−1 +

C∥ŵt − w∗∥2
Ĥ

2

√
λmin(Ĥ)

. (96)
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Proof With the C-smoothness Assumption (Assumption 6), then ∀x ∈ X ,

|fx(ŵt)− fx(w
∗)| ≤ |(ŵt − w∗)⊤∇fx(ŵt)|+

C

2
∥ŵt − w∗∥22 (97)

≤ ∥ŵt − w∗∥Ĥ∥∇fx(ŵt)∥Ĥ−1 +
C∥ŵt − w∗∥2

Ĥ

2

√
λmin(Ĥ)

, (98)

where the second inequality holds due to Holder’s inequality.

With Lemma 30, at round t, if we are able to derive BU (t) to upper bound ∥ŵ − w∗∥Ĥ
and BL(t) to lower bound λmin(Ĥ) where both BU (t) and BL(t) depend on t, we can design
a new acquisition function:

xt = argmax
x∈X

fx(ŵt) +BU (t)∥∇fx(ŵt)∥Ĥ−1 +
CB2

U (t)

2
√

BL(t)
. (99)

Unlike the acquisition function in Step 3 of Algorithm 1 where bonus term ∥∇fx(ŵt)∥ only
depends on ŵt, in this new acquisition function (eq. (99)), the new bonus term ∥∇fx(ŵt)∥Ĥ−1

depends on not only ŵt but also Ĥ. By definition of Ĥ, it contains rich information from all
previous rounds. Potentially, it is able to result in faster convergence of the new GO-UCB
algorithm.

20


	Introduction
	Preliminaries
	Notations
	Assumptions

	Main Results
	MLE Oracle and Guarantees
	Our Algorithm
	Regret Analysis

	Simulation
	Discussion
	Related Work
	Auxiliary Lemmas
	Intermediate Results of MLE Guarantees
	Missing Proofs in Main Paper
	Discussion on the Bonus term

