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Abstract

We combine graph neural networks with Gaussian Process regression through deep graph
kernel learning and demonstrate its robustness on quantitative structure-activity relation-
ship (QSAR) modeling tasks. Equipped with such a model, a Bayesian optimization exper-
iment on chemical space is conducted and compared against the time-stamped acquisition
records of a real-world, time-sensitive molecular optimization mission: the identification of
potent inhibitors of the main protease of SARS-CoV-2, the viral pathogen responsible for
the COVID pandemic.
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1. Introduction

Drug discovery, with some oversimplication, can be viewed as the process of finding a com-
pound, denoted by chemical graph g∗ on some subset of chemical space, G, that maximizes
its activity a∗ (potency) toward some biological target, while satisfying a range of additional
physical, chemical, and biological criteria, jointly denoted as the measurement space A. The
pre-clinical stage of this optimization process is time- and money-consuming, requiring 12
years and $800 million on average (Paul et al., 2010). These figures can be attributed to
the discrete, combinatorially large nature of chemical space, as well as the prohibitively
high costs associated with each acquisition (compound synthesis or purchase) and function
evaluation (assay). Graph neural networks (Battaglia et al., 2018; Wang et al., 2019; Xu
et al., 2018; Kipf and Welling, 2016), or simply graph nets, are popular in the computer-
aided drug discovery (CADD) community for quantitative structure-activity relationship
(QSAR) modeling. (Wu et al., 2018; Ramsundar et al., 2017).

In this paper, to build uncertainty-calibrated models for QSAR, we use deep kernel
learning (Wilson et al., 2015) to model the mappings between compound structure and com-
pound properties, combining the rich representation of graph nets and the sample efficiency
of Gaussian processes. We use these learnable functions to drive an experimental iteration,
emulating the prototypical drug design iteration with Bayesian Optimization (shorthand:
BO). We first introduce the technical tools and the task abstraction in Section 2. Next, to
demonstrate the utility of our machine-aided drug discovery loop to real-world drug discov-
ery, for which efficient and rapid use of limited resources is imperative (Warmuth et al., 2002;
Reker and Schneider, 2015; Jensen et al., 2019; Coley et al., 2019; Zhang and Lee, 2019),
we apply our optimization procedure on a carefully conducted pre-existing experimental
system using data from the COVID Moonshot (Chodera et al., 2020), which is targeted at
the development of potent, selective inhibitors of the main protease of SARS-CoV-2 (the
virus responsible for COVID-19 disease). In this system, we can benchmark the efficacy of
our model and compare its search efficiency to policies made by a human medical expert by
re-playing experiments with counterfactual algorithmically inferred experimental orderings
within the pool of assayed data.

2. Methods

Supplementary Section 10 contains complete methodological details of our models, inference
algorithms, and Bayesian Optimization strategies.

2.1 Sequential Experimental Design For Drug Discovery

We can abstract the experimental loop involved in drug discovery introduced in Section 1
as such: given a chemical space G of potential compounds, and assays fa : G → A which
map from chemical to measurement space, search for compounds with values of fa that
satisfy certain criteria. Initially, we don’t have measurements of any compound and start
with an empty measured dataset D0 = {}. An experiment consists of selecting compounds
from G and sampling fa to yield tuples d = {gi, ai}Ni=1 of observed data. Experiments are
typically conducted in iterations, during which an experimenter picks batched indices ig
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Figure 1: Schematic illustration of manual and autonomous experimentation
loops for compound potency optimization. Left: Human experts select compounds to
synthesize (e.g. from Enamine REAL Denis) and assay based on chemical intuition, which
is subsequently updated by assay results. Right: Bayesian optimization selects new can-
didate batches for experimentation according to an uncertainty-aware acquisition function
that consumes the results of previous inhibition experiments and the beliefs of a QSAR
model, using a latent representation given by graph nets. Acquisition iterations are carried
out until drug candidates satisfying specified criteria are identified.

of compounds to measure according to a policy ig ∼ π(i|M)—shorthand πM—where M
determines an underlying model that determines the policy.

At each iteration l, datasets dl consisting of the batch of chosen compounds and ac-
quired measurements are selected and added to the overall dataset, Dl = Dl−1 ∪ dl. The
experimental policy πM is a crucial factor determining the speed, quality, and efficiency of
the search for active compounds. Typically, a policy is driven by human experts (denoted
as πH) based on their so-called chemical intuition, which is distilled from training and expe-
rience. We propose exploring the use of automated policies based on Bayesian Optimization
πBO to drive the drug discovery iteration, which involves learning a model capturing beliefs
about chemical properties from data during the rounds as described in the following.

