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Abstract

Distribution shift poses a challenge for active data collection in the real world. We address the
problem of active learning under label shift assumptions and propose ALLS, the first framework
for active learning under label shift. ALLS builds on label shift estimation techniques to correct
for label shift with a balance of importance weighting and class-balanced sampling. We analyze
the trade-off between these two techniques and prove error and sample complexity bounds for
a disagreement-based algorithm under ALLS. Experiments across a range of label shift settings
demonstrate ALLS consistently improves performance, often reducing sample complexity by more
than half an order of magnitude. We further highlight the interplay between the components of
ALLS with a series of ablation studies.
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1. Introduction

Distribution shift poses a significant challenge for active learning algorithms. We study how to
effectively perform active learning under label shift, an important but often overlooked form of
distribution shift. Label shift arises when class proportions differ between training and testing dis-
tributions but the feature distributions of each class are unchanged. The problem of active learning
under label shift is particularly important for adapting existing machine learning models to new do-
mains or addressing under-represented classes in imbalanced datasets (Lipton et al., 2018; Saerens
et al., 2002b). This problem is also relevant to the correction of societal bias in datasets, such as the
important concern of minority under-representation in computer vision datasets (Yang et al., 2020).

While previous works have offered a formal treatment of supervised learning under label shift
(Lipton et al., 2018; Azizzadenesheli et al., 2019), active learning under label shift remains an open
problem. To this end, we present a novel framework for Active Learning under Label Shift (ALLS).
Our framework, ALLS, corrects for label shift with the use of importance weighting and a gen-
eralization of class-balanced sampling. We derive generalization and label complexity bounds for
ALLS—the first theoretical results for this active learning setting—and demonstrate that algorithms
instantiated under our framework improve performance across a variety of label shift settings.
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2. Background

Learning under Label Shift The problem of distribution shift in supervised learning, domain
adaptation, is typically analyzed under covariate shift assumptions where observational distribu-
tions shift (Ptrg(x) 6= Psrc(x)) but output conditionals do not (Ptrg(y|x) = Psrc(y|x)) (Shimodaira,
2000; Gretton et al., 2009; Sugiyama et al., 2007). Label shift—historically underrepresented in
domain adaptation literature (Lipton et al., 2018)—assumes that label likelihoods shift (Ptrg(y) 6=
Psrc(y)) while conditional feature distributions do not (Ptrg(x|y) = Psrc(x|y)) (Schölkopf et al.,
2012). Importance weighting by class likelihood ratio Ptrg(y)

Psrc(y)
enables consistent label shift learn-

ing by producing asymptotically unbiased estimators by weighting datapoints. These importance
weights can be found with a blackbox hypothesis h, a finite sample estimate of confusion matrix Ch
on Psrc, and q̂ the label prediction proportions on Ptrg (Lipton et al., 2018; Garg et al., 2020). We
select RLLS (Azizzadenesheli et al., 2019) for label shift estimation, solving importance weights r
as argminr||C−1h r − q̂ − 1 + 1||+ λ||r − 1||, regularized by λ (Azizzadenesheli et al., 2019).

Active Learning under Distribution Shift While active learning under distribution shift (Rai
et al., 2010; Matasci et al., 2012; Deng et al., 2018; Su et al., 2020) have been approached without
specific covariate/label-shift assumptions, said results forgo formal treatment in favor of practical
heuristics. In contrast, active domain adaptation leverages covariate shift (Yan et al., 2018) for
guaranteed label complexity but assumes importance weights known a-priori. The only prior active
learning literature related to label shift cover useful heuristics for active learning for imbalanced
data (Aggarwal et al., 2020), a specific case of label shift, but without theoretical foundations or the
formal framework of label shift. We build on one such method, subsampling, which “filters” the dat-
apoints visible to an active learner according to their (estimated) labels so as to influence sampling
likelihoods. Canonical active learning under distribution shift settings assume a Warm-Start Shift
setting where label shift lies between a warm start dataset (Dwarm) and the target (Dtar) distribu-
tion, while active learning occurs directly in the target domain. We consider the more general—and
difficult— Training Shift setting, a important but often overlooked scenario (Huang and Chen, 2016)
where the unlabeled pool/stream (Dsrc) and target distributions may differ.

3. The ALLS Framework

Algorithm Description A key design choice for a framework addressing label shift is the tech-
nique through which to correct for label shift. ALLS jointly employs importance weighting and
subsampling, with a balance mediated through the choice of a medial distribution. We frame the
joint strategy of ALLS as first inducing a medial distribution by subsampling from the source dis-
tribution and then applying importance weights to close the label shift between the medial and
target distributions. Hence, the closer the medial distribution is to the target distribution, the less
importance weighting is used.

Our proposed framework, as depicted in Figure 1, iteratively accumulates an independent hold-
out dataset Ot for training a classifier φ on Dsrc and estimating label shift weights r. Then, in the
primary active learning loop, ALLS subsamples according to φ and then samples according to an ac-
tive learning policy, which, in the pool-based setting, depends on the uncertainty estimates weighted
according to the label shift weights r. We detail a general version of our framework in Algorithm
1, where n denotes the active learning budget, m the warmstart budget, λn the eventual size of the
holdout set, and π some sampling probability rule (online) or uncertainty quantifier (pool).

2



ICML 2020 WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

Weight
Estimation

Test Data

Subsampler

Unlabeled Data Learner

Active
Sampler

Sub-sampling Weight EstimationWeighted Learning
& Active Sampling

Medial
Distribution

Importance
Weights

Queried
Labels

Figure 1: Illustration of ALLS Framework depicting active learning process.

