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Abstract

Recent years have seen a decline in air quality across the planet, with studies suggesting that
air pollution is a significant cause of death. Governments have set up large scale air quality
monitoring stations to aid them in formulating policies for air quality. However, these
air quality stations are expensive to install, and have thus been often sparsely deployed.
Motivated by sparse air quality monitoring and the expensive cost of air quality monitoring
stations, we propose an active learning based solution to recommend locations to install air
quality monitoring stations. We use a Gaussian Processes based approach for this purpose,
motivated by their ability to encode prior knowledge using custom kernels. We demonstrate
via extensive experimentation that our proposed approach outperforms several baselines
on a publicly available dataset.

1. Introduction

Recent years have seen a decline in air quality across the planet, with studies suggesting
that a significant proportion of the global population has reduced life expectancy by up
to 4 years (Chen et al., 2013; Balakrishnan et al., 2019). A recent WHO report suggests
that 9 out of 10 people breathe polluted air and air pollution is responsible for more than 7
million deaths in a year 1. To tackle this increasing growth in air pollution and its adverse
effects, governments have set up air quality monitoring stations to measure concentrations
of various pollutants like NO2, SO2 and PM2.5. PM2.5 refers to the concentration of particles
of diameter less than 2.5µm. PM2.5 has been shown to have a significant impact on health
(Xing et al., 2016) and is used to measure air quality. One major issue with the deployment
of these stations is the massive cost involved - installing each one of these stations costs
around a million dollars. Owing to the high installation and maintenance costs, the spatial
resolution of air quality monitoring is poor. As an example, in India, a developing country,
the current number of air quality stations is around 150, whereas the government pollution
agency estimates the requirement to be 4000 stations.

Air quality is affected by various meteorological factors such as humidity, temperature, wind
direction and wind speed and thus a location could be affected by distant sources. As a
consequence of the above factors, it could be the case that two locations that are spatially
far are closer in their air quality and vice versa. Given this complexity of air quality along
with the high cost involved in the installation and maintenance of air quality monitoring
stations, it is important to be able to recommend station locations in an informative manner.

1. https://www.who.int/airpollution/en/
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One natural strategy would be to install stations uniformly to maximize spatial coverage.
The factors mentioned above and prior work (Hsieh et al., 2015; Zheng et al., 2013) suggest
that uniformly installing stations may not be optimal. This motivates the problem that we
try to answer in this paper: Given a set of air quality monitoring stations, where do we
install the next set of air quality monitoring stations/sensors so that we can best infer the
air quality at unknown locations?

We propose an active learning (Settles, 2009) based method for optimizing sensor place-
ment2. The optimality of sensor placement is non-trivial to define as it can be based on
various objectives, some of which are confounding. The objectives include, but are not
limited to 1) minimizing sensor cost; 2) maximizing prediction accuracy for unmonitored
regions/times; 3) minimizing labor cost; 4) minimizing maintenance cost. Our objective in
this paper is to minimize prediction error at unmonitored locations.

To this end, we first propose a Gaussian Process Regressor (GPR) (Rasmussen, 2005) model
to predict air quality (PM2.5) values at unknown locations. We choose GPR since it can
help encode domain knowledge easily by supporting custom kernels. GPs are Bayesian
nonparametric models and thus the model complexity can be tuned based on data avail-
ability. We can obtain the mean and variance of the predictive distribution owing to its
Bayesian nature. For our model, we propose uncertaintly sampling for active learning. In
the case of GPs, since entropy is a monotonic function of the variance, our strategy to
use uncertainty sampling is equivalent to decreasing the entropy the most (Settles, 2009)
as a measure of uncertainty. Uncertainty sampling helps reduce the overall entropy of our
model. We install stations by choosing the station with the maximum posterior variance
and install them in an online manner: we install a station every month to the set of mon-
itored stations and show that our model has a very low predictive error at unmonitored
locations compared to various baselines. To the best of our knowledge, this is the first
work that addresses the problem of online air quality station deployment, where stations
are installed one at a time. Our work is completely reproducible and can be found at
https://github.com/sdeepaknarayanan/activepm/.