2.2 Probabilistic Models of Compounds with Graph Kernel Learning

In order to learn generalizeable models of compounds, we propose combining graph neural
networks with Gaussian Process regression. Under the framework of Deep Kernel Learn-
ing (Wilson et al., 2015), the latent latent representation of an input graph as given by
a graph net is used as features for a fixed-dimensional kernel, which in turn is used to
construct mappings from graph structures to measurement values with Gaussian Process
regression (Rasmussen, 2003).

We call the resulting model class Deep Graph Kernel Learning (shorthand: DGKL).
Given a dataset D = {gi, ai}Ni=1 of N input molecules and output measurements, and with
Θ = {θk, θnn, θo} denoting the parameters of the kernel, the graph net, and the observation
model, the joint model is given by:

p(a, f |G,Θ) = p(f |G, θk, θnn)
N∏
i=0

p(ai|f, gi, θo),
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where H = NNθnn(G), p(f |G, θk, θnn) = GP(f |m(H), κθk(H)) with a suitable kernel func-
tion κ(·), and p(ai|f, gi, θo) = N (ai|f(gi), σ

2
o).

3. Experiments

In this section, we design and conduct experiments that mimic the scenarios in real-world
drug discovery projects.

Dataset For Chemical Space Exploration We employ data from the COVID Moon-
shot (Chodera et al., 2020; Lee and Brian, 2020), an active open-science drug discovery
project aiming to develop small molecule inhibitors of the main viral protease (Mpro) from
SARS-CoV-2. The compounds are submitted by teams around the globe, with fractions of
the chemical space being prioritized—by their in-house expert medicinal chemists—to be
synthesized and assayed. For each compound, single-point titrations (at 20 and 50 µM)
are conducted, where the results could be unavailable due to solubility constraints among
others. Multi-point titrations are conducted (at at least eight concentrations) for promising
candidates. The decision to prioritize compounds are made weekly (on Wednesdays), al-
lowing us to use the time stamps annotated to divide compounds into roughly similar-sized
groups (∼100/group, split at every Tuesday since May 12), to characterize human acquisi-
tion policies. We also briefly benchmark the supervised learning performance of our model
on solubility data from ESOL (Delaney, 2004).

Overview of Experiments With 3, first, in order to discover the quantitative structure-
activity relationship (QSAR) potency or physical properties, fa : G → A, the models
must predict held-out data with high likelihood (see Appendix Section 8.1). Second, in
Section 3.1, we apply our algorithms to a real-world dataset from an active open-science
COVID-19 drug discovery project (assay details are given in Section 10.5). Here, we replay
the experiment of the Covid Moonshot project with our model and simulate its trajecto-
ries with automated policies, allowing us to compare the human and automated policies.
Finally, in Appendix Section 9, we evaluate semi-supervised learning on representational
efficiency in the presence of more unmeasured molecules, in the hope of yielding gains in
the data scarcity regime.

3.1 Bayesian Optimization on Compound Space

In this section, we employ DGKL in a Bayesian optimization loop to search for most active
compounds from the COVID Moonshot project. Starting randomly from the candidate pool,
in each round, a supervised learning model is trained on the acquired data points and used
to predict inhibition activities for the remaining candidates. The candidate molecules are
then picked according to an acquisition rule (see Section 10.4).

We assess the efficiency of acquisition by plotting the regret (difference between the cur-
rent best candidate and the ground truth best candidate) against the numbers of candidates
acquired in Figure 10.4.1. DGKL stands out from acquisition rules using neural network
regressors trained with MLE as well as BBB. We briefly study the impact of batch size on
acquisition efficiency in Section 6.

Next, we compare the acquisition policy between Bayesian models πBO and human
experts πH(See 1), which is (as one of the rare times) made possible by the time-stamped
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Figure 2: DGKL speeds up active compound acquisition. Regret of acquisition
plotted against number of candidates acquired with various acquisition functions 10.4 and
regressors.

COVID moonshot open project data. Concretely, we replay the acquisition decisions of
human experts and train DGKL models on data as of each Tuesday from May 12. On
the other hand, BO is allowed to choose among the candidates and train DGKL models
using a similar batch size 96 (to match the common use of 96-well SBS-format microplates
in modern bioassays) and subsequently train DGKL models with same hyperparameter
choices 8. In Figure 3, we plot maximum of prospective probability of improvement and
the upper confidence boundary (95%) (calculated based on the predictive distribution)
after each round of acquisition for both BO and human expert acquisition. We believe
this is a useful indication for the good characterization of the candidate space: Ideally, both
metrics should decrease and approach zero as more candidates are being acquired, reflecting
diminishing optimism that better candidates are yet to be sampled. As such, our model is
overoptimistic to a lesser degree when compared with human experts.