Algorithm 1 Active Learning under Label Shift (ALLS)

Input: warmstart set Dwarm , unlabeled pool/stream Dsrc, subsampling distribution Dss, target data Dtar,
blackbox predictor h0, regularizer for RLLS λ, initial holdout set O0, maximum timestep T , label oracle
C, active sampling criterion π
Initialize: r0 ← RLLS(O0, Dtar, h0), S0 ← {(xi, yi, r0(yi))} for (xi, yi) ∈ Dwarm
For xt, yt ∈ Dwarm \O0 append S0 ← {(xt, yt, r0(yt))}
For t < T

Label λn datapoints into holdout set: Ot ← Ot−1
⋃
{xi, yi, Dss(yi)}λni=1;

Populate O′t with (xi, yi, pi) ∈ Ot sampled w.p. pi
maxj∈[1,|Ot|] pj

;
Train φ on Ot and r ← RLLS(O′t, h0).
{xt, Pt} ← ActiveSample(π, φ, xt, rt, Dsrc, Dss); # Sample data using π, φ and weighted predictor
yt ← C(xt) # Obtain label from oracle
Update St ← St−1

⋃
{xt, yt, Pt}. # Update labeled set

Output: hT = argmin{err(h, ST , rT ) : h ∈ H}

In a online setting, the ActiveSample subroutine labels datapoint xt with probabilityPtDss(φ(xt))
where Pt is the sampling probability given by π(xt). The analogous ActiveSample subroutine for
mini-batch pool-based settings labels the top k data points in each class ranked in terms of the active
sampling criterion π, where k is BDmed(ht−1(Dsrc \ St−1)) and B is the batch size.

The medial distribution To inform a choice of medial distribution, we dichotomize label shift
problems into two regimes: source shift and target shift. Source shift is characterized by an under-
representation of certain classes in available data and is associated with label imbalance in the
source distribution. Target shift is characterized by a change in priors and is associated with label
imbalance in the target distribution. To intuit the effectiveness of subsampling under source versus
target shift, we first observe that source shift typically results in a significantly larger label shift
magnitude (evaluated by ||r − 1||) than seen in target shift. For instance, for n datapoints with
binary labels, the number of subsampled points necessary to correct extreme source shift (only 1
datapoint in the minority class) is O(n) while the number of sbusampled points necessary to correct
extreme target shift is O(n2). This difference in subsampling efficiency for two problems with an
identical label shift magnitude suggests subsampling to a uniform label distribution before applying
importance weighting. This exactly coincides with the choice of a uniform medial distribution.
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4. Theoretical Analysis

We now analyze the instantiation of ALLS on IWAL-CAL, a disagreement-based active learning
algorithm (Beygelzimer et al., 2010). To adapt the algorithm to our new setting, we substitute
IWAL-CAL’s original choice of a constant C0 for our C0 as given in Theorem 1. We omit a review
of IWAL-CAL for brevity. In this section, we assume no warm start and instead defer the setting,
along with complete proofs for the Theorems 1, 2 to the Appendix.

We now establish notation for the section. Let r denote the importance weights from the source
to the target distribution (r[i] = Dtar(yi)

Dsrc(yi)
) and θ := r − 1. Similarly define θs→m and θm→t as

θ’s counterparts from source to medial and from medial to target distributions respectively. Also let
σmin denote the smallest singular value of blackbox hypothesis h0. Finally, we define hn as the ERM
hypothesis after n unlabeled datapoints, err the target error, and Pmin,n(h) := minh(xi)6=h∗(xi) Pi
the minimum sampling probability in the disagreement region of hypotheses h and h′.

Theorem 1 With at least probability 1− δ, for all n ≥ 1,

err(hn) ≤ err(h∗) +

√
2C0 log n

n− 1
+

2C0 log n

n− 1
+O ((‖θm→t‖2 + 1)errW (h∗online)) (1)

where

C0 ∈ O
(

log

(
|H|
δ

)(
d∞(Dtar||Dsrc) + d2(Dtar||Dsrc) + 1 + ‖θu→t‖22

)
+

log
(
k
δ

)
σ2min

d∞(Dtar||Dmed) ‖θm→t‖22 (errW (h∗online) + 1)

) (2)

Our generalization bound differs from the original IWAL-CAL bound in two key aspects. (1)
Subsampling introduces a new constant term which scales with the noise rate of the subsampling
estimation task: errW (h∗online). (2) Most terms scale by label shift; the largest such label shift terms
arise from the variance of importance weighting. Aside from the constant noise rate term, however,
ALLS preserves the log(n)/n +

√
log(n)/n asymptotic bound of IWAL-CAL. In addition, when

only importance weighting is used (Dmed = Dsrc), the subsampling learning problem is trivial.
Accordingly, the subsampling noise rate is zero: errW (h∗online) = 0. In this case, ALLS preserves
the consistency guarantee of IWAL-CAL even under training shift.

Theorem 2 With probability at least 1− δ, the number of labels queried is at most:

1+(λ+ Θ · (2err(h∗) + ‖θm→t‖2 errW (h∗))) ·(n−1)+O
(

Θ
√
C0n log n+ ΘC0 log3 n

)
, (3)

where Θ denotes the disagreement coefficient (Balcan et al., 2009).

Besides the changes to C0 noted in our discussion of the generalization bound, we note two
differences with the sample complexity given in traditional IWAL-CAL. First, we introduce two
additional linear terms into the sample complexity: one corresponding to the bias of subsampling
and one corresponding to the accumulation of holdout set Ht (proportional to λ). These accompany
a linear term proportional to the noise rate of the original learning problem, which is also present in
the original IWAL-CAL bounds and unavoidable in agnostic active learning.
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(a) (b) (c) (d)

Figure 2: Average performance and 95% confidence intervals on 10 runs of experiments. (a) Ac-
curacy on NABirds using MC-D; (b) Accuracy on CIFAR10 using MC-D; (c) Accuracy
on CIFAR100 using Margin; (d) Accuracy on CIFAR100 using MaxEnt and MC-D as
uncertainty estimates.