2. Related Work

Our related work can be classified into two categories: i) techniques for sensor network
deployment; and ii) active learning. We now discuss each of these categories.

Sensor Placement: Sensor deployment, in general, has been a well-studied problem.
Krause et al. (2009) propose an algorithm to simultaneously optimize the placement and
scheduling of sensors under constraints on the amount of power that is being consumed.
Krause et al. (2008) propose a sensor deployment model for the early detection of water
contamination. The common aspect in both Krause et al. (2008) and Krause et al. (2009) is
that they both deploy sensors from scratch, without having any previous sensors installed.
Guestrin et al. (2005), propose using mutual information for GPs, an optimization criterion
to find the most information about the unsensed locations. In their case, they demonstrate
that with increasing number of sensors, mutual information outperforms entropy in better
predicting the phenomena under consideration. Though sensor deployment in general has
been a well studied problem, a specific focus for air quality sensor deployment has been
largely limited. Hsieh et al. (2015), propose an incremental station deployment strategy for

2. We use sensor and station interchangeably in this paper
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air quality station deployment. By incremental, we refer to a strategy where there are loca-
tions that already have air quality monitors. They propose a semi-supervised approach to
infer air quality and then subsequently recommend a fixed number of locations for installing
air quality monitoring stations. Their scheme proposes installing all the recommended air
quality stations at once.
Active Learning: Active Learning (AL) is a sub area in machine learning where the
learning algorithm intelligently queries minimal data points to learn a good model (Settles,
2009). AL has been used widely in various applications including object categorization
(Kapoor et al., 2007) and named-entity recognition (Shen et al., 2004). There are different
scenarios and ways in which the learners query data points. Two widely used methods are
pool-based and stream-based selective sampling (Settles, 2009). Learners typically have a
notion of informativeness of the data points to make a decision. Common ones include
uncertainty sampling where model uncertainty is used to choose data points (Lewis and
Gale, 1994) and query by committee (Seung et al., 1992) where a committee of learners
helps choose data points based on their level of agreement.
Our work mainly differs from related literature in that we do not deploy all the air quality
monitoring stations at once; we rather install a station, use air quality data from this
installed station, and then install the next station. Such a choice was motivated by the
fact that our deployment scheme is highly appropriate and useful for a realistic deployment
where there may not be sufficient funds to deploy all the stations at once.

3. Problem Statement

We formalize our problem statement here: Given a set of air quality monitoring stations
S, along with information about their PM2.5 values and meteorological conditions over
some time {t0, t1, . . . , tk}, where each ti denotes a timestamp, deploy air quality monitoring
stations at a few candidate locations, every f timestamps, beginning on day tk+1, such that
estimation of air quality at unmonitored locations improves the most across timestamps
beginning tk+1. In this problem formulation, once an air quality monitoring station is
deployed, its PM2.5 data is readily available from the day after the deployment onwards.

4. Approach
Gaussian Processes (GPs) is a model that induces a distribution over functions. In any
Gaussian Process model, we have a prior mean function µ : Rd → R and a prior covariance
function k : Rd × Rd → R. These covariance functions (or kernels) quantify the similarity
among different data points. The covariance matrix K has entries Kij = k(xi,xj), where

k is the covariance function and xi and xj are two data points in Rd. We use the following

notation in the section: Let X ∈ Rn×d be the input data points and y ∈ Rn be the labels.
KXX refers to the covariance matrix. K̂XX = KXX + σ2nIn is the covariance matrix added
with zero-mean Gaussian noise of variance σ2n, In is the identity matrix of order n. KXx*
refers to the vector that is formed by calculating the covariance function between any test
point x* and all the train points. Once the model is trained to fit the data, we obtain
the predictive posterior distribution. For a test point x* and its corresponding predictive
distribution y∗, we have

E[y∗|X,y] = µ(x*) +KT
Xx*K̂

−1
XXy (1)

V ar[y∗|X,y] = k(x*,x*)−KT
Xx*K̂

−1
XXKXx* (2)