3.2 Latent representation sharing with scarce, heterogeneous data.

Inh. @ 20 µM (R) Inh. @ 50 µM (R) IC50 (R) Inh. @ 20 µM(F) Inh. @ 50 µM(F) IC50 (F)
NLL R2 NLL R2 NLL R2 NLL R2 NLL R2 NLL R2

GP
Independent 0.43 0.33 0.57 -0.04 0.78 -0.92 0.52 0.15 0.51 0.07 0.54 0.15

Joint -0.25 0.65 0.25 0.25 0.18 -0.34 0.00 0.44 0.15 0.42 0.05 0.19

BBB
Independent 0.18 -1.01 3.72 -803.79 0.37 -2.74 37.72 -46.31 0.46 -0.30 2.61 -159.65

Joint 8.27 -77.02 26.61 -14.26 7.95 -926.31 94.22 -583.42 4.05 -70.62 7950.01 -196.31

MLE
Independent 3.48 -901.72 24999.34 -5.64 2.08 -30.52 2261755392.00 -23.28 3.80 -80.87 427.18 -467.90

Joint 1.13 -9.05 724.38 -33.60 1281.74 -117.22 4.94 -62.45 3.60 -0.15 0.44 -0.64

Table 1: Graph latent encoding sharing boosts performance. Independent denotes
separate models for each assay. Joint denotes a model with a shared graph net as latent
embedding with multiple output regressors for each assay.

The situation we face in modeling the QSAR from data generated by the COVID Moon-
shot project is typical in early-stage drug discovery (see also Section 10.5): The applicabil-
ity of various assays differs from molecule to molecule, resulting in a highly heterogeneous
dataset (i.e. blank spaces in tabulated data). Näıvely, one would construct one QSAR
model for each assay. In Tab. 1, we demonstrate that such formulation yielded suboptimal
results. To circumvent this, we purpose to share the latent code representation between
the QSAR models for each assay. Specifically, a single graph net is used to project the
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Figure 3: Prospective Analysis Of Experiment Using Bayesian optimization ac-
quisition reveals automated acquisitions are less prone to be overoptimistic.
(Left)Max (among the candidates) probability of improvement ,plotted against rounds of
acquisition, indicates probabilistically what the model’s belief in the value of continued
search is. The human policy leads to search strategies that resolve uncertainty about the
true maximumj value slower. (Right) the difference between the max upper confidence
interval and the current best candidate, plotted against rounds of acquisition, reveals in
measurement space by how much the model believes further search could improve on the
currently found values.Again, automated policies lead to less overoptimistic search. At
round four, all the data is acquired and assayed, thus an ideal model would predict both
metrics to be zero. Hence values above zero indicates overoptimism, which is more prevail-
ing with human acquisitions. The error bars are obtained by repeating experiments ten
times.

molecular graphs to a hidden space, from where multiple Gaussian process regressors are
used as the final layer of regression to come up with predictive distributions. We illustrate
here that this formulation is effective as it brings drastic improvement to the performance
of the regression models.

4. Discussion

In this paper, we tackle experimental design for automated discovery by combining Gaus-
sian process regression with graph nets and Bayesian optimization. Crucially, we establish
that our methodology leads to faster exploration of active compounds in a problem mod-
eled on data from a real-world drug discovery campaign. This suggests that our approach
is promising in its potential to drive time-critical experimental procedures to find novel
therapeutics. We hope that this work will help bring together research on Bayesian active
drug discovery, which, in most cases, is in the regime of so-called small data, and where
systemic optimization schemes could facilitate rational decision making processes. With
the rapid development of robotics system and automated chemical synthesis and biological
assay, research on this front will bring us one step closer to fully autonomous drug discovery.
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Appendix A: Implementation details. Unless otherwise mentioned, all the models
contain three graph convolutional net (Kipf and Welling, 2016) with 32 units each in Py-
Torch Paszke et al. (2019) and DKL (Wang et al., 2019) and optimized with Adam opti-
mizer (Kingma and Ba, 2014) with 1e-3 learning rate. Note that since we do not perform
hyperparameter tuning on models, we do not reserve data set validation set.

8.1 Appendix B: Supervised learning with Deep Graph Kernel Learning

We test the supervised learning performance of DGKL on the aforementioned benchmark
datasets (Wu et al., 2018): ESOL (Delaney, 2004). The results are summarized in Figure 4
and Table 2.

