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Abstract

While reinforcement learning on humans has shown incredible promise, it often suffers from
a scarcity of data and few steps in the real world. In instances like this, a planning model of
human behavior may greatly help. We present an experimental setup for the development
and testing of two different RL architectures with several different neural architectures
for planning models. Our RL architectures are Batch Constrained Q-Learning and Soft
Actor Critic. Our primary planning models are various autoML frameworks and neural
architectures. We present an experiment and preliminary simulation results by which we
hope to verify the learning of the RL agents and the efficacy of the planning model.

Keywords: Demand Response, Energy, Social Games, Reinforcement Learning, Planning
models

1. Introduction

1.1 Motivation in Energy (Background)

The California grid (CAISO) of 2020 reported 33% of electricity was generated from renewable
sources. While admirable, this comes with challenges. Specifically, at certain times in the
year, system-wide generation of energy (specifically solar) was too large for electricity grid
absorb, and so CAISO simply shut down transmission going to those lines. CAISO reported
that 3-4% of its renewable energy was curtailed due to overproduction in 2019. Curtailment
was spread unevenly throughout the year, with certain days in the spring reporting 20-30%
curtailment. Without solutions, this problem is likely to grow non-linearly with respect to
the amount of renewable energy on the grid.
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1.2 Energy storage and demand response

One solution to curtailment is demand-response. Demand-Response (DR) entails the
deferment of energy demand from when it is demanded to when it is most opportune for it
to be filled. DR is basically costless, as it requires no infrastructure, so it is important as
a quick and direct solution. Consumer facing DR is nearly exclusively implemented with
a price signal, which is the focus of our research. DR can further help by: (1) alleviating
curtailment during high generation months to stretch battery reserves farther, (2) shift
seasonal loads (3) alleviate peak loads during the day, to shift demand to other generation
sources.

1.3 Social Games in building energy consumptions

The share of buildings’ energy demands makes up a significant component of US energy
demand and is increasing. In residential and commercial buildings, plug loads represent 30%
of total electricity use (Lanzisera et al. (2013), Srinivasan et al. (2011)).

To this end, notable work has been performed in creating and administering “Social
Games” – for our purposes, defined as competitions around energy use. Social Games
increase the extent to which an individual is motivated to and able to save energy in their
daily functioning within their office or home (Konstantakopoulos et al. (2017), Ratliff et al.
(2014), Papaioannou et al. (2018), Papaioannou and Stamoulis (2018)) Cowley et al. (2011),
Ayres et al. (2012)).

We are unaware of a study that attempts to aim a reinforcement learner at a DR price
signal within a Social Game framework. Therefore, we aim to reproduce a Social Game
experiment and quantify the difference in demand response from a variety of RL and RL
augmentation techniques.

1.4 Paper Outline

This paper is intended to highlight the experimental setup testing two scopes of work: the
RL architecture and planning model search. We intend to give emphasis to the experimental
setup and de-emphasize the explanation of the RL techniques and planning component,
referring the reader to Spangher et al. (2020) where appropriate. In Section 2, we will briefly
describe the two RL architectures that we adapted and fine-tuned. We will then describe the
planning models. After this, we will detail the reward specification and simulation that the
fist two items will be testing in. In Section 3, ”Simulated Results”, we will show results from
the simulation that we use to argue success or failure for the experiment. In Section 4, we
will describe the prospective experimental timeline, which will help the reader understand
how we intend to actually the RL architectures “in the wild.”

2. Methods

For a quick overview on the proposed experiment/simulation, please see figure 1. We will
describe each of the boxes drawn in this flow chart in detail.
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Figure 1: Diagram describing the flow of information in our experiment.

2.1 Reinforcement Learning techniques

Reinforcement Learning as a general technique came out of the physical simulators and
computer gaming – arenas that are data rich in measurements and rewards. They might
have access to many steps with millions of iterations to try various trajectories. We are
dealing with a different scenario – so-called human-in-the-loop learning, where each step in
the world is a day and data is very costly to attain.

As such, we need to consider off-policy RL: policies that do not rely solely on interactions
with the environment, but with stored data that can be reused, with older data from
other experiments, and with intelligent extrapolations. We choose two architectures: Batch
Constrained Q Learning, and Soft Actor Critic V2. We skip a description of how the
architectures are structured an function; please see Spangher et al. (2020) for a tutorial.

2.2 Planning models: improving RL agent’s data efficiency

Although the algorithms that we describe above are important advances in RL for efficient
data, we still are concerned that a lack of steps within the environment will hinder any
algorithm from effectively learning. We propose a way to address this: planning.

Constructing a good model for human behavior in the office – and specifically response to
points – could provide a way for the algorithm to explore more than it could by interfacing
with just the world. Each night, the agent will have stepped once in the real world and the
planning model will train with an extra observation, but after the planning model updates,
the agent can then train thousands of times on the updated model, essentially exploring
many more points values.

To this end, we propose different planning models. Each model is made and trained on
a simulated dataset of 5 years worth of energy and points data. The training dataset we
used and a full explanation of the planning models we tested are detailed in Spangher et al.
(2020). Of various AutoML strategies, we attempt an out of the box GPyOpt LSTM search
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(Knudde et al., 2017) and AutoKeras structured regressor (Jin et al., 2019); we compare
these to two baseline models of a vanilla LSTM and OLS.