5. Experiments

We evaluate ALLS on real-world species recognition dataset NABirds (Van Horn et al., 2015) and
benchmark datasets CIFAR10 & CIFAR100 (Krizhevsky, 2009). In these experiments, we instan-
tiate ALLS on the uncertainty sampling algorithms: (1) Monte Carlo dropout (MC-D) (Gal and
Ghahramani, 2016); (2) Maximum Entropy sampling (MaxEnt); and (3) Maximum Margin (Mar-
gin). In Figure 2, we present results on NABirds, CIFAR10, and CIFAR100. In the NABirds
experiment, we apply ALLS to a naturally occuring class imbalance in the NABirds label hierar-
chy, where a single class constitutes a near-majority (Elhoseiny et al., 2017), and evaluate on a
uniform label distribution. On each of the CIFAR10 and CIFAR100 datasets, we induce synthetic
warm-start label shift by applying Lipton et al. (2018)’s Dirichlet Shift procedure to source and
target data independently. In Figure 3, we similarly induce a diverse set of synthetic training label
shift scenarios—a source shift setting, a target shift setting, and a mixed (general) shift setting—on
CIFAR100 to highlight empirical evidence for the tradeoff between the importance weighting and
sub-sampling. Further results and experiment details can be found in the appendix.

ALLS Practices Recommendations To scale label shift estimation to deep neural networks on
high-dimensional datasets, we introduce the following techniques. Rather than applying importance
weights to the loss function, we apply importance weights to the prediction distribution of the model
and predict p(y) = p(y) r(y)∑

i r(yi)
. This reduces variance while preserving the use of the label shift

information to correct uncertainty estimation, and bears some relation to posterior regularization
(Saerens et al., 2002a). We also use the latest active learned hypothesis for label shift estimation
instead of the static blackbox hypothesis demanded by theory; this heuristic steers our finite sample
confusion matrices away from singularity (Lipton et al., 2018). We also forgo the use of a holdout
set for RLLS, as suggested by Azizzadenesheli et al. (2019) and use actively sampled data for
estimating the subsampling hypothesis φ and label shift weights r.

Performance Analysis Figure 2 exhibits our primary results and demonstrate that ALLS in-
stantiations consistently introduce sample efficiency gains, outperforming random sampling even
when vanilla counterparts dramatically underperform random sampling. Figures 2 and 3 demon-

5



WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

(a) (b) (c)

Figure 3: Average performance and 95% confidence intervals on 10 runs of ablation studies. (a)
Top-5 accuracy of the first ablation (source shift) experiment; (b) Macro F1 of the sec-
ond ablation (target shift) experiment; (c) Macro F1 of the third ablation (general shift)
experiment.

strate that ALLS gains can be realized both under “warmstart” and under “target” shift. In CI-
FAR10 and CIFAR100, instantiations of our framework required less than half the number of la-
bels for achieving equivalent performance with their vanilla counterparts. Figure 3 corroborates a
target-shift/source-shift trade-off in the respective strengths of importance weighting and subsam-
pling. Under source shift, subsampling is the dominant strategy while under target shift, importance
weighting is the dominant strategy. Although the strengths of the importance weighting and subsam-
pling appear complementary, Figure 3 (c) demonstrates that, when properly balanced under ALLS,
combined, the methods can realize additional gains. Overall, ALLS consistently demonstrates per-
formance gains across active learning algorithms (Figure 2(c)), natural and synthetic label shift
settings (Figures 2 (a),2(b)(c)), and warmstart and training shift types (Figures 2, 3(a) (b)).

6. Conclusion

In this paper, we propose ALLS, a novel framework for active learning under label shift. Our
framework utilizes both importance weighting and subsampling to correct for label shift when ac-
tive learning. We derive a rigorously guaranteed online active learning algorithm and prove its label
complexity and the generalization bound. Our analysis shed light on the trade-off between impor-
tance weighting and subsampling under label shift. We show the effectiveness of our method on
both real-world inherent-shift data and large-scale benchmark synthetic-shift data.
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Appendix A. Theorem 1 and Theorem 2 Proofs

A.1 Deviation Bound

The most involved step in deriving generalization and sample complexity bounds for ALLS is first
bounding the deviation of empirical risk estimates. This is done through the following theorem.

Theorem 3 Let Zi := (Xi, Yi, Qi) be our source data set, where Qi is the indicator function on
whether (Xi, Yi) is sampled as labeled data. The following holds for all n ≥ 1 and all h ∈ H with
probability 1− δ:

|err(h, Z1:n)− err(h∗, Z1:n)− err(h) + err(h∗)|

≤ O

(
d∞(Dtar, Dsrc)

log(n|H|/δ)
n

+

√
d2(Dtar, Dsrc)

log(n|H|/δ)
n

+

√
log(n|H|/δ)
nPmin,n(h)

+
log(n|H|/δ)
nPmin,n(h)

+

(
1 + err(h∗online) +

log(λn/δ)

λn
+

√
err(h∗online) log(λn/δ)

λn
+ ||θsrc→med||

√
log(n|H|/δ)
nPmin,n(h)

)

·

(
||θ̃||2 + 1

σmin

)√
d∞(Dtar, Dmed) log(nk/δ)

λn−
√
nd∞(Dtar, Dmed) log(n/δ)λ

+||θ̃||2

(
err(h∗online) +

log(λn/δ)

λn
+

√
err(h∗online) log(λn/δ)

λn

)
+ ||θ||2

√
log(n|H|/δ)
nPmin,n(h)

)
(4)

The corresponding bound for the case where only importance weighting is used can be recovered
by setting Dmedial := Dsrc. Our deviation bound approaches 0 as n → ∞ at the same log(n)/n +√

log(n)/n asymptotic rate as IWAL-CAL. This deviation bound will plug in to IWAL-CAL for
generalization and sample complexity bounds.