NLL R2 RMSE
Train Test Train Test Train Test

GP

GCN −0.4448−0.4318
−0.4923 0.69831.08940.3247 0.99690.99730.9959 0.93650.99660.9468 0.11420.11930.0975 0.55680.5296

0.3020

GraphSAGE −0.4940−0.4975
−0.5399 0.75620.96880.5417 0.99740.9981

0.9969 0.92320.97780.9246 0.10470.14480.1068 0.61230.59470.3334

SGC −0.4395−0.4583
−0.5263 0.75840.82650.4152 0.99690.99850.9967 0.92850.94870.9094 0.11560.11340.0949 0.59070.63550.4904

EdgeConv −0.6958−0.6696
−0.6921 1.02541.37381.0250 0.99950.99960.9994 0.89760.94450.8079 0.04750.0547

0.0442 0.70690.87570.6110

GIN −0.4336−0.4197
−0.4549 0.73491.01410.5960 0.99690.99800.9966 0.92970.97330.7273 0.11530.12610.0922 0.58600.80570.5843

TAGCN −0.5340−0.5298
−0.5671 0.66880.5906

0.1636 0.99820.99840.9973 0.94080.9590
0.8499 0.08640.09370.0829 0.53780.73440.4912

BBB

GCN 5.70018.46294.7325 6.35228.64566.4049 0.75570.83050.7458 0.85640.89890.6491 1.01881.01130.8272 0.83730.89830.6889

GraphSAGE 22.330620.557017.0102 26.755126.667413.1267 0.88250.91880.8615 0.89870.96860.8890 0.70670.68340.4645 0.70320.85020.6266

SGC 4.95875.07323.1761 5.43115.91022.7561 0.68620.78590.7104 0.82350.86440.7551 1.15461.14151.0112 0.92840.93640.6280

TAGCN 37.625937.309122.9957 44.582646.055612.9843 0.88710.94250.9025 0.91000.92560.8361 0.69250.80560.5790 0.66290.59560.4620

MLE

GCN 6.54057.05674.8459 6.86947.04973.4889 0.77050.80080.6824 0.85860.93200.8243 0.98741.32190.9892 0.83080.79900.5190

GraphSAGE 19.520323.974714.8009 22.386425.810811.7202 0.87800.90310.8753 0.91790.92630.8682 0.72000.92030.6578 0.63300.92100.6598

SGC 23.419832.647522.8581 24.024231.869318.9299 0.88100.88260.8029 0.91240.90110.8109 0.71120.73870.6290 0.65391.31470.7457

EdgeConv 109.4343170.7550111.6888 120.7490103.510954.3249 0.94000.95300.9091 0.94610.95410.8050 0.50510.42080.3580 0.51280.66770.4346

GIN 17.728521.356614.9618 24.206357.530931.8718 0.83290.83180.7468 0.90310.94040.8927 0.84270.97970.8135 0.68760.73700.5847

TAGCN 6.34086.85955.7497 7.221010.41345.5034 0.76130.80790.7469 0.83810.86980.7885 1.00701.04380.8930 0.88901.04560.7742

Table 2: DGKL is Robust in QSAR Modeling with Various Graph Net Architec-
tures. Train and test set performance measured by negative log likelihood, R2, and RMSE.
The super- and subscript indicate 95% confidence interval measured by bootstraping over
dataset. Best performance is boldfaced. For graph net architectures, see 3.
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Figure 4: Upper Left: Test set negative log likelihood from various graph repre-
sentation models and inference algorithms. Upper Right: Test set performance of
Deep graph kernel learning with GCN (Kipf and Welling, 2016) plotted against
percent of data used as training set. Lower: Scatter plot of reference vs predicted
value for three physical property datasets with error bars.

9. Appendix C: Extra Results

9.0.1 Appendix D: Semi-supervised learning

Recall that one difficulty of applying machine learning to drug discovery is the shortage of
labeled data. This makes training supervised model on small labeled data sets particularly
challenging. Over-fitting is a very common problem when one has only a handful of labeled
data. At the same time, we have a huge quantity of unlabeled data in the form of molecules
without chemical measurements. We can leverage this abundance of unlabeled data to
improve the performance of our models in supervised and active learning tasks. In this
section, we introduce the working of semi-supervised learning.

In semi-supervised learning, the model is exposed to both labelled and unlabelled data
during its training process. Our semi-supervised model combines Variational Auto-Encoder
(VAE) (Kingma and Welling, 2013) and Deep Gaussian Processes (Wilson et al., 2015).
The objective function is a combination of the ELBO of the VAE and the negative log-
likelihood of the Deep GP. This provides a smooth and principled way to incorporate both
generative model training and supervised training. This allows our model to smoothly
handle both unlabeled and labeled data. The semi-supervised model could be understood
as ”self-regularized”, reducing the over-fitting problem. In addition, jointly optimizing
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both the supervised loss and the unsupervised loss forces the model to learn molecular
representations that are more robust to noise or data set variance.

