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Abstract
We consider the problem of black-box function optimization over combinatorial domains. De-

spite the vast literature on black-box function optimization over continuous domains, not much
attention has been paid to learning models for optimization over combinatorial domains until re-
cently. Nonetheless, optimization of such functions using state-of-the-art Bayesian optimization
techniques, specifically designed for combinatorial domains, still remains challenging due to the as-
sociated computational complexity. To address this problem, we propose a computationally efficient
model learning algorithm based on exponential weight updates. In particular, we use multilinear
polynomials as surrogate model for functions over the Boolean hypercube. We further extend this
representation via a group-theoretic Fourier expansion to address functions over categorical variables.
Numerical experiments over synthetic benchmarks as well as real-world biological sequence design
problems demonstrate the competitive or superior performance of the proposed algorithms versus a
state-of-the-art Bayesian optimization algorithm while reducing the computational cost by multiple
orders of magnitude.
Keywords: Black-Box functions, Combinatorial Optimization, Learning with Expert Advice

1. Introduction

A plethora of practical optimization problems involve black-box functions, with no simple analytical
closed forms, that can be evaluated at any arbitrary point in the domain. Optimization of such
black-box functions poses a unique challenge due to restrictions on the number of possible function
evaluations, as evaluating functions of real-world complex processes is often expensive and time
consuming. Efficient algorithms for global optimization of expensive black-box functions take past
queries into account in order to select the next query to the black-box function more intelligently.
While black-box optimization of real-world functions defined over integer, continuous, and mixed
variables has been studied extensively in the literature, limited work has addressed incorporation of
purely categorical type input variables.

Categorical type variables are particularly challenging when compared to integer or continuous
variables, as they do not have a natural ordering. However, many real-world functions are defined
over categorical variables. One such problem, which is of wide interest, is the design of optimal
chemical or biological (protein, RNA, and DNA) polymer sequences, which are constructed using
a fixed vocabulary. In particular, in the case of proteins and nucleic acids (DNA/RNA), there
are 20 amino acids and 4 nucleotides, respectively. Designing optimal DNA, RNA, and protein
sequences with improved or novel structures and/or functionalities is of paramount importance in
drug and vaccine design, synthetic biology and many other applications Dixon et al. (2010); Ng et al.
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(2019); Hoshika et al. (2019); Yamagami et al. (2019). Design of optimal sequences is a difficult
black-box optimization problem over a combinatorially large search space Stephens et al. (2015), in
which function evaluations often rely on either wet-lab experiments, physics-inspired simulators, or
knowledge-based computational algorithms, which are slow and expensive in practice.

2. Related Work

A variety of discrete search algorithms and meta-heuristics have been studied in the literature
for combinatorial optimization over categorical variables. Such algorithms, including Genetic
Algorithms, Simulated Annealing, and Particle Swarms, are generally inefficient in finding the global
minima. Bayesian Optimization (BO) is a commonly used approach for optimization of black-box
functions Shahriari et al. (2015). BO builds a surrogate model for the black-box function via Bayesian
models such as a Gaussian Process (GP) and then selects the next candidate point for evaluation via
an acquisition function. However, limited work has addressed incorporation of categorical variables
in BO. Early attempts based on converting the black-box optimization problem over categorical
variables to that of continuous variables have been unsuccessful Gómez-Bombarelli et al. (2018);
Golovin et al. (2017); Garrido-Merchán and Hernández-Lobato (2020).

A few BO algorithms have been specifically designed for black-box functions over combinatorial
domains. In particular, the BOCS algorithm Ricardo Baptista (2018), primarily devised for boolean
functions, employs a sparse monomial representation to model the interactions among different
variables. A sparse Bayesian linear regression framework is then used to learn the coefficients
of the model. The COMBO algorithm Oh et al. (2019) upgrades BOCS in that it is capable of
accounting for arbitrarily high orders of interactions among variables. Their main technique is to use
Graph Fourier Transform (GFT) over a combinatorial graph, constructed via graph cartesian product
of variable subgraphs, to gauge the smoothness of the black-box function. A GP, equipped with
an automatic relevance determination diffusion kernel, is proposed for which GFT can be carried
out tractably. However, both BOCS and COMBO are hindered by associated high computational
costs. The computational complexity of the latter algorithms not only increases with the number of
variables, but also grows polynomially with respect to the number of function evaluations.

