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Abstract

We investigate the sparse linear contextual bandit problem where the parameter θ is sparse.
To relieve the sampling inefficiency, we utilize the “perturbed adversary” where the con-
text is generated adversarilly but with small random non-adaptive perturbations. We prove
that the simple online Lasso supports sparse linear contextual bandit with regret bound
O(
√
kT log d) even when d � T where k and d are the number of effective and ambient

dimension, respectively. Compared to the recent work from Sivakumar et al. (2020), our
analysis does not rely on the precondition processing, adaptive perturbation (the adaptive
perturbation violates the i.i.d perturbation setting) or truncation on the error set. More-
over, the special structures in our results explicitly characterize how the perturbation affects
exploration length, guide the design of perturbation together with the fundamental perfor-
mance limit of perturbation method. Numerical experiments are provided to complement
the theoretical analysis.

1. Introduction

Contextual bandit algorithms have become a referenced solution for sequential decision-
making problems such as online recommendations (Li et al., 2010), clinical trials (Durand
et al., 2018), dialogue systems (Upadhyay et al., 2019) and anomaly detection (Ding et al.,
2019). It adaptively learns the personalized mapping between the observed contextual
features and unknown parameters such as user preferences, and addresses the trade-off
between exploration and exploitation (Auer, 2002; Li et al., 2010; Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013; Abeille et al., 2017).

We consider the sparse linear contextual bandit problem where the context is high-
dimensional with sparse unknown parameter θ (Abbasi-Yadkori et al., 2012; Hastie et al.,
2015; Dash and Liu, 1997), i.e., most entries in θ are zero and thus only a few dimensions of
the context feature are relevant to the reward. Due to insufficient data samples, the learning
algorithm has to be sampling efficiency to support the sequential decision-making. However,
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the data from bandit model usually does not satisfy the requirements for sparse recovery
such as Null Space condition (Cohen et al., 2009), Restricted isometry property (RIP)
(Donoho, 2006), Restricted eigenvalue (RE) condition (Bickel et al., 2009), Compatibility
condition (Van De Geer et al., 2009) and so on. To achieve the desired performance, current
works has to consider the restricted problem settings, e.g., the unit-ball, hypercube or i.i.d.
arm set (Carpentier and Munos, 2012; Lattimore et al., 2015; Kim and Paik, 2019; Bastani
and Bayati, 2020), the parameter with Gaussian prior(Gilton and Willett, 2017). One
exception is the Online-to-Confidence-Set Conversions (Abbasi-Yadkori et al., 2012) which
considers the general setting but suffers from computation inefficiency.

In this paper, we tackle the sparse linear bandit problem using smoothed analysis tech-
nique (Spielman and Teng, 2004; Kannan et al., 2018), which enjoys efficient implementation
and mild assumptions. Specifically, we consider the perturbed adversary setting where the
context is generated adversarially but perturbed by small random noise. This setting inter-
polates between an i.i.d. distributional assumption on the input, and the worst-case of fully
adversarial contexts. Our results show that with a high probability, the perturbed adver-
sary inherently guarantees the (linearly) strong convex condition for the low dimensional
case and the restricted eigenvalue (RE) condition for the high dimensional case, which is a
key property required by the standard Lasso regression. We prove that the simple online
Lasso supports sparse linear contextual bandits with regret bound O(

√
kT log d). We also

provide numerical experiments to complement the theoretical analysis.

We also notice the recent work from Sivakumar et al. (2020) using smoothed analysis
for structured linear contextual bandits. Compared to their work, our proposed method has
the following advantages: (1) Our analysis only relies on the simple online Lasso instead of
precondition processing and truncation on the error set. Although preconditioning transfers
the non-zero singular value to 1, this could amplify the noise, and the preconditioned noises
are no longer i.i.d., which makes concentration analysis difficult and the estimation unstable
(Jia et al., 2015). We also observe this effect in the numeric experiments. (2) Their proof
relies on the assumption that perturbations that need to be adaptively generated based on
the observed history of the chosen contexts. Instead, our analysis is based on the milder
assumption that the perturbation is i.i.d. and non-adaptive. (3) Their regret does not
describe the full picture of the effect of variance of the perturbation. Our analysis explicitly
show how the perturbation affects the exploration length, guide the design of perturbation
together with the fundamental performance limit of perturbation method.

