
Learning Algorithms for Dynamic Pricing

Learning Algorithms for Dynamic Pricing: A Comparative
Study

Chaitanya Amballa1, Narendhar Gugulothu1, Manu K. Gupta2 and Sanjay P.
Bhat1

1TCS Research and Innovation, India
2Department of Management Studies, Indian Institute of Technology, Roorkee, India.

Abstract

We consider the problem of dynamic pricing, or time-based pricing in which businesses
set flexible prices for products or services based on current market demands. Various
learning algorithms have been explored in literature for dynamic pricing with the goal of
achieving the minimal regret. We present a comparative experimental study of the relative
performance of these learning algorithms as well as two practical improvements in the
context of dynamic pricing, and list the resulting insights. Performance is measured in
terms of expected cumulative regret, which is the expected regret of not suggesting the
best price in hindsight.

Keywords: Thompson sampling, Dynamic pricing, Exploration strategies, Regret.

1. Introduction

One of the most important problem any retailer has to solve is, how to price items correctly
without accurate prior knowledge of the true demand. One method to learn the demand
function is price experimentation, where the retailer modifies prices adaptively to learn
the hidden demand function and use that to estimate the revenue-maximizing price. Nev-
ertheless, proper price experimentation is a challenging problem as the potential revenue
loss during the learning horizon can be substantially large. In fact optimally balancing the
trade-off between randomly selecting prices to expedite the learning versus selecting prices
that maximize the expected earning has been the subject of recent research in dynamic
pricing literature (see Keskin and Zeevi (2014), den Boer and Zwart (2014)). While the
primary research trend in this field has been to study the performance of a given learning
algorithm, this paper focuses on the comparison of various learning frameworks.

Update
Belief

for
Environment

Price
Optimization

on
Updated

Belief

Environment

Optimization
Framework

Price Revenue

A data pair
of price and revenue

Updated
environment
estimates

Learning
Framework

Figure 1: Model flow for dynamic pricing

1

Amballa, Gugulothu, Gupta and Bhat

Figure 1 shows a general framework for the dynamic pricing problem where the environ-
ment generates revenue based on the unknown demand curve and some price as an input.
The learning framework updates its belief (that is, learns the demand curve) based on the
price and revenue pair (input data). The optimization framework suggests the best (opti-
mal) price based on its current belief (estimate) of the environment. In a dynamic pricing
setting, the objective is to learn the optimal price as quickly as possible.

2. Model description

Suppose a firm sells a product over a time horizon of T periods. In each period t = 1, 2, . . . T,
the seller must choose a price pt from a given feasible set [pmin, pmax] ∈ R, where 0 ≤ pmin <
pmax < ∞. The seller observes the demand dt according to the following linear demand
model dt = α− βpt + ξt for t = 1, 2, . . . , T, where α, β > 0 represent the parameters of the
unknown demand model, and ξt ∼ N (0, σ2) represents unobserved demand perturbations.
The seller’s single period revenue rt in period t equals rt = dtpt. This leads to a quadratic
dependence of rt on pt. More generally, one can consider demand models that lead to a
higher degree polynomial dependence of revenue on the price. Hence, we consider a general
polynomial for the revenue function rt = g(pt)+ξt, where g(pt) = µ̃0+µ̃1pt+µ̃2p

2
t+· · ·+µ̃npnt .

The firm’s goal is to learn the unknown parameters µ̃0, µ̃1, · · · , µ̃n from noisy observations
of price and revenue pairs {(pt, rt)}Tt=1 well enough to reduce the T -period expected regret,
defined as

R(T) =
T∑
t=1

[r∗ − E(rt)] ,

where r∗ = max
p∈[pmin,pmax]

g(p) is the optimal expected single-period revenue. For each positive

integer n, define fn : R→ Rn+1 by fn(p) = [1, p, p2, . . . , pn]T. On denoting xt = fn(pt), we
see that E(g(pt)|xt) = µ̃Txt with µ̃ = [µ̃0, µ̃1, · · · µ̃n]. Thus, the dynamic pricing problem
as posed above can be cast as stochastic linear optimization problem with bandit feedback.
In subsequent sections, we discuss several algorithms to learn the unknown parameters of
the polynomial g(·) for the above bandit optimization problem.

3. Different algorithms for dynamic pricing

In this section, we discuss various learning algorithms for dynamic pricing. First, we present
some simple baseline methods which have known theoretical guarantees in terms of regret
bounds (see Keskin and Zeevi (2014)).

