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Abstract

We study the problem of optimal design of experiments when the design points are not
known apriori or are not under experimenter’s control. Such settings occur naturally in
longitudinal experiments where the covariates, to be observed in the future, are not avail-
able to compute the optimal design beforehand. We discuss the problem in the context
of designs for parameter estimation in mixed effects models, which are commonly used for
longitudinal data analyses. We propose an approach that predicts the unknown covari-
ates via an autoregressive model and sequentially decides the next design points based on
the predicted design criterion. Simulations demonstrate efficiency gains of the proposed
approach as compared to choosing design points uniformly at random.
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1. Introduction

Optimal design of experiments has an extensive literature (Fedorov, 2010; Chaloner and
Verdinelli, 1995) which continues to expand with increase in complexity of data (Romero
et al., 2013) and experiment goals (Kandasamy et al., 2019). In the standard setup, the
experimenter starts by specifying a design space (e.g. a set of protein structures in a pro-
tein engineering problem) and a design criterion that quantifies the utility of an experiment
(e.g. thermostability of the structure). The goal is to choose design points from the space
and conduct corresponding experiments to achieve the optimal value of the design criterion.
Importantly, the setup assumes that the design space is fully-observed and the experimenter
can choose what design points to experiment on. These assumptions are particularly re-
strictive in experiments where repeated measurements are taken in time, as discussed next.

Longitudinal studies involve collecting a series of measurements for an experiment unit
(say, a human subject) at multiple time points. The study goal usually is to efficiently
estimate association between a measured covariate and the response. In such studies, the
experimenter can only control some aspects of the design such as what variables to measure
and when to take the measurements, but, has no control on the actual values of the mea-
surements. Thus, both covariates and responses are apriori unknown to the experimenter
in contrast to the standard setup where only the responses are unknown. Since the de-
sign criterion depends on the actual measurements, solving the optimal design problem is
challenging in such studies.

Motivating Example Consider a study of sedentary behavior in adults (Kendzor et al.,
2016). The study involves repeated measurements of sedentary behavior, physical activity,
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smoking behavior, perceived stress and other psycho-social variables through self-reports.
Suppose, the scientific question of interest is whether perceived stress is related to time
spent doing physical activity. That is, we want to quantify the association between two
time-varying variables — stress and active time. A characteristic feature of longitudinal
data is the statistical dependence between the repeated measurements for a subject, which
has to be addressed to quantify the association. Linear mixed effects models (Laird et al.,
1982) provide one way to model the repeated measurements and are widely-used in be-
havioral sciences (Gibbons et al., 2010). The model parameters can be interpreted as the
desired association. Hence, the design problem is to choose the time points for taking the
measurements in order to maximize statistical efficiency of the parameter estimates. The
problem is of practical importance particularly for mobile phone-based studies of human
behavior (Shiffman et al., 2008; Kirchner et al., 2013; Kaplan and Stone, 2013; Smets et al.,
2018; Wang et al., 2014) which collect intensive data through self-reports and mobile sen-
sors. The use of machine learning combined with optimal design methods, as demonstrated
in our approach, has the potential to improve the inferences drawn from such studies.

Related Work Designs for longitudinal studies have primarily focused on linear mixed
effects models (Sinha and Xu, 2011, 2016; Liu et al., 2012). Finding optimal measurement
times for analysis via such models has also been studied (Winkens et al., 2005; Berger
and Tan, 2004; Ouwens et al., 2002). Unfortunately, the design criterion depends on the
future covariate values. These works only consider covariates that are known functions of
time or are known beforehand, which is a commonly used setup (e.g. see Fedorov and
Hackl, 1997; Atkinson et al., 2007, Chapter 24). Hence, the covariates and the designs
can be computed beforehand. Literature on constrained optimal designs considers the case
when some covariates are not under experimenter’s control and are not known before the
experiment. It is assumed that marginal distribution of the uncontrolled covariates or their
distribution conditioned on the controlled covariates is known beforehand, referred to as
marginally or conditionally restricted designs (Cook and Thibodeau, 1980; Lopez-Fidalgo
and Garcet-Rodriguez, 2004), respectively. Optimal designs are searched in a restricted set
that adheres to these distributions for the uncontrolled covariates. In contrast, we consider
the case where covariate distribution is not known.

Current Work We focus on constructing optimal designs for linear mixed effects model.
In contrast to prior work, the future covariates are modelled by an unknown function of
time and past covariates. We use a flexible autoregressive model to represent the function
and learn it sequentially as more data is observed. Estimated future covariate values are
then used to compute designs optimizing the criterion value.

