
ICML 2020 Workshop on Real World Experiment Design and Active Learning

Active Learning Using Discrepancy

Zhenghang Cui cui@ms.k.u-tokyo.ac.jp
University of Tokyo, Tokyo, Japan
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Issei Sato sato@k.u-tokyo.ac.jp

University of Tokyo, Tokyo, Japan

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract

Developing active learning methods using deep neural networks to select a batch of unla-
beled data points at each step are piratically important. However, existing such methods
either rely on heuristic objectives such as uncertainty, diversity and representativity; or are
computationally troublesome. Inspired by the discrepancy measures studied in the field of
domain adaption that consider the hypotheses set and the loss function, we define a variant
of discrepancy that suits the setting of deep batch active learning. We show that the newly
defined discrepancy can establish a valid generalization error bound, which is comparable
to the bound established by the Wasserstein distance that are recently adapted to active
learning. Learning using the newly defined discrepancy results in a principled deep batch
active learning method with an objective which can be stably optimized. We empirically
confirm the performance of the proposed algorithm against the state-of-the-art method.
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1. Introduction

Active learning aims to relieve the burden of annotation by allowing the algorithm to
choose unlabeled data points to query. Traditional analysis on the generalization error of
pool-based active learning heavily relies on the properties of the hypotheses set. Thus,
the existing theory can hardly provide insights for the emerging deep batch active learning
setting where an active learning algorithm uses a deep neural network as the classifier and
selects a batch of unlabeled data points at each step.

Recently developed methods focus on finding the criterion for selecting the batch that
can benefit deep neural network models. Sener and Savarese (2018) choose to construct a
coreset, which minimizes an upper bound of the generalization error but are very compu-
tationally expensive. Ash et al. (2020) choose to use gradients as the selection criterion,
which lacks evidence of connection to the generalization error. Shui et al. (2020) recognize
two important distributions in active learning: (1) the underlying data distribution with
respect to which the generalization error is defined, and (2) the empirical distribution of
already labeled data points and the batch of unlabeled data points we are going to select.
Shui et al. (2020) then propose a principled algorithm that minimizes an upper bound of the
generalization error, including a term of the Wasserstein distance (Villani, 2009) between
the two aforementioned distributions. However, because the Wasserstein distance does not
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take into account the hypotheses set and the loss function, it is possible that a tighter
bound can be established. Moreover, because of the intrinsic definition of the Wasserstein
distance, the implied minimax objective has to be optimized in an adversarial way, which
is unstable and needs further practical treatments.

On the other hand, minimizing the generalization error on one distribution with access
to data sampled from another distribution resembles the problem setting of domain adap-
tation (Ben-David et al., 2007). In this field, discrepancy measures (Mansour et al., 2009)
have been extensively studied to capture the difference between two distributions. However,
learning using theoretically guaranteed discrepancy measures either implies a minimax op-
timization problem, or requires the underlying labeling function of at least one distribution.
Therefore, a naive adaption cannot significantly improve existing deep batch active learning
methods.

In this paper, we first define an appropriate discrepancy measure for deep batch active
learning in Section 2. Next we establish a generalization error bound and compare it with
the one established using the Wasserstein distance in Section 3. Then, being guided by the
theory, we derive a practical active learning algorithm in Section 4. Finally, we empirically
confirm the performance of learning using the proposed discrepancy in Section 5.

2. Active learning using discrepancy

In this section, we introduce the proposed discrepancy, show its theoretical properties, and
derive an algorithm from the theoretical result.

2.1 Preliminaries

Let X ⊂ Rd be the sample space and Y , {0, 1} be the binary label space. Let PD denote
the underlying distribution over X . For the pool-based active learning problem setting, we
are given an i.i.d. sample D , {xi}ni=1 drawn from PD. For a score function f ∈ F : X → R

in the hypotheses set F , we define its induced prediction function as hf : x 7→ 1f(x)>0.
Let f∗ denote the corresponding scoring function for the the underlying labeling function
h∗ : X → Y. We denote the generalized difference between two functions f, f ′ on the
distribution D using a loss function ` : R ×R → R+ as R`D(f, f ′) , Ex∼P[`(f(x), f ′(x))].
Our goal is to find a scoring function f ∈ F such that its induced prediction function hf
has low generalization error on D, which can be expressed as arg minf∈F R

`
D(f, f∗).

At the beginning of each step, for the labeled set L ⊂ D, we have their corresponding
labels Y , {h∗(x) : x ∈ L}. As we consider active learning as an instance of distribution
matching, the source distribution PS is defined as the empirical distribution of L and the
batch of unlabeled samples to be selected B ⊂ D \ L.