3.1 Baseline algorithms

The two methods for dynamic pricing that we consider as baselines are: 1) Iterated least
square (ILS) and 2) Constrained iterated least square (CILS). ILS estimates the revenue
curve by applying least squares to the set of prior prices and realized demands, and then
selects the price for the next period greedily with respect to the estimated revenue curve.
ILS has been shown to be sub-optimal, while CILS has been shown to achieve asymptoti-
cally optimal regret (see Keskin and Zeevi (2014)). CILS achieves asymptotically optimal
regret by integrating forced price-dispersion with ILS. More precisely, CILS with threshold

2

Learning Algorithms for Dynamic Pricing

parameter k suggests at time t the price

pt =

{
p̄t−1 + sgn(δt)kt

−1/4 if |δt| < kt−1/4,

ILS price otherwise.

where δt = pt−1 − p̄t−1, with p̄t−1 as the average of the prices suggested over t− 1 periods.

3.2 Action Space Exploration

Action Space Exploration (ASE) (see Watkins (1989); Vemula et al. (2019)), in principle,
combines ILS with the ε-greedy exploration strategy, which is one of the simplest and most
widely used strategies for exploration. More precisely, at each decision instant, action space
exploration updates the estimates of the parameters of the revenue curve by using gradient
descent on the mean-square error (MSE) loss between the estimated and true revenue curve
computed on the price-revenue pairs observed till then. It then selects a random price with
probability ε, and selects the price that is greedy with respect to the updated estimate
of the revenue curve with complementary probability 1 − ε. For the experimental results,
we have used ε-greedy strategy with exponentially decreasing ε (see Vermorel and Mohri
(2005)). Due to space constraints, we refrain from giving a detailed algorithm here, and
instead refer the reader to the papers cited above.

3.3 Parameter Space Exploration

Parameter Space Exploration (PSE) has been studied in Fortunato et al. (2017); Plappert
et al. (2017); Miyamae et al. (2010); Wang et al. (2018); Rückstiess et al. (2010); Neelakantan
et al. (2015) and used in reinforcement learning, control and ranking tasks. Like Thompson
sampling, parameter space exploration also, in essence, maintains a posterior distribution
over the parameters of the revenue curve, and selects a price that is greedy with respect to a
parameter vector w sampled from the posterior. The sampling is achieved by perturbing the
current estimated parameter vector µ̂ with a zero-mean, uncorrelated Gaussian noise vector
σ̂◦ ε̂, where ε̂ is a vector of independent samples of a standard normal random variable. The
parameter estimate µ̂ and standard deviations σ̂ of the Gaussian noise variables are updated
as in Plappert et al. (2017) by using gradient descent on the mean-square error (MSE) loss
between the sampled and true revenue curves on the price-revenue pairs observed so far.
The detailed algorithm is presented as Algorithm 1 in Appendix A.

3.4 Thompson Sampling

We use Bayesian linear regression with Thompson sampling (TS) for learning the unknown
parameters. At time t, TS maintains a multivariate Gaussian posterior distribution with
mean µt and covariance At ∈ Rn×n over the unknown parameters. At time t+1, TS chooses
the price pt+1 greedily according to a parameter vector wt sampled from the prior at time
t. This results in a new observation rt+1 of the revenue. The new observation is used to
update the posterior distribution according to the following update equations (see Bagnell
(2005) for details).

A−1t+1 = A−1t + σ−2xt+1x
T
t+1, and A−1t+1µt+1 = A−1t µt + σ−2rt+1xt+1, (1)

3

Amballa, Gugulothu, Gupta and Bhat

where xt = fn(pt). Usually, σ is the standard deviation of the noise in the observed revenue.
However, we treat σ as a parameter in the update equations which we may leverage to
improve regret performance. The detailed TS algorithm is described in Algorithm 2.

Thompson sampling suffers from a drawback, namely, that it continues sampling even
after the true revenue curve is learnt sufficiently well, potentially leading to unnecessarily
large regret. We propose the following two methods for controlling the exploration, and
show later on that they lead to smaller regret compared to plain Thompson Sampling.

1. Controlled sampling with stopping criterion: We introduce a stopping criterion
to restrict the growth of regret due to prolonged sampling. The stopping criterion
compares the optimal price for the latest estimated parameters with the average of
optimal prices for estimated parameters from the previous five iterations. If these two
prices are close enough, the algorithm stops sampling and starts suggesting the greedy
price according to the latest parameter estimate.

2. Controlled sampling by varying σ: Another alternative for controlling unneces-
sary sampling is to change σ in the update equations (1). A smaller value for σ causes
the covariance matrix of the posterior distribution to converge to zero faster. This
helps in restricting unnecessary exploration, and potentially gives smaller regret.