In GPs, there are usually several standard kernels that are used for a variety of problems.
The addition or multiplication of kernels still results in a valid kernel and hence they are
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combined in a variety of ways to create custom kernels that are typically used to encode
domain knowledge and capture complex dependencies between features. In this paper, we
use a few standard kernels and combine them to create a custom kernel described below. We
use a combination of three standard kernels in our work - the Matérn kernel, the radial basis
function (RBF) kernel and the periodic kernel. We use the matern kernel with ν = 3/2
(Matérn32). We choose this particular value of ν to account for less smoothness in the
approximation function. In the dataset that we used in this work, we have the following as
features: latitude, longitude, weather and meteorological factors humidity, pressure, wind
speed and direction. Our final kernel kGPR uses the following kernels.

klongitude,latitude = kMatern32 + kMatern32 (3)

kt = kMatern32 +

5∑
i=1

kMatern32 × kPeriodic (4)

kTemp,Hum = kMatern32 + kMatern32 (5)

kWindspeed = kRBF kWeather = kRBF kPressure = kRBF (6)

kGPR =
∏

f∈Features

kf (7)

where Features := {(Longitude, Latitude), Time, (Temperature, Humidity), Windspeed,
Weather, Pressure }. In our kernel, we use the same spatiotemporal kernel (klongitude, latitude

and kt) that was proposed by Guizilini and Ramos (2015). Our rationale for using their
kernel is as follows: The two Matérn32 kernels naturally can account for short term and
long term spatial trends that we wish to capture (Eqn. 3), and the temporal kernel can for
periodic decay while also capturing long term or short term trends in the temporal domain.
In Eqn. 5, we use the fact that temperature and humidity are related and appropriately
capture their variations together. The choice of two Matérn kernels allows the regressor
to learn nonsmooth relationships as well as differing trends. For modeling wind speed,
pressure, and weather, we used RBF kernels to model smoother variations in their values.
We refer to our GP with the proposed kernel as GPR in this paper.

5. Evaluation

Datasets: To evaluate our proposed approach we use the dataset released by Zheng et al.
(2015, 2014, 2013). The dataset contains hourly PM2.5 measurements for a total of 36 air
quality monitoring stations in Beijing from 1st May 2014 to 30th April 2015. In addition
to the PM2.5 data, the dataset also consists of weather and meteorological data. Meteo-
rological data includes humidity, wind speed, wind direction, pressure, and temperature.
We downsampled the data to a single measurement per day per station because of the
following reasons: (1) Missing data: In our dataset, we had around 13.3 % of PM2.5 data
missing and up to 30% and 40% data for wind speed and humidity respectively; and (2)
The fact that city authorities often look at 24-hour exposures before deciding to take actions.

Pool based active learning setup: For the purpose our experiments, we maintain three
sets of stations - the train set Strain, the test set Stest and the pool set SPool. Strain con-
tains the air quality stations that are currently monitored, Stest contains air quality stations
where we wish to estimate the air quality, and SPool contains the set of candidate air quality
monitoring stations (locations) to be installed every month. We query a station from the
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pool set to be added to the train set once every month. More formally, let sq be the queried
station. Then Strain = Strain ∪ {sq} and Spool = Spool \ {sq}. From the day of querying
onwards, the PM2.5 values are available for the pool stations as they are part of the train
set. In our setup, motivated by sparse air quality monitoring stations, we use 6 stations for
Strain, 24 stations for Spool and the remaining 6 stations for Stest. This results in a total
of 6 different test sets, each with 5 different training and pool sets. We evaluate our model
across all the 30 different station splits.

Models: Our key intuition is that a model that can estimate air quality well will be more
selective. Therefore to choose regressor(s) for active learning we initially experimented with
predicting PM2.5 values on our entire dataset using multiple regressors. We choose the top 3
regressors that performed the best in this task from among a total of 8 regressors including
our GPR. While we do not go into the details of this experiment due to space constraints,
we release the entire code base, analysis and results for this experiment as part of our
repository linked earlier. We found that XgBoost (Chen and Guestrin, 2016), k-Nearest
Neighbors (k-NN) and our GPR were the three best regressors in terms of estimating air
quality and hence, we proceeded to perform active learning with these regressors.3