2.2 Discrepancy measures for domain adaptation

We briefly review several important discrepancy measures that are extensively used in the
filed of domain adaption, paving the path to the newly defined discrepancy for active learn-
ing in Section 2.3.
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The general discrepancy measure (Mansour et al., 2009) is defined as

sup
f,f ′∈F

∣∣∣R`T(f, f ′)−R`S(f, f ′)
∣∣∣ ,

where T and S denote the target distribution and the source distribution, respectively. In
this common form of discrepancy, the supremum is taken over a function space.

Mohri and Medina (2012) proposes a discrepancy measure to provide a tighter general-
ization error bound. It is defined as supf∈F

∣∣R`T(f, fT)−R`S(f, fS)
∣∣, where fT and fS denote

the underlying labeling functions for each distribution, respectively. The supremum is taken
over one function now, but it cannot be approximated without knowing the underlying la-
beling functions. However, this gives us a hint that we can substitute and fix one function,
and still achieve a proper discrepancy measure. Following the same intuition, Kuroki et al.
(2019) proposes the source discrepancy that does not require the underlying labeling func-
tion for the target domain. It substitutes fT and fS with f∗S , arg minf∈F R

`
S(f, fS), the

true risk minimizer in the source domain. This gives us another hint that we can use the
classifier that suits one distribution to achieve a discrepancy measure that enjoys better
theoretical guarantees.

2.3 Active learning using discrepancy

Active learning is inherently different from domain adaptation as it is adaptive to user
feedback and has multiple steps during execution. After each step, we end up having an
imperfect but somehow satisfactory classifier for the moment. However, existing methods
discard this imperfect classifier and train from scratch for each step. To this end, we propose
to substitute one function in the generalization error terms with this imperfect classifier.
Moreover, we usually want to minimize the discrepancy term in generalization error bounds,
which will imply a minimax optimization problem that is unstable to solve. To this end,
we define the following discrepancy for active learning.

Definition 1 (Discrepancy for active learning) Let F be a scoring function set and
` : R × R → R+ be a loss function. Then, the discrepancy for active learning between
the underlying distributions P and the empirical distribution of Q, being parameterized by
f, f ′ ∈ F is defined as

discf,f ′(P,Q) =
∣∣∣R`P(f, f ′)−R`Q(f, f ′)

∣∣∣ . (1)

This discrepancy is symmetric and satisfies the triangular inequality for distributions.
However, it may that the discrepancy becomes 0 when P and Q are not identical.

3. Theoretical analysis

In this section, we investigate some theoretical properties of the newly defined discrepancy
measure. First, we establish the following generalization bound for the discrepancy.

Theorem 2 (Generalization error bound) For any f, f ′ ∈ F , we have

RP(f, f∗) ≤ RQ(f, f∗) + discf,f ′(P,Q) +RP(f ′, f∗) +RQ(f ′, f∗). (2)
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Proof

RP(f, f∗) = RQ(f, f∗)−RQ(f, f∗) +RP(f, f ′) +RP(f ′, f∗) (3)

≤ RQ(f, f∗)−RQ(f, f ′) +RP(f, f ′) +RQ(f ′, f∗) +RP(f ′, f∗) (4)

≤ RQ(f, f∗) + discf,f ′(P,Q) +RP(f ′, f∗) +RQ(f ′, f∗). (5)

From the above theory, we know that we can minimize the generalization error corre-
sponding to the underlying distribution by minimizing the one corresponding to another
distribution adding the discrepancy between the two distributions. This will imply a novel
active learning algorithm, as we will show in Section 4. Although we cannot directly min-
imize the last two terms of the generalization errors including the plugin function f ′, we
believe that as the training step of active learning goes on, we would have a classifier that
implies smaller generalization errors indicated by these two terms.

Then, we show the above discrepancy provides a potentially tighter generalization error
bound than the Wasserstein distance. First we show the following lemma.

Lemma 3 (Comparison to the Wasserstein distance) Assume the loss function ` is
ρ-Lipschitz with respect to both arguments where 0 < ρ < ∞, and all functions in the
hypotheses set F are at most γ-Lipschitz and bounded, i.e., there exists a constant C such
that ||f ||∞ ≤ C for any f ∈ F . Then, for any f, f ′ ∈ F , it holds that discf,f ′(P,Q) ≤
ργW(P,Q).

The proof can be found in Appendix.
In the previous work (Shui et al., 2020), the generalization error bound is established

as R`Q(f, f∗) + ρ(γ + λ)W(P,Q) + φ(λ), where λ > 0 and φ : R → (0, 1) is a function
indicating the decay property of the underlying labeling function. Thus, considering the
edge condition that discf,f ′(P,Q) = ργW(P,Q), the difference between two bounds are
(RP(f, f∗) +RQ(f, f∗))−(ρλW(P,Q) + φ(λ)). As the learning step proceeds, the classifier
becomes more accurate and has the potential to drive this difference to be negative. As
shown in Section 5, the algorithm guided by our bound shows significant improvement even
from the first step.