4. Regret comparison with baseline methods

We implemented all the learning algorithms as described in Section 3 along with the baseline
methods (ILS and CILS) for dynamic pricing. We call these the standard form implemen-
tation, and the resulting regret plots are displayed on the left side in figures 2, 3 and 4 (the
abbreviation std is used for the standard form implementation in the legends).

We also consider the effect of modifying each algorithm either by restricting exploration
through the use of the stopping criterion or, in the case of TS, tuning σ, or by doing an initial
least squares fit on revenues observed at prices chosen from a barycentric spanner. Note
that barycentric spanners are used for efficient exploration (see Awerbuch and Kleinberg
(2004), Hazan and Karnin (2016)), and can be computed using the algorithm in Awerbuch
and Kleinberg (2004). The regret plots resulting from these modifications are displayed on
the right side in figures 2, 3 and 4. (The abbreviation “imp” in the legends indicates the
modified version of the algorithm. In case of TS, “stop” and “0.1” indicate the controlled
exploration via stopping criterion and tuning with σ = 0.1 respectively.) All plots for
expected cumulative regret are obtained by averaging over 10 runs.

Figure 2 shows the cumulative regret for the case where the true revenue curve is the
second degree polynomial arising from the linear demand function considered in Keskin
and Zeevi (2014): r = 1.1p− 0.5p2 + ξ, where ξ is a zero-mean Gaussian noise sample with
σ = 0.1. Apart from regret plots, we also include results for a few robustness checks as
described below.

1. Different polynomial degrees: We compared the algorithms for various degrees
of the true polynomial revenue function. In Figure 2, we plot the regret for the case
when the true revenue function is a fourth degree polynomial. Specifically, the price p
generates the revenue r = −p4 +22p3−165p2 +480p−150+ ξ, where ξ is a zero-mean
Gaussian noise sample with σ = 10.

4

Learning Algorithms for Dynamic Pricing

Figure 2: Expected cumulative regret with 2nd (top) and 4th (bottom) degree polynomial.

2. Different degree for the polynomial vs model: We also did a wide range of
experiments when the degree of the polynomial that needs to be learnt is different
from that of the assumed model. Figure 3 presents experimental regret plots for the
case where the second and fourth degree polynomials given above are learnt using
fourth and second degree models, respectively.

3. Non polynomial models: Figure 4 shows the regret comparison for the case where
the assumed model for the revenue curve is a polynomial, but the true revenue function
is the radial basis function: 100 · e−(p−5)2/20 with zero mean Gussian noise (σ = 3).

5. Concluding remarks

An initial least squares fit using barycentric points decreases the regret of ILS (see Figure 2,
3 and 4). Figure 2 also shows that when the degree of the polynomial to be learnt is smaller,
then all the methods perform equally well, but as the degree increases, the ASE and PSE
deviate from the other methods. Also, in the case when the degree of the true revenue curve
is lower than that of the model (see Figure 3), most of the methods are learning the true
optimal. However, TS-stop-imp seems to stop at a sub-optimal point resulting in higher
regret. On the other hand, in the case where the degree of the true revenue curve is higher
than the model degree, only TS-0.1-imp seems to learn the true optimal as seen from the

5

Amballa, Gugulothu, Gupta and Bhat

Figure 3: Expected cumulative regret when 2nd degree polynomial is learnt by a 4th degree
model (top) and vice versa (bottom).

Figure 4: Expected cumulative regret for radial basis function learnt using a 4th degree
polynomial.

flat regret. In contrast, the linearly increasing regret for the other methods indicates that
all other methods fail to learn the optimal value (see bottom part of Figure 3). We conclude
that, on average standard CILS seems to be performing well among standard methods, while
modified versions of TS and CILS perform better than modifications of the other methods.

6

Learning Algorithms for Dynamic Pricing

References

Baruch Awerbuch and Robert D Kleinberg. Adaptive routing with end-to-end feedback:
Distributed learning and geometric approaches. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 45–53, 2004.

Drew Bagnell. Bayesian linear regression description. http://www.cs.cmu.edu/

~16831-f14/notes/F14/16831_lecture20_jhua_dkambam.pdf, 2005. Accessed: 2020-
06-08.

Arnoud V den Boer and Bert Zwart. Simultaneously learning and optimizing using con-
trolled variance pricing. Management science, 60(3):770–783, 2014.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks
for exploration. arXiv preprint arXiv:1706.10295, 2017.

Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for
learning. The Journal of Machine Learning Research, 17(1):4062–4095, 2016.

N Bora Keskin and Assaf Zeevi. Dynamic pricing with an unknown demand model: Asymp-
totically optimal semi-myopic policies. Operations Research, 62(5):1142–1167, 2014.