In this experiment, our labeled data set is the COVID Moonshot. Since the COVID
Moonshot data set is a multi-label data set, we picked % inhibition at 20 µM as the target
for our supervised task. In later sections, we will also demonstrate the applicability of
semi-supervised model to multi-task learning.

We first split COVID Moonshot data set into 80% for training and 20% for testing.
To prepare unlabeled data for semi-supervised training, we use FTrees 1, short for Feature
Trees. It is a highly efficient software tool for pharmacophore-style similarity searching.
It is used to facilitate virtual high through-put drug screening. On a SMILE-type input,
FTrees creates ”chemically similar” molecules to the input molecule. Using this tool, we
could create a large quantity of unlabeled data that is ”similar” in chemical space to our
labeled data of interest. Through our experiments, we observed that having a ”chemically
similar” unlabeled data set is very important to semi-supervised learning.

For each molecule in COVID Moonshot, we synthesize 100 molecules. Let us collectively
call all the synthetic molecules as our ”bag of molecules”. We then construct mixtures of
labeled and unlabeled data by combining the training portion of COVID Moonshot with
varying numbers of synthetic molecules (1000, 3000 and 5000), randomly selected from our
”bag of molecules”.

Our base line is a supervised-only model based on Graph Neural Networks. We make
sure that the architecture and training methods are the same for different semi-supervised
model for a fair comparison. We also make sure that the encoder of the Variational Auto-
Encoder used in our semi-supervised model has the same architecture as the Graph Neural
Network used by the supervised model.

Figure 5 shows the performance on held-out test set against training epochs for semi-
supervised model, trained on different quantity of unlabeled synthetic data. We see that in
terms of R2 and RMSE, the semi-supervised model is competitive with the supervised-only
model. Despite slower progress in the initial training epochs, the semi-supervised model
quickly catches up to the supervised-only model. In this experiment, we were not able
to see any significant effect of the quantity of unlabeled data and the performance of the
semi-supervised model. We surmise that we need to use networks with more parameters for
the semi-supervised model to effectively learn from the much bigger data set. We believe
that once we have found a better design, the advantage of having more (unlabeled) data
will be significant.

We also have evidence to believe that semi-supervised models should have more pa-
rameters than supervised-only models. In our experiments, we observed that a Graph
Convolution Networks with two convolution layers of size 128 and 128 will lead to numeri-
cal issues or overfitting when optimized with supervised-only training, especially on smaller
data sets. However, the same architecture could be optimized with relative stability using
semi-supervised training. A deeper network can learn more complicated patterns in the
data than a simple one. However, we ran out of time before we could design and run these
more elaborate experiments. In the future, we will explore more advanced architecture and
we believe that semi-supervised learning will be an indispensable tool in our arsenal.

1. https://www.biosolveit.de/FTrees/
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Figure 5: Supervised learning provided no improvement on QSAR fitting.

10. Appendix E: Methods

10.1 Graph Neural Networks

In the context of molecular machine learning, molecules are modelled as undirected graphs
of bonded atoms, where each atom and bond can carry attributes reflecting their chemical
nature from which complex chemical features can be learned. If we write this as a tuple of
three sets,

G = {V, E ,U} (1)

Here, V is the set of the vertices (or nodes) (atoms), E the set of edges (bonds), and U = {u}
the universal (global) attribute.

A set of functions (with learnable parameters) govern the three stages used in both
training and inference of a graph net: initialization, propagation, and readout. The most
general description of the message-passing procedure in the propagation stage could be
found in (Battaglia et al., 2018), where node, edge, and global attributes v, e,u are updated
according to:

e
(t+1)
k = φe(e

(t)
k ,

∑
i∈N ek

vi,u
(t)), edge update (2)

ē
(t+1)
i = ρe→v(E

(t+1)
i ), edge-to-node aggregate (3)

v
(t+1)
i = φv(ē

(t+1)
i ,v

(t)
i ,u(t)), node update (4)

ē(t+1) = ρe→u(E(t+1)), edge-to-global aggregate (5)

ū(t+1) = ρv→u(V (t)), node-to-global aggregate (6)

u(t+1) = φu(ē(t+1), v̄(t+1),u(t)), global update (7)
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where Ei = {ek, k ∈ N v
i } is the set of attributes of edges connected to a specific node,