4. Algorithm

In this section, we show a practical active learning algorithm that are directly guided by
the theory.

We use the same definition as Shui et al. (2020) for the two distributions in active learn-
ing. We let P be the underlying data distribution PD and Q be the empirical distribution
of L ∪ B. Focusing on the first two tractable terms in Equation (2) and substituting the
two distributions, the problem becomes

min
f,f ′,B

R`L∪B(f, f∗) +
∣∣∣R`L∪U (f, f ′)−R`L∪B(f, f ′)

∣∣∣ . (6)

First, we optimize the model f from initialization and the model f ′ from its parameters
at the time. Then, we use the trained models to select the batch of unlabeled data points
for querying labels.

4



ICML 2020 Workshop on Real World Experiment Design and Active Learning

Optimization stage Note that there is a term involving the query batch in the absolute
value. As in this stage, our task is to optimize the models without finding the query batch,
we assume the dataset is flexible enough that there exists a batch of data points with
R`L∪B(f, f ′) approaching 0. Excluding the query batch this term, we design the objective
for f ′ as

1

|L|+ |B|
∑

(x,y)∈L

`(f ′(x), y). (7)

Then, we optimize f by minimizing

1

|L|+ |B|
∑

(x,y)∈L

`(f(x), y) +
1

|L|+ |U |
∑

x∈L∪U
`(f(x), f ′(x)), (8)

where taking the absolute value is omitted as the loss is always positive.

Query stage This stage aims to find the batch of unlabeled data points that minimizing
Equation (6) with fixed models f and f ′. The first term including the query batch requires
the underlying label y for the unlabeled data point, which we do not know. Therefore,
we adapt the same inequality as (Shui et al., 2020): `(f(x), y) ≤ maxy′∈[K]− log(f(x, y′)),
where K denotes the number of classes and f(x, y′) denotes the y′-th softmax score of x
predicted by f . We then calculate the following score for every unlabeled data points x ∈ U
and select those with the most small values:(

max
y′∈[K]

− log(f(x, y′))

)
+ `(f(x), f ′(x)). (9)

We then formally describe the procedure in Algorithm 1.

Algorithm 1 Active learning algorithm using discrepancy for one step.

Input: Labeled data L, unlabeled data U , query budget —B—, an initialized classifier f
and the classifier f ′ inherited from last step. If it is the first step, prepare another
initialized classifier as f ′.

1: while a stopping criterion is not met do
2: for mini-batches of U do
3: Select a mini-batch of L.
4: Update parameters of f ′ by minimizing Equation (7).
5: Update parameters of f by minimizing Equation (8).
6: end for
7: end while
8: Calculate scores for U using Equation (9).

Output: The batch B of data points with lowest scores.

Optimization tricks such as adjusting the weights of different terms in an objective can
be further applied. However, they are not necessarily required and are not included in the
implementation for Section 5.
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5. Experiments

In this section, we confirmed the performance of Algorithm 1 using the Fashion-MNIST (Xiao
et al., 2017) dataset. We used the exactly same setting and budget scheduling as the ‘WALL’
algorithm (Shui et al., 2020). We repeated the same experiment for 10 times and report
the mean and standard deviation values of test accuracy and execution time.

Figure 1: Accuracy and execution time.

Figure 1 reports the test accuracy and execute time for each step. We observe that learn-
ing according to our proposed discrepancy offers a consistently better generalization per-
formance with shorter wall clock time and thus fewer computation resource. Note that our
implementation of the ‘WAAL’ algorithm showed a higher test accuracy than reported (Shui
et al., 2020) for the exactly same setting.

6. Conclusion

In this paper, we define a discrepancy measure for active learning and propose a principled
learning algorithm that minimizes the generalization error bound established by the pro-
posed discrepancy measure. The proposed discrepancy measure instantiates a minimization
problem instead of a potentially unstable minimax problem. Thus, this algorithm can be
easily implemented and shows promising performance in experiments on real-world datasets
against the state-of-the-art deep batch active learning method. Conducting more compar-
ison experiments and more analysis on the theoretical properties of active learning related
discrepancy measures are left to be future work.
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Proof of Lemma 3

Proof According to the Kantorovich-Rubinstein duality (Villani, 2009), the Wasserstein
distance can be expressed as

W(P,Q) = sup
||h||L≤1

(
E
x∼P

[h(x)]− E
x∼Q

[h(x)]

)
, (10)

where the supremum is take over all 1-Lipschitz functions. Define h(x) = `(f(x), f ′(x)),
which is a ργ-Lipschitz function. Then we have

discf,f ′(P,Q) =

∣∣∣∣ E
x∼P

[h(x)]− E
x∼Q

[h(x)]

∣∣∣∣ (11)

≤ sup
||h||L≤ργ

(
E
x∼P

[h(x)]− E
x∼Q

[h(x)]

)
= ργW(P,Q). (12)
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