2. Model and Methodology

In the bandit problem, at each round t, the learner pulls an arm at among m arms (we
denote the arm sets by [m]1, that is, at ∈ [m]) and receives the corresponding noisy reward
rtat . The performance of the learner is evaluated by the regret R which quantifies the total
loss because of not choosing the best arm a∗t during T rounds:

R(T ) =

T∑
t=1

(rta∗t − r
t
at). (1)

1. In this paper, we denote by [n] the set [1, · · · , n] for positive integer n.
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In this paper, we focus on the sparse linear contextual bandit problem. Specially, each arm
i at round t is associated with a feature (context) vector µti ∈ Rd. The reward of that
arm is assumed to be generated by the noisy linear model which is the inner product of
arm feature and an unknown S-sparse parameter θ∗ where S denotes the set of effective
(non-zero) entries and |S| = k. That is,

rti = 〈µti, θ∗〉+ ηt, |θ∗|0 = k, (2)

where ηt follows Gaussian distribution N (0, σ2). To handle the non-convex L0 norm, Lasso
regression is the natural way to learn the sparse θ∗ with the relaxation from L0 to L1 norm.
To achieve the desired performance, the algorithm has to rely on well designed contexts
which guarantee sampling efficiency requirements such as Null Space condition (Cohen
et al., 2009), Restricted isometry property (RIP) (Donoho, 2006), Restricted eigenvalue
(RE) condition (Bickel et al., 2009), Compatibility condition (Van De Geer et al., 2009) and
so on. However, the data from bandit problems usually does not satisfy these conditions
since the contexts could be generated adversarilly. Up to now, deciding on the proper
assumptions for sparsity bandit problems is still a challenge (Lattimore and Szepesvári,
2018).

Inspired by the smoothed analysis for greedy algorithm of linear bandit problem (Kan-
nan et al., 2018), we consider the Perturbed Adversary defined below for the sparse linear
contextual bandit problem.

Definition 1 Perturbed Adversary (Kannan et al., 2018). The perturbed adversary acts
as the following at round t.

• Given the current context µt1, · · · , µtm which could be chosen adversarially, the pertur-
bation et1, · · · , etm are drawn independently from certain distribution. Also, each eti is
independently (non-adaptively) produced of the context.

• The perturbed adversary outputs the contexts (xt1, · · · , xtm) = (µt1 + et1, · · · , µtm + etm)
as the arm features to the learner.

Let X ∈ Rd×t be the context matrix where each column contains one context vector and Y
the column vector that contains the corresponding rewards. Based on perturbed adversary
setting, we analyze the online Lasso in Algorithm 1 for sparse linear contextual bandit.
Generally speaking, our analysis considers two cases using different techniques, one for the
low dimensional case when d < T and the other for the high dimensional case when d� T .
For the low dimensional case, the analysis utilizes random matrix theory (Tropp, 2012) to
prove that with a high probability, the minimum eigenvalue of scaled sample covariance
matrix is increasing linearly with round t; for the high dimensional case, the RE condition
is guaranteed with the help of Gaussian perturbation’s property (Raskutti et al., 2010) that
the nullspace of context matrix under Gaussian perturbation cannot contain any vectors
that are “overly” sparse when t is larger than some threshold. The properties of both cases

support O(
√

k log d
t ) parameter recovery of Lasso regression under noisy environment which

leads to O(
√
kT log d) regret.
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Algorithm 1: Online Lasso For Sparse Linear Contextual Bandit Under Perturbed
Adversary

1 Initialize θ0, X and Y .
2 for t = 1, 2, 3, · · · , T do
3 The perturbed adversary produces m context [xt1, ..., x

t
m].

