
Assisted Robust Reward Design

Jerry Zhi-Yang He hzyjerry@berkeley.edu
Department of Computer Science
University of California, Berkeley
Berkeley, CA 94305, USA

Anca D. Dragan anca@berkeley.edu

Department of Computer Science

University of California, Berkeley

Berkeley, CA 94305, USA

Editor: Workshop on Real World Experiment Design and Active Learning at ICML 2020

Abstract

Real-world AI systems often need complex reward functions. When we define the problem
the AI needs to solve, we pretend that an engineer specifies this complex reward exactly
and it is set in stone from then on. In practice, however, reward design is an iterative
process: the engineer designs a reward, eventually encounters an environment where the
reward incentivizes the wrong behavior, revises the reward, and repeats until convergence.
What would it mean to rethink AI to formally account for this iterative nature of reward
design? We propose that the AI system needs to not take the specified reward for granted,
but rather have uncertainty about what the reward is, and account for the future iterations
as future evidence it will receive. We contribute an AI-assisted reward design method that
speeds up the design process by taking control over this future evidence: rather than letting
the designer eventually encounter environments that require revising the reward, the system
actively exposes the designer to the environments that have the most potential to narrow
down what the reward should be. We test this method in an autonomous driving task,
and find that it more quickly improves the car’s behavior in held-out environments, and
iteratively proposes environments that are “edge cases” for the current reward.

Keywords: Reward Design, Active Learning, Safety

1. Introduction

The job of an AI agent is to maximize its cumulative reward. From the perspective of
the agent, it is as if the reward function fell from the sky: it is just there, it is something
embedded in the very problem definition. In reality, there is a lot happening behind the
scenes, where a human designer has to actually specify this reward. This is almost always
an iterative process, where the reward specification evolves over time as the designer tests
the agent in more and more environments.

Take, for instance, autonomous cars. They have to correctly evaluate and balance safety,
efficiency, comfort and abiding by the law. An engineer might start by looking at some
representative environments, and specifying a reward function that leads to the behavior
they want in each of them. But working well in this set of environments is not enough —
the reward function has to incentivize the right behavior in any environment the car will

1

He and Dragan

Figure 1: Assisted Reward Design Process. The designer specifies a proxy reward on a set of environments for
highway merging. Our algorithm takes the current design, and queries the designer with a new environment.

encounter in its lifetime1. The engineer will test the car in further environments, maybe in
simulation, or maybe by test-driving in the real world. Almost inevitably at some point,
optimizing for the same reward will lead to some undesirable behavior. The engineer will
then revise the initial reward, and repeat the process.

An AI system should account for this iterative nature of reward design. We argue that
apart from simply maximizing the specified reward, the AI should also help the engineer
figure out what the reward is — we refer to as Assisted Reward Design.

To that end, we use a model in which the AI has uncertainty about the reward function
— it is no longer set in stone as in the current formulations. Every revision of the reward
by the designer does not define the reward function fully, but is instead an evidence about
it. The AI’s ultimate goal is to do well with respect to the true reward at deployment time.

How does this formulation lead to design assistance? A naive agent would passively
estimate the reward from observations so far. An assistive agent, in contrast, accounts for
future iterations of the reward as future observations. The agent can then act to make these
observations more informative, by exposing the designer to environments where revisions
are most likely needed. Rather than letting the designer eventually encounter edge-case
environments, the agent actively proposes them and asks for reward revisions.

We test our framework on an autonomous driving task in simulation with ground truth
rewards, and in a case study with end users. We find that it leads to improvements in
behavior on difficult test scenarios more quickly than the passive baseline, and that the
environments it produces are ones in which the current reward estimate fails.

Overall, we are excited to contribute a framework in which AI systems do not just
optimize what we design for them, but actively help us design better and more robust
reward functions. Our work fits broadly in reward learning (Ng and Russell, 2000; Abbeel
and Ng, 2004; Ramachandran and Amir, 2007; Bajcsy et al., 2017; Ziebart et al., 2008;
Ratliff et al., 2006; Levine and Koltun, 2012), and is related to methods that actively query
for demonstrations (Lopes et al., 2009; Brown et al., 2019), comparisons (Christiano et al.,
2017; Sadigh et al., 2017), advice (Odom and Natarajan, 2015), or scalar feedback (Reddy
et al., 2019). Our focus is on expert users that specify reward functions. Our finding is
that by keeping a belief over reward functions, agents can identify edge-cases where the
currently probable rewards contradict, and help the expert iterate.