3. Black-Box Optimization over Boolean or Categorical Variables

Given the combinatorial categorical domain X = [k]n, with n variables each of cardinality k, the
objective is to find

x∗ = arg min
x∈X

f(x) (1)

where f : X 7→ R is a real-valued combinatorial function. We assume that f is a black-box function,
which is potentially noisy and computationally expensive to evaluate. As such, we are interested in
finding x∗ with as few evaluations as possible.

In order to address this problem, we adopt a surrogate model learning framework, where an
estimate for the black-box function (i.e. the surrogate model) is updated sequentially using the
black-box function evaluation observed at any given time step t. The selection of candidate points
for black-box function evaluation is carried out via an acquisition function, which takes advantage of
the surrogate model as an inexpensive proxy for the true black-box function. Finally, the generated
sample is plugged into the black-box function for evaluation. This process is repeated until a stopping
criterion, such as an evaluation budget or a time budget, is met.
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In the sequel, we first propose a surrogate model based on multilinear polynomial representation
for functions over the Boolean hypercube. We then extend this model to functions over categorical
variables using a group-theoretic Fourier expansion. This is a direct generalization in the sense that
the latter reduces to the former representation for real-valued Boolean functions when the cardinality
of the categorical variables is two.

3.1 Surrogate Model

Boolean Case: Any real-valued Boolean function can be uniquely expressed by its multilinear
polynomial representation O’Donnell (2014):

f(x) =
∑
I⊆[n]

α∗IψI(x) (2)

which is referred to as the Fourier expansion of f , the real number α∗I is called the Fourier coefficient
of f on I , and ψI(x) = Πi∈Ixi are monomials of order |I|. The generality of Fourier expansions and
the monomials’ capability to capture interactions among different variables, make this representation
particularly attractive for problems over the Boolean hypercube. In addition, in many applications of
interest monomials of orders up to m << n are sufficient to capture interactions among the variables,
reducing the number of Fourier coefficients from 2n to d =

∑m
i=0

(
n
i

)
. This leads to the following

approximate surrogate model for f :

f̂α(x) =
∑
i∈[d]

αiψi(x). (3)

We employ the latter representation as the surrogate model in our proposed algorithm.

Categorical Case: We define a cyclic group structure Z/kiZ over the elements of each categorical
variable xi (i ∈ [n]), where ki is the cardinality of the latter variable. From the fundamental theorem
of abelian groups Terras (1999), there exists an abelian group G which is isomorphic to the direct
sum (a.k.a direct product) of the cyclic groups Z/kiZ corresponding to the n categorical variables:

G ∼= Z/k1Z⊕ Z/k2Z⊕ . . .⊕ Z/knZ (4)

where the latter group consists of all vectors (a1, a2, . . . , an) such that ai ∈ Z/kiZ and ∼= denotes
group isomorphism. We assume that ki = k (∀i ∈ [n]) for simplicity, but the following representation
could be easily generalized to the case of arbitrary cardinalities for different variables.

The Fourier representation of any complex-valued function f(x) on the finite abelian group G is
given by Terras (1999)

f(x) =
∑
I∈[k]n

αIψI(x) (5)

where αI are (in general complex) Fourier coefficients, [k]n is the n-fold cartesian product of the set
[k] and ψI(x) are complex exponentials (k-th roots of unity) given by

ψI(x) = exp(2πj〈x,I〉/k).