4 The learner greedily chooses the arm i = arg maxj∈[m]〈xtj , θt〉, observes the

reward rti , appends the new observation (xti, r
t
i) to (X,Y ), and updates θt+1 by

the Lasso regression:

θt+1 = arg min
θ

G(θ;λt) := ‖Y −X>θ‖22 + λt‖θ‖1. (3)

5 end

2.1 Low Dimensional Case

We first consider the low dimensional case when d < T . Under the perturbed adversary
setting, we then define the property named perturbed diversity which is adopted from
Bastani et al. (2017).

Definition 2 Perturbed Diversity. Let eti ∼ D on Rd. Given any context vector µti, we
call xti perturbed diversity if for xti = µti + eti, the minimum eigenvalue of sample covariance
matrix under perturbations satisfies

λmin

(
Eeti∼D

[
xti(x

t
i)
>
])
≥ λ0,

where λ0 is a positive constant.

Intuitively speaking, perturbed diversity guarantees that each context provides at least cer-
tain information about all coordinates of θ∗ from the expectation which is helpful to recover
the support of the parameter via regularized method. We can find several distributions D
that could make the perturbed diversity happen, e.g., the Gaussian distribution. However,
without any restriction, xti could be very large and out of the realistic domain. Instead,
the value of each dimension (we denote by xti(j) the j-th dimension of xti) should lie in
a bounded interval, in the meanwhile, the total energy of context vector is bounded by
certain constant, i.e., ‖xti‖22 ≤ R2. This motivates us to consider the perturbed diversity
under censored perturbed adversary.

Lemma 1 Given the context vector µti ∈ Rd and |µti(j)| ≤ qj for each j ∈ [d], we define the
censored perturbed context xti under eti ∼ N (0, σ2

1I) as follows:

xti(j) =


µti(j) + eti(j), if |µti(j) + eti(j)| ≤ qj ,
qj , if µti(j) + eti(j) > qj ,

− qj , if µti(j) + eti(j) < −qj .
(4)

Then xti has the perturbed diversity with λ0 = g( 2q
σ1
, 0)σ2, where q = minj qj and g(·, ·) is a

composite function of the probability density function φ(·) and the cumulative distribution
function Φ(·) of the normal distribution. Please refer to equation (14) for more details.
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The proof is provided in the appendix and one can easily extend it to the case where
eti ∼ N (0,Σ). Based on Lemma 1, we can derive that with a high probability, λmin(XX>)
grows at least with a linear rate t.

Lemma 2 With the censored perturbed diversity, when t > 2R2

g
(

2q
σ1
,0
)
σ2
1

log(dT ), the follow-

ing is satisfied with probability 1 − 1
T : λmin(XX>) ≥ g

(
2q
σ1
, 0
)

(1 − τ)σ2
1t, where τ =√

2R2

g
(

2q
σ1
,0
)
σ2
1t

log(dT ).

As one can see from Lemma 2, after certain number of (implicit) exploration rounds, i.e.,
2R2

g(2q/σ1,0)σ2
1

log(dT ), we will have enough information to support the O(
√

k log d
t ) parameter

recovery by Lasso regression. The regret analysis together with the high dimensional case
is deferred to the next section.

2.2 High Dimensional Case

Now we turn to the high dimensional case when d � T . During the learning process, the
scaled sample covariance matrix XX> is always rank deficiency which means λmin(XX>) =
0 and Lemma 2 based on random matrix theory can not be applied here any more. We
then consider the restricted eigenvalue (RE) condition instead. Here the “restricted” means
that the error ∆t := θt − θ∗ incurred by Lasso regression is restricted to a set with special
structure. That is, ∆t ∈ C(S;α) where

C(S;α) := {θ ∈ Rd|‖θSc‖1 ≤ α‖θS‖1},

and α ≥ 1 is determined by the regularized parameter λt. In the following section, we focus
on C(S; 3) which could be achieved by setting λt = Θ(2σR

√
2t log(2d)).