1. We assume that everything else such as world model, planning algorithms, etc. work out well for the
agent. In this paper we focus only on the reward.

2

2. Assisted Reward Design

2.1 Problem Setup

Let an “environment” M be an MDP without the reward function. We assume access
to a large set of such environments at development time, Mdevel, which designer cannot
exhaustively test. This can be from a several-million mile driving dataset, a parameterized
distribution of synthetic environments, or the output from a generative model of the world.
The agent is deployed in a potentially different Mdeploy, which we do not have access to.
2 We further assume access to a space of reward functions parametrized by w ∈ W —
these can be linear weights on pre-defined features, or weights in a neural network that
maps raw input to scalar reward. We denote by w∗ the parameters of the desired reward
function, which would induce the desired behavior in Mdevel and Mdeploy. We denote by
ξw,M = arg maxξ Rw(ξ;M) the optimal trajectory (or policy, but for the purpose of this
work we consider deterministic MDPs with set initial states) induced by w. Therefore,
our assumption is that there exists a w∗ such that ξw∗,M is the desired behavior for any
M ∈Mdevel and any M ∈Mdeploy. We do not have access to w∗.

We first detail how unassisted reward design works, then define the assisted reward
design problem and introduce our method.

2.2 The Process of Unassisted Reward Design.

In one-shot design, the designer takes a subset of environments M0 ⊆ Mdevel, assume
it is representative of Mdeploy, design a w̃0 for that M0, and deploy the system with
w̃0. Eventually they encounter during their testing or deployment a new M ′ on which
optimizing w̃0 does not lead to desirable behavior. Then, they would augment their set to
M1 =M0 ∪ {M ′}, and re-design: M0 → w̃0 →M1 =M0 ∪ {M ′} → w̃1 → ... Implicitly,
at every step along the way, the AI agent treats the current w̃i as equivalent to w∗.

2.3 The Assisted Reward Design Problem.

In the Assisted Reward Design problem, the AI agent no longer treats proxy reward w̃ as
equivalent to w∗ — rather, it is a proxy observation of w∗ based on the current Mi. The
agent interprets w̃ as evidence about w∗, and use all past evidence to obtain a belief of w∗.
The key step is to be able to account for (and thus influence) the future evidence in order
to get a more successful reward estimate. We hereby formulate the assisted reward design
as a POMDP problem with state uncertainty.

State, actions, observations, transitions. The notion of a “state” is a set M of envi-
ronments along with the hidden state w∗. The agent (and designer) starts at state (M0, w

∗)
(either chosen by the designer, or simply the empty set). We can transition from a state to
the next by “acting”, i.e. adding one more environment Mi to consider, Mi+1 =Mi ∪Mi.
Every time we enter a state (M, w∗), we receive an observation w̃ about w∗.

Observation Model. We adopt the approximately optimal designer model from previous
work on Inverse Reward Design (Hadfield-Menell et al., 2017), which maps the true reward

2. Our method works best when can over-parametrize environments to induce a vast set Mdevel that
includes everything we might see at deployment time in Mdeploy — otherwise, if Mdeploy is allowed to
be drastically different, this still leaves the robot exposed to potential failures after deployment.

3

He and Dragan

w∗ and designer’s training environment set M to a distribution over the proxy reward w̃.

Pdesign(w̃|w∗,M) ∝ exp

(|M|∑
k=1

β
[
Rw∗(ξw̃i,Mk

)
])

(1)

Objective. The objective of assisted reward design is to achieve high reward at deployment
time. What the robot controls is a sequence of actions, i.e. a sequence of environments it
can propose. These lead to observations about w∗. At deployment time, the robot uses its
belief to generate optimal trajectories, and cumulates reward according to w∗:

min
M1,..,MT

E
M∼Mdeploy

max
ξ

E
w∼b(M1,..MT)

[Rw∗(ξ,M)] (2)

where b(M1, ..,MT) is the robot’s belief based on its state MT .