Through sections 7.1-7.6, we detail a proof of theorem 3. Let f : X×Y → [−1, 1] be a bounded
function; f will eventually represent err(h)−err(h∗). We adopt Beygelzimer et al. (2010)’s notation
where W denotes QiQ̃ir̃if(xi, yi) and Qi is an indicator random variable indicating whether the

ith datapoint is labeled. We also introduce W̃ := Qi
ˆ̃Qir̃if(xi, yi) and ˆ̃W := Qi

ˆ̃Qi ˆ̃rif(xi, yi),
and analogous accented variants of Q. Our notation convention for the accented letters is denoting
the estimated (from data) version with hat and denoting the medial distribution version with tilde.
For example, Q̃i denotes whether the ith data sample in the medial data set is labeled or not. We
adopt Azizzadenesheli et al. (2019)’s label shift notation and define k as the size of the output space
(finite) and denote estimated importance weights with hats ·̂. We further introduce r̃ := rmed→tar.
These same semantics apply to accents on θ := r − 1. We follow (Cortes et al., 2010) and use
dα(P ||P ′) to denote 2Dα(P ||P

′) where Dα(P ||P ′) := log(Pi
P ′i

) is the Renyi divergence of P and P ′.
We assume that for all y ∈ Y , Dwarm(y) 6= 0, Dsrc(y) 6= 0. To prove theorem 3, we thus seek to
bound with high probability

∆ :=
1

n

(
n∑
i=1

ˆ̃Wi

)
− E[rf(X,Y )] (5)
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We will individually bound the following terms,

∆1 := E[rf(X,Y )]− 1

n

n∑
i=1

Ei[Wi]

∆2 :=
1

n

n∑
i=1

Ei[Wi]− Ei[Ŵi]

∆3 :=
1

n

n∑
i=1

Ei[Ŵi]− Ei[ ˆ̃Wi]

∆4 :=
1

n

n∑
i=1

Ei[ ˆ̃Wi]− ˆ̃Wi

(6)

where ∆1 corresponds to the variance associated with inherent stochasticity in datapoints. ∆2

corresponds to label inference error during subsampling. ∆3 corresponds to label shift estimation
errors. ∆4 corresponds to the stochasticity of the IWAL-CAL sampling policy. Using repeated
applications of triangle inequalities, a bound on ∆ is given by:

|∆| ≤ |∆1|+ |∆2|+ |∆3|+ |∆4| (7)

A.2 Bounding Active Learning Stochasticity

We bound ∆4 using a Martingale technique from (Zhang, 2005) also adopted by (Beygelzimer et al.,
2010). We take Lemmas 1, 2 in (Zhang, 2005) as given and proceed in a fashion similar to the proof
of Beygelzimer et al. (2010)’s Theorem 1.

The following lemma is a slightly modified analogue of Lemma 6 in (Beygelzimer et al., 2010).

Lemma 4 If 0 < λ < 3Piˆ̃ri
, then

logEi[exp(λ( ˆ̃Wi − Ei[ ˆ̃Wi]))] ≤
r̂i ˆ̃riλ

2

2Pi(1−
ˆ̃rλ
3Pi

)
(8)

If Ei[ ˆ̃Wi] = 0 then

logEi[exp(λ( ˆ̃Wi − Ei[ ˆ̃Wi]))] = 0 (9)

Proof First, we bound the range and variance of ˆ̃Wi. The range is trivial

| ˆ̃Wi| ≤

∣∣∣∣∣Qi ˆ̃Qi ˆ̃ri
Pi

∣∣∣∣∣ ≤ ˆ̃ri
Pi

(10)

To bound variance, note that r̂i = ˆ̃riEi[ ˆ̃Qi] by definition. In other words, when combined, subsam-
pling and importance weighting should fully correct for any (perception of) underlying label shift.
Therefore

Ei[( ˆ̃Wi − Ei[ ˆ̃Wi])
2] ≤ r̂i ˆ̃ri

Pi
f(xi, yi)

2 − 2r̂2i f(xi, yi)
2 + r̂2i f(xi, yi)

2 ≤ r̂i ˆ̃ri
Pi

(11)

10
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Following (Beygelzimer et al., 2010), we choose a function g(x) := (exp(x) − x − 1)/x2 for
x 6= 0 so that exp(x) = 1 + x+ x2g(x) holds. Note that g(x) is non-decreasing. Thus,

Ei[exp(λ( ˆ̃Wi − Ei[ ˆ̃Wi]))] = Ei[1 + λ( ˆ̃Wi − Ei[ ˆ̃Wi]) + λ2( ˆ̃Wi − Ei[ ˆ̃Wi])
2g(λ( ˆ̃Wi − Ei[ ˆ̃Wi]))]

= 1 + λ2Ei[( ˆ̃Wi − Ei[ ˆ̃Wi])
2g(λ( ˆ̃Wi − Ei[ ˆ̃Wi]))]

≤ 1 + λ2Ei[( ˆ̃Wi − Ei[ ˆ̃Wi])
2g(λˆ̃ri/Pi)]

= 1 + λ2Ei[( ˆ̃Wi − Ei[ ˆ̃Wi])
2]g(λˆ̃ri/Pi)

≤ 1 +
λ2r̂i ˆ̃ri
Pi

g(
ˆ̃riλ

Pi
)

(12)

where the first inequality follows from our range bound and the second follows from our variance
bound. The first claim then follows from the definition of g(x) and the facts that exp(x)− x− 1 ≤
x2/(2(1 − x/3)) for 0 ≤ x < 3 and log(1 + x) ≤ x. The second claim follows from definition of
ˆ̃Wi and the fact that Ei[ ˆ̃Wi] = r̂f(Xi, Yi).