The key is to prove that Null space of X> has no overlapping with C(S; 3). It has been
proved that special cases in which contexts are purely sampled from special distributions
such as Gaussian and Bernoulli distributions, satisfy this property (Zhou, 2009; Raskutti
et al., 2010; Haupt et al., 2010). We make a further step to show that nullspace of context
matrix under Gaussian perturbation cannot contain any vectors that are “overly” sparse
when t is larger than some threshold.

Theorem 1 Consider perturbation eti ∼ N (0,Σ) where ‖Σ1/2∆‖2 ≥ γ‖∆‖2 for ∆ ∈

C(S; 3). If t > max(
4c′′q(Σ)

γ2
k log d︸ ︷︷ ︸

d

,
8196aR2λmax(Σ) log T

γ4︸ ︷︷ ︸
e

), then with probability 1−( c
′

ect +

1
Ta ), we have ∆>XX>∆ ≥ ht‖∆‖22, where c, c′, c′′ are universal constants, q(Σ) = maxi Σii

and h = (γ
2

64 −R‖∆‖
2
2

√
2aλmax(Σ) log T

t ).

Moreover, we can design γ2 = λmin(Σ). By Rayleigh quotient, one can obtain λmax(Σ) ≥
q(Σ) = maxi Σii ≥ mini Σii ≥ λmin(Σ) = γ2.

We then discuss how perturbations will affect the exploration length. First, the larger
perturbation does not indicate the less regret. Results of Sivakumar et al. (2020) show that
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the regret is O( log T
√
T

σ1
) where σ1 is the perturbation’s variance, and suggests choosing

larger σ1 leads to smaller regret bounds. However this is not the full picture that shows
the effect of the perturbation’s variance. Our results show that increasing the variance of
the perturbation has limited effect over the necessary exploration and regret, which reveals
theoretical limit of the perturbation method. Specifically, in the term (d) of Theorem 1,

no matter how large the variance is, the term q(Σ)
γ2
≥ 1. So 4c′′k log d is the necessary

exploration length and cannot be improved. Second, Condition Number and the SPR (the
signal to perturbation ratio) are important factors. The condition number Cond(Σ) controls

both term (d) and (e), e.g., q(Σ)
γ2
≤ λmax(Σ)

λmin(Σ) = Cond(Σ). This also shows that the optimal

perturbation design will choose Σ = σ1I. In (e) of Theorem 1, R2

γ2
can be regarded as the

ratio between the energy of the unperturbed context and the perturbation energy. This
ratio shows the trade-off between exploration and fidelity. That is, a large variance not only
reduces the exploration (meanwhile, the lower bound is guaranteed by (e)) but also reduces
the fidelity of original context.

3. Regret Analysis

Based on the properties we have proved for the low and high dimensional cases, we can
obtain the following recovery guarantee by the techniques from the standard Lasso regression
(Hastie et al., 2015).

Lemma 3 If t > Te and λt = 2σR
√

2t log 2d
δ , the Lasso regression under perturbed ad-

versary has the recovery guarantee ‖θt − θ∗‖2 ≤ 3σR
C

√
2k log 2d/δ

t with probability 1 − δ,

where Te = 2R2

g
(

2q
σ1
,0
)
σ2
1

log(dT ), C = g
(

2q
σ1
, 0
)

(1 − τ)σ2
1 for the low dimensional case and

Te = max(4c′′q(Σ)
γ2

k log d, 8196aR2λmax(Σ) log T
γ4

), C = γ2

64 − R
√

2aλmax(Σ) log T
t for the high di-

mensional case.

We then get the final result in Theorem 2 based on all the analysis above.