2.3 Reward

All agents use the same reward calculation. This reward is defined as the difference between
the day’s total cost of energy and the ideal cost of energy. The ideal cost of energy is
obtained using a simple convex optimization. If ~d are the actual demand of energy computed
for the day, ~g is the vector of the grid prices for the day, E is the total amount of energy,
and dmin, dmax are 5% and 95% values of energy observed over the past year, then the ideal
demands are calculated with the following optimization:

d∗ = min
d

dT g

s.t.

10∑
t=0

d = E

dmin < d < dmax

Then, the reward becomes:

R(d) =
d∗T g − dT g

d∗T g

I.e. taking the difference and scaling by the total ideal cost to normalize the outcome.

2.4 Simulation design

In order to test the aforementioned techniques, we will use a simulation that can provide
some level of insight into the superiority of some methods over others. We define three
deterministic responses to points, and populate our office with an equal mixture “people”
who exhibit each response type. We will describe the linear response here and then refer
the reader to Spangher et al. (2020) for definition of sinusoidal and threshold exponential
response, as they are simple variations of the linear response.

For the linear response, we define a very simple person who decreases their energy
consumption linearly below a baseline with respect to points given. Therefore, if bt is the
baseline energy consumption consumed at time t and pt are the points given, the energy
demand d is dt = bt − pt, clipped at dmin and dmax as defined in Section 2.3.

3. Simulated Results

3.1 RL Architectures

In the RL architecture front, we report limited success with BCQL. Trained over a thirty
day period, we see limited evidence that BCQL can learn, and it seems to exhibit little
exploration; indeed, the reward seems to be largely constrained to a small bit of the range.

However, SAC V2 appears to be performing better. We report that it generally appears
to learn across the three deterministic responses. The framework delivers a learning curve
that exhibits some of the basic properties of a good learning curve: it spends time in the
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Model RMSE

GPyOpt LSTM 28
Vanilla LSTM 31

AutoKeras Structured Regressor 50
Regression 100

Table 1: Summary of results for the four planning models.

beginning exploring a large part of the domain, which then helps it improve. Interestingly,
it tightens its search as it believes it has found an optimum; this turns out to be a local
optimum and it breaks into newer parts of the domain, at which point it converges to 0, or
near perfect match to the ideal demands.

3.2 Planning models

Here we present the results of each individual planning model. In summary, please see the
RMSE values reported in Table 1.

The GPyOpt LSTM produced the best RMSE of any model that we evaluated. The
Vanilla LSTM had a relatively high success; it trained in a small amount of time, and
produced a relatively low RMSE of 30. The AutoKeras Structured Regressor was surprisingly
ineffective given the success of the other neural methods. It returned an RMSE of 50. One
possible reason for the lack of performance was the structure of the nets as being simple
feed-forward networks. While the algorithm was able to push down the RMSE in successive
iterations, they were not able to match the LSTMs for dealing with the time series. Finally,
we have results from linear regressions to serve as a baseline above which to improve. Here,
our best model appears to be yt ∼ bt + pt, and inclusion of an autoregressive term seems to
strictly worsen the predictions. We believe that this is because predicting a longer horizon
propogated uncertainty through the end of the prediction.

4. Proposed Experimental timeline

We observe two experimental units for a period of five months, from August to December.
We am interested in estimating the causal effects of two distinct reinforcement learning
architectures, RLj , for j ∈ {1, 2}, in addition to the causal effect of combining reinforcement
learning with behavioural feedback from the Social Cognitive Model.

We estimate seasonality effects at period t (δt) and improvements in learning due to the
accumulation of observations (Ωt), by taking the average difference between performance
across all conditions at time t and t−1. We also estimate the effect of incorporating parameters
from the social cognitive model by comparing observations within a single RL architecture,
controlling for seasonality. Finally, we causally identify the effect of each RLj , which is the
difference between the score for RLj versus RL j , and the difference in scores between RLj

and RL j , conditional on incorporating the social cognitive model, controlling for seasonality
in each case.

We then use later experimental periods to train the model on smaller subsets of our
experimental subjects: smaller groups and then at the individual scale.
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Month Group 1 Group 2 Control

July — System ID —

August RL2 RL1 + plan

September RL1 RL2 + plan

Table 2: Experimental Timeline in which we compare two different RL architectures and
the effect of a planning model.

5. Discussion

5.1 RL Architectures

Of the three architectures, BCQL seems far behind the others. We believe that an aspect of
BCQL that we thought was a strength is actually a weakness: the batch that it fills to train
off-policy. Because it needs to fill up the batch, it needs to explore the environment a bit
before stepping or learning. Small sizes of the batch might prediscpose it to parts of the
action space that are underexplored, and large sizes of the batch might mean that it is more
data hungry than we thought it would be.

Our neural architecture search in the RL policies was relatively ad-hoc: larger hidden
states and smaller batch sizes seems to improve the outcomes, and so we tended to gravitate
towards them. However, we did not have the bandwidth to do a formal parameter search.

5.2 Planning model

The experiments in out of the box AutoML were mixed, with the GPyOpt returning a huge
improvement over the vanilla models, and AutoKeras returning an score in the middle of
the pack. We hypothesize that the recurrent models that GPyOpt was optimizing with were
able to push the RMSE down far, whereas the feed-forward networks in AutoKeras had a
threshold of performance that was difficult to push forward from. Ultimately, we do not
know how similar to real data our synthetic data was, but we hope that this project lent at
least some insights on models to carry forward.

6. Conclusion

We have presented the results of a simulation that tests some of the components of a system
we hope to test. We also present the proposed experimental timeline for testing these
components. We submit the experimental timeline and simulation for comments in this
workshop, and hope to incorporate feedback as we go forward with the experiment.
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