The following lemma is an analogue of Lemma 7 in (Beygelzimer et al., 2010).

Lemma 5 Pick any t ≥ 0, pmin > 0 and let E be the joint event

1

n

n∑
i=1

ˆ̃Wi −
n∑
i=1

Ei[ ˆ̃Wi] ≥ (1 +M)

√
t

2npmin
+

t

3npmin

and min{Pi
ˆ̃ri

: 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin

(13)

Then Pr(E) ≤ e−t where M := 1
n

∑n
i=1 r̂i.

Proof We follow (Beygelzimer et al., 2010) and let

λ := 3pmin

√
2t

9npmin

1 +
√

2t
9npmin

(14)

Note that 0 < λ < 3pmin. By lemma 4, we know that if min{Piˆ̃ri : 1 ≤ i ≤ n∧Ei[ ˆ̃Wi] 6= 0} ≥ pmin

then
1

nλ

n∑
i=1

logEi[exp(λ(Wi − Ei[Wi]))] ≤
1

n

n∑
i=1

r̂i ˆ̃riλ

2Pi(1−
ˆ̃riλ
3Pi

)
≤M

√
t

2npmin
(15)

and
t

nλ
=

√
t

2npmin
+

t

3npmin
(16)

Let E′ be the event that

1

n

n∑
i=1

( ˆ̃Wi − Ei[ ˆ̃Wi])−
1

nλ

n∑
i=1

logEi[exp(λ( ˆ̃W − Ei[ ˆ̃W ]))] ≥ t

nλ
(17)

11
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and let E′′ be the event min{Piˆ̃ri : 1 ≤ i ≤ n ∧ Ei[ ˆ̃Wi] 6= 0} ≥ pmin. Together, the above two
equations imply E ⊆ E′

⋂
E′′. By Zhang (2005)’s lemmas 1 and 2, Pr(E) ≤ Pr(E′

⋂
E′′) ≤

Pr(E′) ≤ e−t.

The following is an immediate consequence of the previous lemma.

Lemma 6 Pick any t ≥ 0 and n ≥ 1. Assume 1 ≤ ˆ̃ri
Pi
≤ rmax for all 1 ≤ i ≤ n, and let

Rn := max{ ˆ̃ri
Pi

: 1 ≤ i ≤ n ∧ Ei[ ˆ̃W ] 6= 0}
⋃
{1}. We have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

ˆ̃Wi −
1

n

n∑
i=1

Ei[ ˆ̃Wi]

∣∣∣∣∣ ≥ (1 +M)

√
Rnt

2n
+
Rnt

3n

)
≤ 2(2 + log2 rmax)e−t/2 (18)

Proof This proof follows identically to (Beygelzimer et al., 2010)’s lemma 8.

We can finally bound ∆4 by bounding the remaining free quantity M .

Lemma 7 With probability at least 1− δ, the following holds over all n ≥ 1 and h ∈ H:

|∆4| ≤ (2 + ||θ̂||2)
√

εn
Pmin,n(h)

+
εn

Pmin,n(h)
(19)

where εn := 16 log(2(2+n log2 n)n(n+1)|H|/δ)
n and Pmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6=

h∗(Xi)}
⋃
{1}.

Proof We define the k-sized vector ˜̀(j) = 1
n

∑n
i=1 1yi=j θ̂(j). Here, v(j) is an abuse of notation

and denotes the jth element of a vector v. Note that we can write M by instead summing over
labels, M = 1

n

∑n
i=1 θ̂i =

∑k
j=1

˜̀(j). Applying the Cauchy-Schwarz inequality, we have that
1
n

∑n
i=1 θ̂i ≤

1
n ||θ̂||2|| ˙̀||2 where ˙̀(j) is another k-sized vector where ˙̀(j) :=

∑n
i=1 1yi=j . Since

|| ˙̀||2 ≤ n, we have that M ≤ 1 + ||θ̂||2. The rest of the claim follows by lemma 6 and a union
bound over hypotheses and datapoints.

A.3 Bounding Subsampling Error

We now bound ∆3, the error associated with the inference in subsampling. It holds that

|∆3| =

∣∣∣∣∣ 1n
n∑
i=1

(Ei[Q̃i]− Ei[ ˆ̃Qi])ˆ̃rif(xi, yi)

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

k∑
j=1

ˆ̃ri ˜̀(j)

∣∣∣∣∣∣ (20)

where we define ˜̀ ∈ Rk such that ˜̀(j) =
∑n

i=1 1y(i)=j(Ei[Q̃i] − Ei[ ˆ̃Qi])f(xi, yi). Recall this
inequality follows similarly to the proof in the previous lemma and simply concerns a change in
perspective: summing over labels rather than datapoints. We can then apply Cauchy Schwarz in-
equality,

|∆3| ≤
1

n
||˜̀||2||ˆ̃r||2 (21)

12
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Intuitively, the quantity ||˜̀||2 represents an intuitive measure of the error of the model used for
subsampling. For instance, a classifier with zero error drives ˜̀ to 0. Similarly, a trivial subsampling
strategy where all labels are assigned the same subsampling probability drives ˜̀ to 0. Note that
||˜̀||2 is simply the regret of an online agnostic learner in a standard supervised setting over an
L1 (absolute) error loss. We can thus plug in the standard bound of O(err(h∗online) + log(n/δ)

n +√
err(h∗online) log(n/δ)

n ) to hold with probability at least 1 − δ. Here, err denotes the absolute error
and err(h∗online) denotes the best achievable loss of a subsampling weight estimator on the source
distribution.