Theorem 2 The online Lasso for sparse linear contextual bandit under perturbed adversary
admits the following regret with probability 1− δ.

Regret ≤ 2R

(
Te +

6σR

C

√
2kT

log 2d

δ

)
= O(

√
kT log d). (5)

4. Conclusion

This paper utilizes the “perturbed adversary” where the context is generated adversarially
but with small random non-adaptive perturbations to tackle sparse linear contextual bandit
problem. We prove that the simple online Lasso supports sparse linear contextual bandit
with regret bound O(

√
kT log d) for both low and high dimensional cases and show how

the perturbation affects the exploration length and the trade-off between exploration and
fidelity. Future work will focus on extending our analysis to more challenge setting, i.e.,
defending against adversarial attack for contextual bandit model.
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Appendix

Lemma 4 (A variant of Matrix Chernoff Tropp (2012)) Consider a finite sequence zt of
independent, random, self-adjoint matrices satisfy

zt � 0 and λmax(zt) ≤ Q almost surely.

Compute the minimum eigenvalue of the sum of expectations, ψmin := λmin(
∑

t E(zt)). Then
for δ ∈ [0, 1], we have

P

{
λmin(

∑
t

zt) ≤ (1− δ)ψmin

}
≤ d

[
e−δ

(1− δ)1−δ

]ψmin/Q

. (6)

Moreover, for any ψ ≤ ψmin, we can get

P

{
λmin(

∑
t

zt) ≤ (1− δ)ψ

}
≤ d

[
e−δ

(1− δ)1−δ

]ψ/Q
. (7)

Proof Since ψ ≤ ψmin, there exists δ1 ∈ [0, 1] such that ψ = δ1ψmin. We have

(1− δ)ψ = (1− δ)δ1ψmin = (1− (1− δ1 + δδ1︸ ︷︷ ︸
δ2

))ψmin.

Plugging this into (6) leads to

P

{
λmin(

∑
t

zt) ≤ (1− δ)ψ

}
≤ d

[
e−δ2

(1− δ2)1−δ2

]ψmin/Q

.

One can easily verify that δ2 ≥ δ. So[
e−δ2

(1− δ2)1−δ2

]ψmin
Q

≤
[

e−δ

(1− δ)1−δ

]ψmin
Q

≤
[

e−δ

(1− δ)1−δ

] ψ
Q

.

Then we obtain

P

{
λmin(

∑
t

zt) ≤ (1− δ)ψ

}
≤ d

[
e−δ

(1− δ)1−δ

]ψ/Q
. (8)

Since e−δ

(1−δ)1−δ ≤ e
−δ2/2, so we have the following when δ ∈ [0, 1]:

P

{
λmin(

∑
t

zt) ≤ (1− δ)ψ

}
≤ d

[
e−δ

2/2
]ψ/Q

. (9)
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Fact 1 Let η = [η1, · · · , ηt]> where each ηi i.i.d. from N (0, σ2). Let X ∈ Rd×t where each
|Xij | ≤ R. Then with a high probability 1− δ, we have

‖Xη‖∞ ≤ σR
√

2t log
2d

δ
.

Fact 2 (Chernoff Bound for Sum of Sub-Gaussian random variables) Let X1, · · · , Xn be n
independent random variables such that Xi ∼ subG(σ2). Then for any a ∈ Rn and c >= 0,
we have

Pr

(
n∑
i=1

aiXi < −c

)
≤ exp

(
− c2

2σ2‖a‖22

)
. (10)

That is, with a high probability at least 1− δ, we have
n∑
i=1

aiXi > −
√

2σ2‖a‖22 log
1

δ
. (11)

Lemma 5 (Restricted Eigenvalue Property (Corollary 1 of Raskutti et al. (2010))) Suppose
that Σ satisfies the RE condition of order k with parameters (1, γ) and denote q(Σ) =
maxi Σii. Then for universal positive constants c, c′, c′′, if the sample size satisfies

t >
4c′′q(Σ)

γ2
k log d, (12)

then the matrix ΦΦ>

t satisfies the RE condition with parameters (1, γ8 ) with probability at

least 1− c′

ect where Φ ∈ Rd×t and each column is i.i.d. N (0,Σ).