Belief Distribution. At iteration i, we can compute a belief distribution w∗ based on
past obervations Pi(w = w∗|w̃i,Mi) using Eq. (1) and Bayes Rule:

Pi(w = w∗|w̃i,Mi) ∝ P (w)

|M|∏
k=1

exp
[
βRw(ξw̃i,Mk

)
]

Z̃k(w)
, Z̃k(w) =

∫
w̃

exp
[
βRw(ξw̃i,Mk

)
]
dw̃ (3)

where P (w) is the prior and Z̃ is the normalizing constant. This posterior distribution
Pi(w = w∗) gives us uncertainty over true reard w∗. We next introduce how the AI agent
can take actions to influence of this uncertainty.

2.4 Approximate Solution via Information Gain.

We use a proxy objective: disambiguate the reward as much as possible; ideally, if we
identify w∗ exactly, the robot attains 0 regret at deployment. Thus, we can employ a
greedy strategy by selecting the action (M) that leads to the most information gain:

f(M) = H[w|(Mi, wi)]− Ew̃i+1∼P (w∗)H[w|(Mi+1, w̃i+1)] (4)

Here H[w] is the entropy of posterior distribution of P (w = w∗) and H[w|(Mi+1, w̃i+1)] is the
conditional entropy after the new observation. This heuristic is common in active learning
(Houlsby et al., 2011; Gal et al., 2017) and robot active exploration (Burgard et al., 1997).
The resulting query environments have high probability of narrowing down our uncertainty
over w∗: for instance, an environment where the autonomous vehicle is uncertain whether
it should overtake the nearby car or not. In practice to limit the AI’s action space, we
compute Eq. (4) on a candidate set Mcand ⊆Mdevel where |Mcand| � |Mdevel|.

3. Experiments on Highway Merging for Autonomous Vehicles

We evaluate Assisted Reward Design on (1) a simulation experiment where we assume that
there exists a ground truth reward function and (2) a human case study where the subjective
reward fuctions do not have explicit forms. We compare our information-based acquisition
function with a random baseline and a domain-specific metric.

4

Figure 2: Left: (a) A vehicle (yellow) needs to merge to the left lane facing other human-driving vehicles
(red) and traffic cones. (b)(c)(d) highlight three environment features. Right: distribution of Mdevel

(blue) and Mdeploy (pink) based on the difficulty metric. The test distribution noticeably contains a higher
concentration of environments with dense interactions.

Figure 3: Left: simulation experiment, Right: case study. We visualize the regret compared to true reward
under different acquisition functions in (a), violations in (c) and the efficacy of the proposed environment in
(b)(d). The “box” denotes 5th to 95th percentile

Driving Environment. The goal of the car illustrated in Fig. 2 is to merge to the left
lane on the 3-lane highway, where there 2 constant-speed human vehicles and 2 traffic cones.
The autonomous car needs to decide whether to overtake or to abide by safety and slow
down. Our cost function consists of 11 features, including distances, speed, control effort,
etc. While real world systems with perception can often contain much larger feature sets, we
find that it’s challenging enough to hand-design robust reward functions on our 11 features.

Environment Distribution Merging tends to be more difficult in crowded environments.
We can use a difficulty metric to describe crowdedness:

∑
i

1
dhuman vehicle i

+
∑

j
1

dtraffic conej
.

Fig. 2 visualizesMdevel andMdeploy under this metric. Note that bothMdevel andMdeploy

have a “long-tail” distribution of events, with Mdeploy being more difficult by design. An
ideal acquisition function to identify the rare events that are informative for reward design.

3.1 Simulation Experiment

A good assisted reward design system should help the reward designer quickly recover
high-quality reward functions. To evaluate this, we specify one set of w∗ as the ground
truth reward, and simulate the designer using w∗ and Eq. (1). Our active method based
on Maximum Information outperforms random baseline (grey) and hand-crafted domain-
specific difficulty metric (blue) in Fig. 3.