Atsushi Miyamae, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Natural policy
gradient methods with parameter-based exploration for control tasks. In Advances in
neural information processing systems, pages 1660–1668, 2010.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach,
and James Martens. Adding gradient noise improves learning for very deep networks.
arXiv preprint arXiv:1511.06807, 2015.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen,
Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space
noise for exploration. arXiv preprint arXiv:1706.01905, 2017.

Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmid-
huber. Exploring parameter space in reinforcement learning. Paladyn, Journal of Behav-
ioral Robotics, 1(1):14–24, 2010.

Anirudh Vemula, Wen Sun, and J Andrew Bagnell. Contrasting exploration in pa-
rameter and action space: A zeroth-order optimization perspective. arXiv preprint
arXiv:1901.11503, 2019.

Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical eval-
uation. In European conference on machine learning, pages 437–448. Springer, 2005.

Huazheng Wang, Ramsey Langley, Sonwoo Kim, Eric McCord-Snook, and Hongning Wang.
Efficient exploration of gradient space for online learning to rank. In The 41st Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval,
pages 145–154, 2018.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

7

http://www.cs.cmu.edu/~16831-f14/notes/F14/16831_lecture20_jhua_dkambam.pdf
http://www.cs.cmu.edu/~16831-f14/notes/F14/16831_lecture20_jhua_dkambam.pdf

Amballa, Gugulothu, Gupta and Bhat

Appendix A. Pseudo-code for parameter space exploration

Algorithm 1: Parameter space exploration for dynamic pricing

Input: True weight vector µ̃ = [µ̃0, µ̃1, µ̃2, · · · , µ̃n], total iterations, noise σ2 and
learning rate α.
Initialization: Set D = {p := (1, p, p2, · · · , pn), p ∈ [pmin, pmax]}, initialize µ̂0 and σ̂0.
Step 1. Initial weight vector w0 = µ̂0 + σ̂0 ◦ ε̂, where ε̂ ∼ N (0, 1).
Step 2. Set g0(p) = wT0 p and find p∗0 = arg max

pmin≤p≤pmax

g0(p).

Step 3. Set p0 = [1, p∗0, (p
∗
0)

2, · · · , (p∗0)n] and t = 0.
while t ≤ total iterations do

Environment : rt ← Environment(p∗t); this implies µ̃T .p+ ξ, where ξ ∼ N (0, σ2).
Loss function: L(µ̂, σ̂) = 1

t

∑t
i=1(w

T
t pi − ri)2

Learning : µ̂t+1 = µ̂t − α · ∇Lµ̂ and σ̂t+1 = σ̂t − α · ∇Lσ̂.
Sampled weight vector : wt+1 = µ̂t+1 + σ̂t+1 ◦ ε̂, where ε̂ ∼ N (0, 1).
Optimization: Set gt+1(p) = wTt+1p and find p∗t+1 = arg max

pmin≤p≤pmax

gt+1(p).

Set t← t+ 1.
end while

Appendix B. Pseudo-code for Thompson sampling

Algorithm 2: Thompson sampling for dynamic pricing

Input: True weight vector µ̃ = [µ̃0, µ̃1, µ̃2, · · · , µ̃n], total iterations, noise σ2.
Initialization: Set D = {p := (1, p, p2, · · · , pn), p ∈ [0, 1]}.
Step 1. Find barycentric spanner b1, b2, · · · bn+1 for D.

Step 2. Set A−10 =
n+1∑
i=1

bib
T
i and sample w0 ∼ N (0, A0).

Step 3. Set g0(p) = wT0 p and find p∗0 = arg max
pmin≤p≤pmax

f0(p).

Step 4. Set p0 = [1, p∗0, (p
∗
0)

2, · · · , (p∗0)n] and t = 0.
while t ≤ total iterations do

Environment : rt ← Environment(p∗t); this implies µ̃T .p+ ξ with ξ ∼ N (0, σ2).

Learning : A−1t+1 = A−1t + ptptT

σ2 , A−1t+1µt+1 = A−1t µt + rtpt
σ2 .

Sampling : wt+1 ∼ N (µt+1, At+1) and set gt+1(p) = wTt+1p.
Optimization: Find p∗t+1 = arg max

pmin≤p≤pmax

gt+1(p).

Set t← t+ 1.
end while

8

	Introduction
	Model description
	Different algorithms for dynamic pricing
	Baseline algorithms
	Action Space Exploration
	Parameter Space Exploration
	Thompson Sampling

	Regret comparison with baseline methods
	Concluding remarks
	Pseudo-code for parameter space exploration
	Pseudo-code for Thompson sampling