Proof of Lemma 1

Proof Since eti(j) is independent of each other, we can analyze it by coordinates. To
simplify the analysis, we slightly abuse the notations and remove subscript i and superscript
t (only within this proof), that is, x(j) := xti(j) and e(j) := eti(j).

λmin

(
E
[
xx>

])
= min
‖w‖=1

w>E[xx>]w

= min
‖w‖=1

E(w>xx>w)

= min
‖w‖=1

E(〈w, x〉)2)

≥ min
‖w‖=1

Var(〈w, x〉)

≥ min
‖w‖=1

Var(〈w, e〉)

= min
‖w‖=1

d∑
i=1

(w(i))2Var(e(i)|censored in [−qi, qi])

≥ min
‖w‖=1

g(2q/σ, 0)σ2
1

d∑
i=1

(w(i))2

= g(2q/σ1, 0)σ2
1,

10
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where g(2q/σ1, 0) is according to Lemma 6.

Lemma 6 Let e ∼ N (0, σ2
1). For any interval [a, b] which contains 0 and fixed length 2q,

e.g., b− a = 2q, and q ≥ σ1, we have the following result:

Var(e|censored in [a, b]) ≥ g(2q/σ1, 0)σ2
1. (13)

Proof We first derive the variance for two sided censored Gaussian Distribution. Denote
α = a/σ1 and β = b/σ1. For the truncated Gaussian distribution, we have

E(e|e ∈ [a, b]) = σ1
φ(α)− φ(β)

Φ(α)− Φ(β)
= σ1ρ.

Var(e|e ∈ [a, b]) = σ2
1(1 +

αφ(α)− βφ(β)

Φ(α)− Φ(β)
− ρ2︸ ︷︷ ︸

Λ

).

Then we calculate the variance of two sided censored Gaussian distribution by

Var(e|censored in [a, b]) = Ey[Var(e|y)] + Vary[E(e|y)],

where y denotes the event e ∈ [a, b]. After some basic calculations, we can get the following
result:

Var(e|censored in [a, b]) = σ2
1(Φ(β)− Φ(α))(1 + Λ)

+ σ2
1[(ρ− β)2(Φ(β)− Φ(α))(1− Φ(β) + Φ(α))

+ 2(β − α)(ρ− β)(Φ(β)− Φ(α))Φ(α)

+ (β − α)2(1− Φ(α))Φ(α)]

= g(β, α)σ2
1. (14)

One can show that (1) Var(e|censored in [a, b]) achieves minimum when a = 0 or b = 0 by
the first order optimality condition. (2) Var(e|censored in [0, b]) is an increasing function
w.r.t b. Based on (1) and (2), we obtain

Var(e|censored in [a, b]) ≥ Var(e|censored ∈ [0, 2q]) = g(2q/σ1, 0)σ2
1,

Proof of Lemma 2

Proof At round t, we have

λmin(E(XX>))

= λmin(E(
t∑
i=1

(xiai(x
i
ai)
>)) = λmin(

t∑
i=1

E(xiai(x
i
ai)
>))

≥
t∑
i=1

λmin(E(xiai(x
i
ai)
>)),

11
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where the second equality is due to the independence of each round’s perturbation and the
inequality comes from the fact that minimum eigenvalue is an super-additive operator.

For the censored Gaussian perturbation, λmin(E(xiai(x
i
ai)
>)) ≥ g( 2q

σ1
, 0))σ2

1 based on

Lemma 1. So λmin(E(XX>)) ≥ g( 2q
σ1
, 0)σ2

1t.