Ei = {ek, k ∈ 1, 2, ..., N e} is the set of attributes of all edges, V is the set of attributes of all
nodes, and N v and N e denote the set of indices of entities connected to a certain node or
a certain edge, respectively. φe, φv, and φu are update functions that take the environment
of the an entity as input and update the attribute of the entity, which could be stateful or
not; ρe→v, ρe→u, and ρv→u are aggregate functions that aggregate the attributes of multiple
entities into an aggregated attribute which shares the same dimension with each entity.
Note that it is common that the edges do not hold attribute but only pass message onto
neighboring nodes. For all models we survey here, edge-to-global update does not apply and
global attribute does not present until the readout stage, when a sum function is applied
to form the global representation (u =

∑
V ). Under this set of grammar, we review the

message-passing rules in 3.

Model Edge update φe Edge aggregate ρe→v Node update φv

GCN Identity Mean NN
EdgeConv ReLU(W0(vi − vj) +W1vi) Max Identity

GraphSAGE Identity Mean2 Normalize(NN([v : e]))
GIN Identity Sum3 NN((1 + ε)v + e)

Table 3: Summary of representative graph nets architectures by edge update,
edge aggregate, and node update types. Models analyzed here include: GCN (Kipf
and Welling, 2016), EdgeConv (Wang et al., 2019), GraphSAGE (Hamilton et al., 2017),
and GIN (Xu et al., 2018). Other architectures evaluated—TAGCN (Du et al., 2017) and
SGC (Wu et al., 2019)—involve multi-step propagation, which could be expressed as a
combination of these updates and aggregates.

10.2 Semi-Supervised Learning for Graph Networks

In practice, we have access to a very large number of chemical (2D) structures of syn-
thetically accessible molecules that have never been synthesized or assayed, and hence lack
associated measurement data—such as the Enamine REAL Space of billions of syntheti-
cally accessible compounds (Hoffmann and Gastreich, 2019). By contrast, molecules from
this space that have been synthesized and assayed are few and far in between. We aim
to leverage unlabelled data to train better deep models in supervised tasks that can more
efficiently generalize from limited labeled data.

One of the most powerful unsupervised deep models is the variational auto-encoder
(VAE) (Kingma and Welling, 2013; Kipf and Welling, 2016), a probabilistic version of the
auto-encoder (AE) (Hinton and Salakhutdinov, 2006). An auto-encoder can be understood
as a two-step process: The first (encoder) step maps the original data input from input
feature space to a lower dimension representation, while the second (decoder) step maps
the latent representation back to the input feature space. The goal is to learn a ”meaningful”
latent representation of the input data such that the decoder step can accurately reconstruct
the original input data from the latent representation. Variational auto-encoders are also
deep generative models: by making appropriate probabilistic assumptions of how the data

14



Bayesian Active Drug Discovery

is generated, the VAE can learn parameters of a generative distribution, and thereby also
generate new samples that are ”similar” to existing data.

An important reason to consider incorporating generative model training is to avoid
over-fitting during supervised learning; in the common data-limited regime, training a com-
plex neural networks risks over-fitting. Another reason to incorporate generative model
training is added stability during training deep models on supervised tasks; by using the
encoder network of a trained VAE as part of the deep network for supervised training, we
achieve improved stability, especially at the beginning of the training process. These latent
representations are often useful, and have been used in various related applications, such as
guiding molecular synthesis (Zhang et al., 2019).

The objective function used to train the VAE is the negative evidence lower bound
(ELBO), which can be interpreted as consisting of a reconstruction loss and a regularization
penalty:

L = −EPφ(Z|G)[logPΨ(G|Z)] +KL(Pφ(Z|G)‖P0(Z)) (8)

Here, Z = {z1, ..., z|V|} is the latent representation of the graph nodes, where zi is the latent
representation of node i. Pφ(Z|X) is the approximate posterior distribution of the latent
representation Z of the input molecular graph G. This approximate posterior distribution’s
parameters can be produced by a deep neural network, denoted as φ, or the encoder network.
In our case, we use graph convolution neural networks (graph nets) to learn the parameters
of the approximate posterior distribution. P0(Z) is the prior distribution on the latent
representations—here, a standard normal distribution.

PΨ(G|Z) is the likelihood probability of the observed molecular graph, conditioned on
the latent representation Z. Note that the parameters of this distribution could also be
produced by a deep neural network, denoted as Ψ, or the decoder network. In our case, we
follow Kipf and Welling (2016) and set:

logPΨ(G|Z) =
∑
e∈E

logPΨ(e|Z) +
∑
v∈V

logPΨ(v|Z) (9)

In other words, the reconstruction loss factorizes into a sum over edges and nodes. In
our model, suppose an edge e is between nodes vi and vj , the edge-specific likelihood
term is PΨ(e = (vi, vj)|Z) ∼ Bernoulli(σ(z>i zj)). On the other hand, we define the node-
specific likelihood term PΨ(vi|Z) = PΨ(vi|zi) as a categorical distribution over the node
type conditioned on latent node representation.