Lemma 8 With probability at least 1− δ,

|∆3| ≤ ||ˆ̃r||2O

(
err(h∗online) +

log(λn/δ)

λn
+

√
err(h∗online) log(λn/δ)

λn

)
(22)

Proof Follows immediately by noting that ||˜̀||1 ≥ ||˜̀||2 and recalling that the subsampling model
is only trained on the holdout buffer.

A key observation is that err(h∗online) is often 0, even in an agnostic learning setting. This is
because labels may share the same subsampling probability. In practice, this is often a consequence
of label shift estimation via RLLS, where L2 regularization drives uncertain labels to similar label
shift weights. Consistency is achievable when err(h∗online) = 0, which is the setting we assume in
the main paper.

A.4 Bounding Label Shift Error

We now bound ∆2: the label shift error. If the medial distribution is known, label shift estimation
is straight-forward—simply estimate the label shift from the source to the target. We can then
compensate for the label shift correction already performed through subsampling by adjusting the
importance weight according to the medial distribution. However, as we do not assume knowledge
of the source label distribution, the user’s knowledge of the subsampling distribution does not afford
knowledge of the medial distribution.

Hence, we require the use of a special buffer as prescribed in Algorithm 1 to enable correct usage
of RLLS (Azizzadenesheli et al., 2019) label shift estimation. Specifically, we sample already-
labeled source datapoints from a holdout set independent of the data used for the rest of the learning
procedure, with the notable exception of the subsampling model. The following lemma bounds the
number of samples we can draw from the buffer, and hence the effective size of our RLLS holdout
set.

Lemma 9 With probability at least 1− δ, the number of source samples is bounded below by

np ≥
λn

d∞(Dmed||Dsrc)
−

√
−2

λn

d∞(Dmed||Dsrc)
log(δ) (23)

Proof We seek to bound the number of datapoints we sample as a holdout set, which is a random
variable in itself. We directly apply Chernoff’s inequality. To use Chernoff’s, we first seek a lower

13
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bound on the expectation of np, which we denote by µ. By linearity of expectation,

µ := E[np] = E[

∑λn
i=1Dss(yi)

maxiDss(yi)
] ≥

∑λn
i=1 E[Dss(yi)]

d∞(Dmed||Dsrc)
=

λn

d∞(Dmed||Dsrc)
(24)

Hence, with probability at most exp(−µδ2/2), we have that

np ≤ (1− δ)µ (25)

and with probability at most δ that

np ≤ µ(1−
√
−2 log(δ)/µ)

=
λn

d∞(Dmed||Dsrc)
−

√
−2

λn

d∞(Dmed||Dsrc)
log(δ)

=
1

d∞(Dmed||Dsrc)

(
λn−

√
−2λnd∞(Dmed||Dsrc) log(δ)

) (26)

With a lower bound on the size of the RLLS holdout set, we can now bound label shift estimation
error directly.

Lemma 10 With probability 1− 2δ, for all n ≥ 1:

|∆2| ≤
2

σmin
O

||θ̃||2
√√√√ d∞(Dmed||Dsrc) log

(
nk
δ

)
λn−

√
2λnd∞(Dmed||Dsrc) log

(
n
δ

) +

√√√√ d∞(Dmed||Dsrc) log
(
n
δ

)
λn−

√
2λnd∞(Dmed||Dsrc) log

(
n
δ

)


(27)

Proof We seek a bound on the label shift estimation error for importance weights which correct
from the medial distribution to the target distribution. We apply Bernstein’s inequality as demon-
strated by RLLS Appendix B.6. The following holds as the simple re-indexing of a summation

|∆2| =

∣∣∣∣∣ 1n
n∑
i=1

(r̃i − ˆ̃ri)f(xi, yi)

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

k∑
j=1

(r̃(j)− ˆ̃r(j))˜̀(j)

∣∣∣∣∣∣ (28)

where we define ˜̀∈ Rk as ˜̀(j) =
∑n

i=1 1y(i)=jf(xi, yi). We can then apply the Cauchy Schwarz
inequality: ∣∣∣∣∣∣ 1n

k∑
j=1

(r̃(j)− ˆ̃r(j))˜̀(j)

∣∣∣∣∣∣ ≤ 1

n
||(r̃(j)− ˆ̃r(j))||2||˜̀||2 (29)

Since f(x, y) ∈ [−1, 1], we can bound ||˜̀||2 by 2n. Then, |∆2| ≤ 2||θ̃− ˆ̃
θ||2. Azizzadenesheli et al.

(2019)’s (RLLS) lemma 1 then gives the following bound on ||θ̃− ˆ̃
θ||2 which holds with probability

1− δ:

||θ̃ − ˆ̃
θ||2 ≤ O

(
1

σmin
(||θ||2

√
log(k/δ)

np
+

√
log(1/δ)

np
)

)
(30)

14
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where np denote the number of datapoints used in the holdout dataset for RLLS. In our above
application of lemma 1, we drop terms associated with RLLS regularization (i.e. we choose not to
regularize) and assume free access to unlabeled target samples.

Similarly, with probability at least 1− δ:

|∆2| ≤ O

(
2

σmin

(
||r̃ − 1||2

√
log(k/δ)

np
+

√
log(1/δ)

np

))
(31)

The bound then follows immediately by lemma 9 and a union bound over H and n. For sufficiently
large label shift magnitude, the first term dominates and so we discard the second term in subse-
quent Big-O expressions, such as Theorem 1.