Based on (9) of Lemma 4 and λmax(xiai(x
i
ai)
>) ≤ ‖xiai‖

2
2 ≤ R2, one can obtain

P
{
λmin(XX>) ≤ g(

2q

σ1
, 0)(1− τ)σ2

1t

}
≤ d

[
e−τ

2/2
] g(2R/σ1,0)σ21t

R2
.

Let 1
T = d

[
e−τ

2/2
] g(2R/σ1,0)σ21t

R2
and one can get the final result.

Proof of Theorem 1

Proof To simplify the analysis, we slightly abuse the notation and denote the unperturbed
context matrix by µ where each column µi is one context vector. Similarly, denote e to be
the perturbation matrix and ei to be the column vector. We first decompose the ∆>XX>∆
as follows:

∆>XX>∆ = ∆>µµ>∆︸ ︷︷ ︸
(a)

+2 ∆>eµ>∆︸ ︷︷ ︸
(b)

+ ∆>ee>∆︸ ︷︷ ︸
(c)

. (15)

For the term (a) in equation (15), one can only show (a) since ∆ could lie in Null(µ>).
For term (b) and (c), we find both terms high probability lower bounds respectively.

Now consider a positive definite matrix Σ and we can design that Σ such that it satisfies
the RE, that is, ‖Σ1/2∆‖2 ≥ γ‖∆‖2. Based on Lemma 4, we can derive the following for
term (c). For universal positive constants c, c′, c′′, if the sample size satisfies

t >
4c′′q(Σ)

γ2
k log d, (16)

where q(Σ) = maxi Σii, then with probability at least 1− c′

ect

∆>ee>∆ ≥ γ2

64
t‖∆‖22. (17)

We then derive a high probability bound for (b). First, we decompose (b) into a weighted
sum of i.i.d. Gaussian variable. That is,

∆>eµ>∆ =

t∑
i=1

(µ>i ∆)(∆>ei), (18)

12
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where µTi ∆ is the weight and each ∆>ei ∼ N (0,∆>Σ∆). Based on the Chernoff Bound of
weighted sum of sub-Gaussian random variables in Fact 2, we have

t∑
i=1

(µ>i ∆)(∆>ei) ≥ −

√√√√2a∆>Σ∆
t∑
i=1

(µ>i ∆)2 log t (19)

≥ −

√√√√2aλmax(Σ)‖∆‖22
t∑
i=1

R2‖∆‖22 log t (20)

= −Rt‖∆‖22

√
2aλmax(Σ) log t

t
. (21)

with probability at least 1 − 1
ta . We can conclude with probability at least 1 − ( c

′

ect + 1
ta ),

both inequality (17) and (21) hold. If the round t satisfies

t > max

4c′′q(Σ)

γ2
k log d︸ ︷︷ ︸

d

,
8196aR2λmax(Σ) log t

γ4︸ ︷︷ ︸
e

 . (22)

, we have (b) + (c) ≥ ht‖∆‖22, where h =

(
γ2

64 −R
√

2aλmax(Σ) log t
t

)
.

Proof of Lemma 3

Proof Our proof combines the techniques from smoothed analysis and Lasso regression.
Since θt minimizes G(θ), we have G(θt) ≤ G(θ∗). This yields the following inequality

‖X>∆t‖22 ≤ ∆tXη + λt(‖θ∗‖1 − ‖θ∗ + ∆t‖1),

where η denotes the noise vector. Note that ‖θ∗‖1 = ‖θ∗S‖. Furthermore, one can verify
that ‖θ∗‖1−‖θ∗+ ∆t‖1 ≤ ‖∆t

S‖1−‖∆t
Sc‖1. For ∆tXη, applying Hö lder’s inequality yields

∆tXη ≤ ‖∆t‖1‖Xη‖∞ ≤ σR
√

2t log
2d

δ
‖∆t‖1 =

λt

2
‖∆t‖1,

where the second inequality is due to the fact 1. Combine all above and we obtain