While VAEs were initially developed to perform unsupervised learning, one can easily
extend these models to semi-supervised learning by incorporating targets into the ELBO.
Suppose that a data is given as (graph G, measurement y) pairs. The expected likelihood
term in the negative ELBO loss would be defined as:

logPΨ(G, y|Z) =
∑
e∈E

logPΨ(e|Z) +
∑
v∈V

logPΨ(v|Z) + logPΓ(y|G, Z) (10)

where Γ is a regression model, which can be parameterized by deep Gaussian processes or
deep neural networks.

To be able to train such a model on millions of molecules, we turn to stochastic opti-
mization. At each iteration, we compute the stochastic gradient of the negative ELBO with
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respect to the parameters of the neural networks φ and ψ using a mini-batch of input data.
For our experiments, we use batch size of 32.

10.3 Bayesian Inference with Graph Nets

Under the Bayesian formalism, given sets of (graph, measurement) pairs as training data
D = {G(i), y(i), i = 1, 2, 3, ..., n}, the probability distribution of the unknown quantity of
the measurement y(n+1) could be modelled with respect to the posterior distribution of the
neural network parameters θ as:

P (y∗|D,G∗) =

∫
P (y∗|G∗, θ)P (θ|D) d θ. (11)

This integral, of course, is not tractable. If one uses the most likely set of neural network
parameters θMLE = arg max

θ
P (θ|D), which is optimized by back-propagation, a standard

neural network is recovered. We briefly survey the strategies to approximate (11).

10.3.1 Bayes-by-backprop

Bayes-by-backprop (Blundell et al., 2015) is one of the simplest types of variational infer-
ence, where the variational posterior approximating P (θ|D) is chosen to be a multivariate
Gaussian with diagonal covariance matrix.

q(θ) = N (µ, σ), (12)

where the variational parameters {µ, σ} have the same dimension as θ and are trained by
minimizing the Kullback-Leibler (KL) divergence between the variational and true Bayesian
posterior:

µ∗, σ∗ = arg min
µ,σ

DKL[q(θ|µ, σ)||P (θ|D)] = arg min
µ,σ

DKL[q(θ|µ, σ)||P (θ)]−Eθ∼q(µ,σ)[logP (D|θ)],

(13)
which is also termed a variational free energy. When training is complete, (11) can be
written as:

P (y∗|D, θ) ≈
∫
P (y|θ)q(θ|µ, σ), (14)

which is tractable.

10.3.2 Kernel learning for Gaussian Process Regression

Graph nets could be incorporated seamlessly into Gaussian progress regression if we use
the latent embeddings of graph nets as inputs to a fixed-dimensional kernel (Wilson et al.,
2015). Concretely, if we model the real process that maps molecular graph to physical
properties, f : G → y, as a Gaussian process,

f(G) ∼ GP(0,K(G,G′)), (15)

therefore the joint distribution of the function values y∗ associated with test inputs {G∗}
could be written as:[

y
y∗

]
∼ N

( [K({G}, {G}) + σ2
nI K({G}, {G∗})

K({G∗}, {G}) K({G∗}, {G∗})

] )
, (16)
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and (11) becomes:

y∗|D, {G}, {G∗} ∼ N (E[y∗], cov(y∗)), (17)

where σn is the predictive noise and

E[y∗] = K(G∗, {G})[K({G}, {G}) + σ2
nI]−1y; (18)

cov(y∗) = K({G∗}, {G∗})−K({G∗}, {G})[K({G}, {G}) + σ2
nI]−1K({G}, {G∗}). (19)

With a graph net with trainable parameters GNθ, the kernel K(G,G′) could be defined as
a kernel on fixed-dimensional space that takes the latent encoding provided by the graph
net, z = GNθ(G), as input. If we choose the popular RBF kernel to be basis kernel, for
example, a deep graph kernel could be defined as:

k(G,G′) = kRBF(z, z′) = kRBF(GNθ(G),GNθ(G′)) = exp(−1

2
||GNθ(G)−GNθ(G′)||/l2).

(20)
As such, the parameters associated with the graph net θ could be viewed as part of the
hyperparameter of the kernel and be optimized jointly by maximizing the likelihood of
training data.