Note that the latter complex exponentials are the characters of the representation, and reduce to
the monomials (i.e. in {−1, 1}) when the cardinality of each variable is two. A second order
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approximation of the representation in (5) can be written as:

f̂α(x) = α0 +
∑
i∈[n]

∑
`∈[k−1]

αi` exp(2πjxi /̀k) +
∑

(i,j)∈([n]2 )

∑
(p,q)∈[k−1]2

αijpq exp(2πj(xip+xjq)/k). (6)

For a real-valued function fα(x) (which is of interest here), the representation in (5) reduces to

fα(x) = <
{ ∑
I∈[k]n

αIψI(x)

}
=
∑
I∈[k]n

αr,Iψr,I(x)−
∑
I∈[k]n

αi,Iψi,I(x) (7)

where
ψr,I(x) = cos(2π〈x,I〉/k) and ψi,I(x) = sin(2π〈x,I〉/k) (8)

The number of characters utilized in this representation with maximum order of interactions m is
equal to d = 2

∑m
i=0

(
n
i

)
(k − 1)i − 1.

3.2 The Algorithm

Motivated by the properties of the hedge algorithm Arora et al. (2012), we adopt an exponential
weight update rule for our surrogate model. More precisely, we maintain a pool of experts, each
of which corresponds to a monomial ψi(x) or a character ψ`,I(x) in the Boolean and categorical
cases, respectively. Henceforth, we denote both types of experts with ψi (i ∈ [d]) for ease of notation.
In particular, we are interested in finding the optimal Fourier coefficient αi for the expert ψi. Note
that exponential weights are non-negative, while the Fourier coefficients could be either negative
or positive. Following the same approach as sparse online linear regression literature Kivinen and
Warmuth (1997), we maintain two non-negative coefficients for each Fourier coefficient αti at time
step t: αti,+ and αti,−. The value of the Fourier coefficient is then obtained via the subtraction
αti = (αti,+ − αti,−).

More specifically, our algorithm works in the following way. We initialize the Fourier coefficients
αi,− and αi,+ (∀i ∈ [d]) with a uniform prior. In each time step t, the algorithm produces a sample
point xt via simulated annealing over its current estimate for the Fourier representation f̂αt with
Fourier coefficients αt. We then observe the black-box function evaluation f(xt) for our query xt.
This leads to a mixture loss `t which is equal to the difference between the evaluations obtained by
our estimate model and the black-box function. This mixture loss, in turn, leads to the individual
losses `ti = 2λ `t ψi(xt) for the experts ψi : ∀i ∈ [d]. Finally, we update the current estimate for the
Fourier coefficients αt via the exponential weight update rule, incorporating the incurred losses. We
repeat this process until the stopping criteria are met. Note that we use the anytime learning rate
schedule of Gerchinovitz and Yu (2011), which is a decreasing function of time t. A summary of the
proposed algorithm, which we refer to as Expert-Based Combinatorial Optimization (ECO), is given
in Algorithm 1.

4. Experiments and Results

In this section, we compare the performance of the proposed algorithm with two baselines, random
search (RS) and simulated annealing (SA), as well as a state-of-the-art Bayesian combinatorial
optimization algorithm (COMBO) Oh et al. (2019). In particular, we consider a synthetic benchmark
(Latin square problem) and a real-word sequence design problem in biology: RNA sequence
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Algorithm 1: Expert Combinatorial Optimization
Input: sparsity λ, maximum order of interactions m

1 t = 0
2 ∀γ ∈ {−,+} and ∀i ∈ [d] : αti,γ = 1

2d

3 repeat
4 xt ∼ f̂αt
5 Observe f(xt)

6 f̂αt(x)←
∑

i∈[d]
(
αti,+ − αti,−

)
ψi(x)

7 `t+1 ← f̂αt(xt)− f(xt)
8 for i ∈ [d] and γ ∈ {−,+} do
9 `t+1

i ← 2λ `t+1 ψi(xt)

10 αt+1
i,γ ← αti,γ exp

(
− γ ηt `

t+1
i

)
11 αt+1

i,γ ← λ · αt+1
i,γ∑

µ∈{−,+}
∑
j∈[d] α

t+1
j,µ

12 end
13 t← t+ 1

14 until Stopping Criteria
15 return x̂∗ = arg min{xi: ∀i∈[t]} f(xi)

optimization. In addition to the performance of the algorithms in terms of the best value of f(x)
observed until a given time step t, we measure the average computation time per time step of our
algorithm versus that of COMBO. In each experiment, we report the results averaged over 20 runs ±
one standard error of the mean. The maximum degree of interactions used in our surrogate models
is set to two in all the problems. The sparsity parameter λ in exponential weight updates is set to
1 in all the experiments. See Dadkhahi et al. (2020) for results on black-box optimization over the
Boolean hypercube.