‖X>∆t‖22 ≤
λt

2
‖∆t‖1 + λt(‖∆t

S‖1 − ‖∆t
Sc‖1) (23)

≤ 3

2
λt‖∆t‖1 ≤

3

2
λt
√
k‖∆t‖2. (24)

First from inequality (23), we can obtain ∆t ∈ C(S; 3). For low dimensional case, we have

‖X>∆t‖22 ≥ λmin(XX>)‖∆t‖22 ≥ Ct‖∆t‖22 by Lemma 2, where C = g
(

2q
σ1
, 0
)

(1− τ)σ2
1. For

high dimensional case, we apply Theorem 1 since ∆t ∈ C(S; 3) and get ‖X>∆t‖22 ≥ Ct‖∆t‖22

13
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where C = γ2

64 −R
√

2aλmax(Σ) log T
t . Combine these with inequality (24) and we get the final

result

‖∆t‖2 ≤
3σR

C

√
2k log 2d/δ

t
.

Proof of Theorem 2

Proof As for the regret in round t, we have

〈xti∗t , θ
∗〉 − 〈xtit , θ

∗〉
= 〈xti∗t , θ

∗ − θt〉 − 〈xtit , θ
∗ − θt〉+ 〈xti∗t , θ

t〉 − 〈xtit , θ
t〉

≤ 〈xti∗t , θ
∗ − θt〉 − 〈xtit , θ

∗ − θt〉
≤ ‖〈xti∗t , θ

∗ − θt〉‖2 + ‖〈xtit , θ
∗ − θt〉‖2

≤ 2R‖θ∗ − θt‖2,

where the first inequality comes from the greedy choice since it = arg maxi〈xti, θt〉 and the
last inequality is due to the censored perturbations. Based on the analysis of low and high
dimensional cases, we denote the exploration length as Te. During the exploration, we can
bound the regret by 2RTe. So we can derive that

Regret =

Te∑
t=1

〈xti∗ , θ∗〉 − 〈xtit , θ
∗〉+

T∑
t=Te+1

〈xti∗ , θ∗〉 − 〈xtit , θ
∗〉

≤ 2RTe + 2R

T∑
t=Te+1

‖θ∗ − θt‖2

≤ 2RTe + 2R

T∑
t=Te+1

3σR

C

√
2k log 2d/δ

t

≤ 2R

(
Te +

6σR

C

√
2kT

log 2d

δ

)

Numeric Simulations

This section shows the result of numeric simulations. We choose the context’s dimension
d = 2000 where effective dimension k = 20 and 5 arms for each round. Our sparse bandit
learning process only contains 150 rounds with each context vector are randomly generated
from the uniform distribution [0, 1]. Each experiment are repeated 10 times to reduce the

14
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Figure 1: Regret of preconditioning and no preconditioning setting with perturbation vari-
ance 0.1.

effect of the other unnecessary factors. Solid line denotes the average performance and
the shadow area contains best and worst performance during repeated running. We first
compare the preconditioning via SVD from the algorithm of Sivakumar et al. (2020) which
transfers all non-zero singular eigenvalues to 1. Figure 1 shows the regret results with
and without preconditioning. In our experiments, we find that the average performance
of preconditioning is almost the same as the one without preconditioning (see solid line).
Moreover, the performance of preconditioning shows more unstable (see the shadow area).
Also, for d = 2000, preconditioning heavily slows down the learning process. The reason
could be the noise amplification incurred by preconditioning where Jia et al. (2015) shows
(1) the preconditioned noise are no longer i.i.d. (2) preconditioning can amplify the noise.

We then investigate the performance under different perturbation variance. The result in
Figure 2 shows the regret will first decrease then increase which is expected by our analysis.
The first decreasing phase is because that the perturbation brings good property to the
context matrix. When the perturbation variance becomes large, the context’s variance also
becomes large which leads to more explorations under the uncertainty environment.
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Figure 2: Regret under different perturbation variance.
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