A.5 Remaining Terms

We now bound the remaining term, ∆1. This is a simple generalization bound of an importance
weighted estimate of f .

Lemma 11 For any δ > 0, with probability at least 1− δ, then for all n ≥ 1, h ∈ H:

|∆1| ≤
2d∞(Dtar, Dsrc) log(2n|H|δ )

3(n+m)
+

√
2d2(Dtar, Dsrc) log(2n|H|δ )

n+m
(32)

Proof This inequality is a direct application of Theorem 2 from (Cortes et al., 2010).

We now combine our bounded terms to bound ∆. Recall that our bounds on ∆3,∆4 still rely
on the norm of the estimated label shift weights θ̂ or ˆ̃

θ. We remove these terms using our known
bounds on ∆2 through a simple triangle inequality. Specifically, ||θ̂|| ≤ ||θ|| + ||θ̂ − θ|| where we
have already bounded the latter term in the proof of lemma 10. Theorem 3 follows by applying a
triangle inequality over ∆1,∆2,∆3,∆4.

To highlight trade-offs in distributions and for simplicity of reading, we assume the distribution
shift is sufficiently large to dominate constant terms.

Appendix B. Correctness and Sample Complexity Corollaries

As in (Beygelzimer et al., 2010), we define a C0 such that εn is bounded as εn ≤ C0 log(n + 1)/n
where εn is defined as follows. With probability at least 1− δ, for all n ≥ 1 and all h ∈ H:

|err(h, Z1:n)− err(h∗, Z1:n)− err(h) + err(h∗)| ≤ (
∥∥∥θ̃∥∥∥

2
+1)errW (h∗online)+

√
εn

Pmin,n(h)
+

εn
Pmin,n(h)

(33)
We simply base C0 off the deviation bound from Theorem 3. For readibility, we aggressively drop
terms from the asymptotic in Equation 4 to bound:

C0 ∈ O
(

log

(
|H|
δ

)(
d∞(Dtar||Dsrc) + d2(Dtar||Dsrc) + 1 + ‖θ‖22

)
+

log
(
k
δ

)
σ2min

d∞(Dtar||Dmed)
∥∥∥θ̃∥∥∥2

2
(errW (h∗online) + 1)

) (34)
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In the literal algorithm specification, many terms in C0 may be unknown—in practice, we simply
guess a convenient value for C0 that provides the desired amount of “mellowness” in sampling.

We now proceed almost identically to (Beygelzimer et al., 2010), noting that our εn is asymp-
totically equivalent to the εn in the original IWAL-CAL derivations of (Beygelzimer et al., 2010),
differing only in the choice of constant C0 and the presence of an additional bias term, err(h∗online),
in Equation 33. Hence, our proof of Theorem 1 follows immediately from Lemma 2 and Theorem 2
in (Beygelzimer et al., 2010). Substituting our Theorem 1 into Theorem 3 from (Beygelzimer et al.,
2010) similarly immediately yields 2 minus the λn labels necessary for accumulating a holdout set
for RLLS and subsampling.

Appendix C. Deviation Bound with a Warmstart Set

We now extend our deviation bound to a generalized setting where a warm start dataset is available
to the learner. We substitute Dsrc = nDsrc+mDwarm

n+m and Dlab = nDmed+mDwarm
n+m . We redefine θ̃ as

θlab→tar. Our bound on ∆4 from lemma 7 holds as is (there is no active learning associated with the
warm start datapoints). Our bound on ∆3 simply scales by a factor of n

n+m . The following lemmas
are trivial extensions of their no-warm-start counterparts.

Lemma 12 With probability 1− 2δ, for all n ≥ 1, h ∈ H:

|∆2| ≤ O
(

2

σmin

∥∥∥θ̃∥∥∥
2

√√√√ d∞(Dmed||Dsrc) log
(
nk
δ

)
λ(n+m)−

√
2λ(n+m)d∞(Dmed||Dsrc) log

(
n
δ

)
+

√√√√ d∞(Dmed||Dsrc) log
(
n
δ

)
λ(n+m)−

√
2λ(n+m)d∞(Dmed||Dsrc) log

(
n
δ

)



(35)

Lemma 13 For any δ > 0, with probability at least 1− δ, then for all n ≥ 1, h ∈ H:

|∆1| ≤
2d∞(Dtar, Dsrc) log(2n|H|δ )

3(n+m)
+

√
2d2(Dtar, Dsrc) log(2n|H|δ )

n+m
(36)

Substituting these additional constants into ∆ gives the analogous deviation bound under a, poten-
tially shifted, warm start. This yields a modified version of the εn derived in the previous section:

C0 ∈ O
(

log

(
|H|
δ

)(
d∞(Dtar||Dsrc) + d2(Dtar||Dsrc) + 1 + ‖θ‖22

)
+

n log
(
k
δ

)
(n+m)σ2min

d∞(Dtar||Dlab)
∥∥∥θ̃∥∥∥2

2
(errW (h∗online) + 1)

) (37)

The corresponding generalization and sample complexity bounds follow accordingly.
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Appendix D. Additional Experiment Settings

D.1 NABirds Regional Species Experiment

We conduct an additional experiment on the NABirds dataset using the grandchildren level of the
class label hierarchy, which results in 228 classes in total. These classes correspond to individual
species and present a significantly larger output space than considered in Figure ??. For realism,
we retain the original training distribution in the dataset as the source distribution; sampling I.I.D.
from the original split in the experiment. To simulate a setting where a bird species classifier is
adapted to a new region with new bird frequencies, we induce an imbalance in the target distribution
to render certain birds more common than others. Table 1 demonstrates the average accuracy of
our framework at different label budgets. We observe consistent gains in accuracy at different
label budgets. Table 1 also breaks out the L2 distance between the label distribution of the target
distribution, and the label distribution of data labeled by the active learning (or random) policy.
In line with intuition, active learning exhibits an inherent bias towards uniformity while ALLS
exaggerates this effect due to our choice of a uniform medial distribution.