Active Learning Strategies:
Query By Committee (Seung et al., 1992): In Query by Committee (QBC) we maintain a
committee consisting of multiple learners, all of which are trained on the same train dataset.
In our setting, we create a committee by using the same learners set to different hyperpa-
rameters. We look at the pool station (location) with which this committee disagrees the
most. We use the standard deviations in the predictions of these learners to quantify the
disagreement and choose the station in the pool set having maximum disagreement as the
station to be added to the train set. In all our experiments we use a committee size of 5.
Note that we use QBC only for k-NN and XgBoost.
Random Sampling : Random sampling is a sampling method in which we choose a station
uniformly at random from the pool set and add it to the train set. It is widely used in
Active Learning as a baseline (Settles, 2009). We use 5 different random seeds and report
the mean and standard deviation in our predictions of PM2.5.
Uncertainty Sampling (Settles, 2009): Gaussian Process Regressor provides us with the
posterior predictive mean and variance. This variance gives us the confidence that the
GPR has in its predictions. We, therefore, choose the pool station that the model is least
confident about and add it to train set from the pool set.

Evaluation Metrics: We denote the prediction of PM2.5 at station i at time t by ŷit. We
consider three evaluation metrics: Root Mean Squared Error of a station i, RMSEStation(i)
and Mean Root Mean Squared Error (MeanRMSE) for computing the mean errors in the
predictions of PM2.5 across stations.

RMSEStation(i) =

√∑T
i=0(ŷit − yit)2

T
(8) MeanRMSE =

∑|S|
i=0RMSEStation(i)

|S|
(9)

3. In this paper, we refer to XGBoost as XGB and k-Nearest Neighbors as k-NN.
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In Eqn. 8, T is the total number of timestamps for station i. ŷit and yit refer to the predicted
value and the ground truth value for the tth timestamp of the ith station. In Eqn. 9, i refers
to a station and |S| denotes the total number of stations.

6. Experimental Results

We report the MeanRMSE in prediction across all the different sets of data in Table 1.
From Table 1, we can see that our GPR has the least error across all the timestamps and
splits of the data when compared to the other baselines. From Table 2, we can see that
our method provides up to 40 % improvement in prediction over the best random method
baseline and also an average improvement of up to 14% across both the random baselines.

Table 1: Mean RMSE with all < Regressor, Active Learning Strategy > pairs
Regressor Active Learning Strategy Mean RMSE

GPR Uncertainty Sampling 20.67
GPR Random Sampling 24.38 ± 5.08
XGB QBC Sampling 22.67
XGB Random Sampling 24.13 ± 1.71
k-NN QBC Sampling 30.68
k-NN Random Sampling 30.54 ± 1.23

Table 2: Relative improvement in predictions compared to different random strategies
Max. % Mean %

GPR (US) XGB (QBC) GPR (US) XGB (QBC)
GPR (Rd) 33.57 33.79 14.27 4.96
XGB (Rd) 40.77 23.89 13.73 5.54

We report the best % improvement and the mean % improvement in predictions of our GPR and XGB
when compared with a random method. Note that our GPR provides the maximum improvement in
predictions on average, clearly outperforming the other regressor. Note: US - Uncertainty Sampling
and Rd - Random Sampling

7. Conclusions and Discussions

In this paper, we address the problem of air quality station deployment in an online setting.
To the best of our knowledge, this is the first work addressing this problem of online station
deployment. In our work, we propose a Gaussian Process Regressor that can encode domain
knowledge by supporting custom kernels to choose locations. We demonstrate empirically
that our proposed method outperforms several baselines.
In our setting, we install a single station at the end of every month. An extension to this
would be allowing for installation of many stations every month so that the predictive error
decreases the most. This is a non-trivial extension if we use predictive variance as our
query scheme, as selecting multiple stations with the highest uncertainty would not take
into account potentially underlying correlations between stations. We avoid this problem
by installing one station every month and by leveraging sufficient data from this station
to choose the next station. We also implicitly assume the cost of installing stations is the
same at any location. This assumption might not hold true. Installations of station at
different locations could entail different costs. This imposes additional constraints on top
of our current formulation and the key to solving this problem will be balancing the cost
of station installation and uncertainty reduction. Currently we use stationary kernels to
model air quality. An extension could be to explore non-stationary kernels that can model
air quality better.
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