5

He and Dragan

Figure 4: Visualization of the top 2 proposed environments based on each acquisition function.

Edge-Case Nature of Proposed Environments To study why our acquisition performs
better than the others, we measure the quality of the proposed environments using:

r(Mnext) =
Ew̃∼P (w=w∗)

[
Regret(w̃;w∗,Mnext)

]
Ew̃∼P (w=w∗)EM∼Mdeploy

[
Regret(w̃;w∗,M)

] (5)

This computes the ratio of regret on next environment versus average regret on test en-
vironments. The higher r(Mnext) is, the more the next environment uncovers the overall
regret of the current posterior. As visualized in Fig. 3, Maximum Information proposes
environments of highest value. This suggests that the to find the most useful environment
for Assisted Reward Design, simply relying on heuristic environment ranking is not enough.
It is much more effective to utilize all proxy rewards and their induced uncertainty over w∗.

3.2 Case Study with Human Subjects

We evaluate our algorithm on the autonomous driving task where we use it to design a
reward function that matches our internal desired criteria. We answer the queries stemming
from the our algorithm, as well as the baselines. To remove our bias, we blind ourselves to
which algorithm produced the query.
Results Since we cannot explicitly write down the reward function and compute posterior
regret as in Section 3.1, we introduce a set of violation criteria (collisions, driving offtrack,
stopping, driving over speed, etc) as “unit tests” on the behavior. 3 Maximal Information
outperforms the other acquisition functions as shown in Fig. 3.
Edge-Case Nature of Proposed Environments We measure the quality of the pro-
posed environments at each iteration similar to Eq. (5). We use Violate(w̃;Mnext) instead
of Regret(w̃;w∗,Mnext). As visualized in Fig. 2, Maximum Information outperforms the
heuristic difficulty metric in finding environments that contains more violations and leads
to overall better reward designs.
Qualitative Analysis We random sample 3 initial environments and query designer prox-
ies w̃ on each of them. We then select the top 2 proposed environments and visualize the
trajectory of MAP estimate wMAP in them. Results are shown in Fig. 4. Notice that inter-
estingly, Maximum Information proposed environments where the current MAP estimate
fails. Though we do not explicitly optimize for finding failure cases, these environments
help reward designers effective narrow down on the true reward. In comparison, heuristic
difficulty finds environments that do not induce failure in the resulting trajectories.

3. Although we could incorporate these constraints in the “reward” function, we keep the reward features
oblivious to them to demonstrate that Assisted Reward Design can help us improve design quality.

6

References

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning, page 1.
ACM, 2004.

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning robot
objectives from physical human interaction. Conference on Robot Learning (CoRL), 2017.

Daniel S. Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement
learning. CoRR, abs/1901.02161, 2019. URL http://arxiv.org/abs/1901.02161.

Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Active mobile robot localization.
Citeseer, 1997.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Advances in Neural Information
Processing Systems, pages 4299–4307, 2017.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with
image data. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1183–1192. JMLR. org, 2017.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan.
Inverse reward design. In Advances in neural information processing systems, pages 6765–
6774, 2017.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally optimal
examples. arXiv preprint arXiv:1206.4617, 2012.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estimation
in inverse reinforcement learning. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 31–46. Springer, 2009.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Icml,
volume 1, page 2, 2000.

Phillip Odom and Sriraam Natarajan. Active advice seeking for inverse reinforcement
learning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI,
volume 7, pages 2586–2591, 2007.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning.
In Proceedings of the 23rd international conference on Machine learning, pages 729–736.
ACM, 2006.

7

http://arxiv.org/abs/1901.02161

He and Dragan

Siddharth Reddy, Anca D. Dragan, Sergey Levine, Shane Legg, and Jan Leike. Learning
human objectives by evaluating hypothetical behavior, 2019.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. In Robotics: Science and Systems, 2017.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA,
2008.

8

	Introduction
	Assisted Reward Design
	Problem Setup
	The Process of Unassisted Reward Design.
	The Assisted Reward Design Problem.
	Approximate Solution via Information Gain.

	Experiments on Highway Merging for Autonomous Vehicles
	Simulation Experiment
	Case Study with Human Subjects