10.4 Acquisition Rules for Active Learning

10.4.1 Sequential Acquisition

Once the supervised learning model is trained and (11) is approximated by a reasonably
likely region on the weight space, we could use the predictive distribution P (y∗|G∗, θ) to
prioritize the candidates to acquire in the next round of training. Popular acquisition
functions that are applicable to sequential acquisition include (Snoek et al., 2012):

• Probability of Improvement characterizes the probability of the best current value,

αPI(G
∗|D, θ) = 1− ΦP (y∗|G∗,θ)(max(y)), (21)

where Φ denotes the CDF of the corresponding distribution, and max(y) is obtained
within the training set D = {Gi, yi}

• Expected Improvement, on the other hand, measures the expectation of the im-
provement over the current best,

αEI(G
∗|D, θ) = EP (y∗|G∗,θ) min{[y∗]−max(y), 0}. (22)

• Upper Confidence Bound is a more recent idea that exploits confidence bounds to
minimize the regret. Note that the confidence of the bound κ is a tunable parameter
and could be used to balance exploitation against exploration.

αUCB(G∗|D, θ) = CIκ(P (y∗|G∗, θ)) (23)
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Figure 6: The performance of batch acquisition function depends on the batch
size on ESOL data. Regret function on solubility measurement for ESOL dataset.

Figure 7: The performance of batch acquisition function depends on the batch
size on COVID moonshot data.

Regret on measured SARS-CoV-2 Mpro inhibition at 20 µM compound from the
Moonshot dataset (Section 3) is plotted against the number of candidates sequentially

acquired. Expected improvement, probability of improvement, Thompson sampling and
upper confidence interval (κ = 0.95) acquisition functions with DGKL model are

evaluated
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10.5 COVID Assay Details

In the scenario where the target of the drug molecule is identified as one specific protein,
we can use the binding free energy to characterize the potency of the molecule, which is the
free energy change associated with reaction,

L + P 
 LP (24)

where P stands for the protein, L the ligand (drug), and LP the complex they form.

∆G = G(LP)−G(P)−G(L), (25)

The quantity ∆G, is rarely directly measured in biological experiment. Popular assays
include:

• Association constant (Ka) and dissociation constant (Kb):

Ka =
[LP]

[L][P]
= exp

∆G

−RT
(26)

Kd =
[L][P]

[LP]
= exp

∆G

RT
(27)

where brackets [·] denote the concentration of certain species in solution, T is tem-
perature in Kelvin, and R is the gas constant.

• Half maximal inhibitory concentration (IC50): IC50 characterizes how much inhibitor
is needed for a specific biological activity to be inhibited to 50% level. By the Cheng-
Prusoff equation, if the concentration of the inhibitor when measured is close to the
theoretical concentration when such %50 inhibition is achieved, [L] ≈ Km, IC50 could
be related to ∆G by:

IC50 = Ka(1 +
Km

[L]
) ≈ 2Ka = −2 ln

∆G

RT
, (28)

and its negative log value:

p IC50 = − log10 IC50 = − log10 2 + log10 e ∗RT ln
∆G

RT
. (29)

• Percentage inhibition (%inh):

The aforementioned two assays require a series of titration, whereas %inh describes a
simplified relationship where the concentration of ligand [L] is measured at one value,
and the concentration of protein [P] is low. This could be related to ∆G by:

%inh =
1

1 + exp(−∆G
RT ) c

θ

[L]

(30)

where [L] is the concentration at which the inhibition is measured, and cθ is the unit
concentration 1 mol / L.
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In reality, there are scenarios where some of the assays are not applicable for subsets
of molecules. For instance, many drug-like molecules are not soluble at 50 uM and
therefore would not have an associated measured percentage of inhibition at such
concentration. Each measurement has its own types of noise associated. Moreover,
multiple types of instrument could be used for these experiments, introducing various
types of noise.

20


	Introduction
	Methods
	Sequential Experimental Design For Drug Discovery
	Probabilistic Models of Compounds with Graph Kernel Learning

	Experiments
	Bayesian Optimization on Compound Space
	Latent representation sharing with scarce, heterogeneous data.

	Discussion
	Acknowledgments
	Funding
	Disclosures
	Disclaimers
	Appendix B: Supervised learning with Deep Graph Kernel Learning

	Appendix C: Extra Results
	Appendix D: Semi-supervised learning

	Appendix E: Methods
	Graph Neural Networks
	Semi-Supervised Learning for Graph Networks
	Bayesian Inference with Graph Nets
	Bayes-by-backprop
	Kernel learning for Gaussian Process Regression

	Acquisition Rules for Active Learning
	Sequential Acquisition

	COVID Assay Details