Strategy Acc (854 Labels) Acc (1708) Acc (3416) L2 Dist to Uniform (854)

ALLS (MC-D) 0.51 0.53 0.56 7.922k
Vanilla (MC-D) 0.46 0.48 0.50 8.168k

Random 0.38 0.40 0.42 8.358k

Table 1: NABirds (species) Experiment Average Accuracy

D.2 Additional Ablation Studies

We also include additional ablations studies regarding different shift magnitudes and different prac-
tices for scaling label shift estimation algorithms to large output spaces and deep learning settings.

D.2.1 DIFFERENT LEVELS OF α

We evaluate our framework on different magnitude of artificial label shift, where label shift is in-
duced according to a Dirichlet distribution of parameter α as described in (Lipton et al., 2018).
Figure 4 demonstrates that ALLS improves over the vanilla active learning and random sampling
across all the shift magnitudes. Moreover, the improvement is more significant with larger shift.
Note that shift magnitude is inversely correlated with α—smaller α denotes a larger shift.

D.2.2 DIFFERENT RLLS MODIFICATIONS

We introduce two major modifications to the RLLS (Azizzadenesheli et al., 2019) label shift es-
timation procedure to scale the practice of importance weighted learning under label shift to the
deep neural networks setting: posterior regularization (PR) and iterative reweighting (ITIW v.s.
No-ReW). The former provides an alternative to the direct use of label shift weights as importance
weights, and is inspired by the expectation-maximization algorithm described in (Saerens et al.,
2002a). The latter dispenses with theoretical concerns of statistical independence, and use a label-
shift-corrected estimator as the black-box for label shift estimation. We conduct ablation studies
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Figure 4: Average performance and 95% confidence intervals on 10 runs of experiments on CI-
FAR100 in the general shift setting. ALLS gains scale by label shift magnitude.

on strategies incorporating either—or both—of these approaches on the CIFAR100 dataset, which
features a moderately sized output space. Figure 5 demonstrates that, in the absence of these heuris-
tics, the label shift corrected active learning policy remains on par with random sampling but either
heuristic realizes a statistically significant improvement in performance. Importantly, our results
demonstrate that applying both further boosts performance.

Figure 5: Average performance and 95% confidence intervals on 10 runs of experiments on CI-
FAR100 in warm-start shift setting. Left: Accuracy using MC-D; Right: Macro F1
using MC-D; Posterior regularization, iterative reweighting allow for additional gains on
top of ALLS by improving the stability and performance of label shift estimation on
high-dimensional data.

D.3 Online ALLS

We also evaluate a bootstrap approximation of IWAL (Beygelzimer et al., 2009) using a version
space of 8 Resnet-18 models on the CIFAR dataset. As with the more practical pool-based instanti-
ations, we see modest gains due to ALLS.

18
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Figure 6: Average performance and 95% confidence intervals on 10 runs of experiments on CIFAR
in warm-start shift setting. Left: Accuracy using IWAL-CAL; Right: Macro F1 using
IWAL-CAL. ALLS leads to modest gains even in difficult online learning settings.

Appendix E. Experiment Details

We list our detailed experimental settings and hyperparameters which are necessary for reproducing
our results. Across all experiments, we use a stochastic gradient descent (SGD) optimizer with base
learning rate 0.1, finetune learning rate 0.02, momentum rate 0.9 and weight decay 5e−4. We also
share the same batch size of 128 and RLLS (Azizzadenesheli et al., 2019) regularization constant of
2e−6 across all experiments. As suggested in our analysis, we employ a uniform medial distribution
to achieve a balance between distance to the target and distance to the source distributions. For com-
putational efficiency, all experiments are conducted in a batched setting. In other words, rather than
retraining models upon each additional label, multiple labels are queried simultaneously. Table 2
lists the specific hyperparameters for each experiment, categorized by dataset. Table 3 lists the spe-
cific parameters of simulated label shifts (if any) created for individual experiments; we use “warm”
to denote “warmstart”, and figure numbers reference figures in the main paper and appendix.

Dataset Model # Datapoints Epochs (init/fine) # Batches # Classes

NABirds (category) Resnet-34 30,000 60/10 20 21
NABirds (species) Resnet-34 30,000 60/10 20 228

CIFAR Resnet-18 40,000 80/10 30 10
CIFAR100 Resnet-18 40,000 80/10 30 100

Table 2: Dataset-wide statistics and parameters

The complete source code for replicating and expanding our experiment base is released anony-
mously at https://bit.ly/2UVr1bb.
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Setting Warm Ratio Source Dist Target Dist Warm Shift? Dirichlet α

NABirds (Figure 2) 1.0 Inherent Inherent No N/A
CIFAR (Figure 2) 0.3 Dirichlet Dirichlet Yes 0.7

CIFAR100 (Figure 2) 0.4 Dirichlet Dirichlet Yes 0.1
CIFAR100 (Figure 3 Left) 0.4 Dirichlet Uniform No 1.0
CIFAR100 (Figure 3 Mid) 0.3 Uniform Dirichlet No 0.1

NABirds (Table 1) 1.0 N/A Dirichlet No 0.1
CIFAR100 (Figure 4) 0.4 Dirichlet Dirichlet No 0.1/0.4/0.7
CIFAR100 (Figure 5) 0.4 Dirichlet Dirichlet Yes 0.1

CIFAR (Figure 6) 0.5 Dirichlet Dirichlet Yes 0.4

Table 3: Label Shift Setting Parameters (in order of paper)
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