Synthetic Benchmark: We first consider the Latin square problem Colbourn and Dinitz (2006),
which is a commonly used combinatorial optimization benchmark. We set n = 25 categorical
variables, with each variable of cardinality k = 5. A Latin square of order k is a k × k matrix of
elements xij ∈ [k], such that each number appears in each row and column exactly once. When
k = 5, the problem of finding a Latin square has 161, 280 solutions in a space of dimensionality 525.
We formulate the problem of finding a Latin square of order k as a black-box function by imposing
an additive penalty of one for any repetition of numbers in any row or column. As a result, function
evaluations are in the range [0, 2k(k− 1)], and a function evaluation of zero corresponds with a Latin
square of order k. We consider a noisy version of this problem, where an additive Gaussian noise
with zero mean and standard deviation of σ = 0.1 is added to function evaluations observed by each
algorithm. As depicted in Figure 1, ECO outperforms the baselines with a considerable margin. In
addition, ECO is able to match COMBO’s performance until time step t = 150. At larger time steps,
COMBO outperforms the other algorithms; however, this performance comes at the price of a far
larger computation time. As demonstrated in Table 4, ECO offers a speed-up over COMBO by a
factor of approximately 50.

RNA Sequence Optimization Problem: Structured RNA molecules play a critical role in
many biological applications, ranging from control of gene expression to protein translation. The
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Figure 1: Latin Square Problem
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Figure 2: RNA Sequence Optimization Problem

DATASET n k COMBO ECO

LATIN SQUARE 25 5 170.4 3.6
SEQUENCE PREDICTION 30 4 253.8 5.7

Table 1: Average computation time per step (in Seconds) over different problems and algorithms.

native secondary structure of a RNA molecule is usually the minimum free energy (MFE) structure.
Consider an RNA sequence as a string A = a1 . . . an of n letters (nucleotides) over the alphabet
Σ = {A,U,G,C}. A pair of complementary nucleotides ai and aj , where (i < j), can interact with
each other and form a base pair (denoted by (i, j)), A-U, C-G and G-U being the energetically stable
pairs. Thus, the secondary structure of an RNA can be represented by an ensemble of pairing bases.

Finding the most stable RNA sequences has immediate applications in material and biomedical
applications Li et al. (2015). Studies show that by controlling the structure and free energy of a RNA
molecule, one may modulate its translation rate and half-life in a cell Buchan and Stansfield (2007);
Davis et al. (2008), which is important in the context of viral RNA. A number of RNA folding
algorithms Lorenz et al. (2011); Markham and Zuker (2008) use a thermodynamic model (e.g. Zuker
and Stiegler (1981)) and dynamic programming to estimate MFE of a sequence. However, the O(n3)
time complexity of these algorithms prohibits their use for evaluating substantial numbers of RNA
sequences Gould et al. (2014) and exhaustively searching the space to identify the global free energy
minimum, as the number of sequences grows exponentially as 4n.

Here, we formulate the RNA sequence optimization problem as follows: For a sequence of length
n, find the RNA sequence that will fold into the secondary structure with the lowest minimum free
energy. In our experiments, we set n = 30 and use the popular RNAfold package Lorenz et al. (2011)
to evaluate the MFE for a given sequence. The goal is to find the lowest MFE sequence by calling
the MFE evaluator minimum number of times. The performance of different algorithms is depicted
in Figure 2, where ECO outperforms the baselines as well as COMBO by a considerable margin.

In summary, the proposed black-box combinatorial optimization algorithm based on expert advice
performs competitively or better than its state-of-the-art Bayesian counterparts, while reducing the
computation time by multiple orders of magnitude.
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