2. Background

We will consider linear mixed effects model with continuous-valued responses. Next, we
describe the model assumptions, followed by the sequential design procedure for the model.

Linear Mixed Effects Model Suppose, individual i € {1,2,..., N} has m measure-
ments in time. Then, the m x 1 vector of responses Y; is assumed to follow,

Y, = X8 + Z;b; + e;. (1)
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Here, X; is an m X p matrix of covariates at m measurement times, including both time-
fixed and time-varying variables, and covariates Z; C X;. Elements of S give the as-
sociations of interest for the study, while b; are considered nuisance parameters. The
term e; ~ N(0,0%V;) is considered random error which can be modeled in different
ways, including as V; = I or as an autoregressive process. Further, it is assumed that
b ~ N(0,¥),b; L X;, and b; L e;. Under these assumptions, we obtain Y; ~ N (X;3, W;)
where W; = ZZ-\IIZZT + 0%V, (Schafer, 2006, Chapter 1 p. 10). Thus, introducing the ran-
dom effects b; helps to model the dependence between measurements in time. The maximum
likelihood estimate /3 for 3 is obtained by solving the following estimating equation,

N

1

N ZXZ‘TWII(Yi - X;8) =0, (2)
i=1

and the variance-covariance (in brief, the variance) matrix of the resulting estimator (Berger
and Tan, 2004) is given by,

N
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Optimal Design of Experiments Design of experiments framework requires defining
a design criterion to evaluate the utility of collecting data according to a design. Different
design criteria have been proposed in the literature, based on minimizing different functions
of the variance matrix, thereby increasing statistical efficiency of the estimate. A popular
method, termed as D-optimal design, minimizes the determinant of the variance which,
geometrically, represents the volume of the confidence region of the estimate. Other criteria
such as A-optimal (trace of the variance matrix) and C-optimal (variance of ¢! 3 for a vector
¢) are also used. The optimal designs are defined as solutions to the following optimization
problem,

arg min ¢ (Var(BT)) . (4)
TET
where 7 denotes the design space, BT is the estimate from data collected by design T,
and ¢(A) is the design criterion chosen by the experimenter, such as ¢(A) = det(A), the
determinant of the variance matrix A. In our case, a design 7 € T denotes m; measurement
times for each individual ¢ € {1,2,...,N}. Thus, 7 := (71,72,...,7n) where each 7; €
[0, 7™, for some pre-specified study period T'.

For the linear mixed effects model, the criterion (3) depends on the values of unknown
parameters ¥, o2, V;, and the values of covariates X; measured at arbitrary times 7;. The
unknown parameters can be estimated sequentially based on previous measurements which
can be used to find a (locally) optimal design. However, the covariate values at future time
points are still required. Earlier work (Berger and Tan, 2004; Sinha and Xu, 2011) assumes
that the covariates are only polynomial functions of time. Thus, the design criterion can
be evaluated for arbitrary measurement times. The main idea in our work is to use a
forecasting model to predict the covariate values from past measurements and using these
to approximately minimize the design criterion.



WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

Algorithm 1: Finding optimal measurement times

Input: Total study period T days, Forecasting model, Association model
Output: Measurement times, Parameter estimates

Initialize estimates for model parameters (1), possibly, using some past data;

fort < 1 to T days do
1. Construct matrix X; for time points in day ¢ using the forecasting model;

2. Calculate W; using X,; and current estimates of model parameters;
3. Select the design minimizing (4) from the time points in day t;

4. Sample covariates and responses for the selected time points for each
individual;

5. Update forecasting model and association model;
end
Return parameter estimates for the association model;

3. Approach

The process of computing designs is guided by two models — a forecasting model to ex-
trapolate covariate values and an association model to evaluate variance of the association
estimates for a given design.

Forecasting Model Suppose, the observed data till time P across all individuals is de-
noted by Dp := {(X;(t),Yi(t)) |t € M;,t < P,i € {1,2,...,N}}, where M; is the set of mea-
sured times for individual 7. The task is to construct a prediction function f(t,i;Dp) =
E(X;(t) | Dp) for any future time ¢t > P and any individual ¢ € {1,2,..., N}. Any flexible
autoregressive model can be used. Unlike the association model, we are not required to
make inferences on the parameters of the forecasting model. We use the Gaussian Process
Autoregressive model (GPAR; Requeima et al., 2019), motivated by the ability to express
assumptions about covariate evolution through its kernel function. The input features for
the model are time ¢ and one-hot encoding of the individual index i. By adding the indi-
vidual index as input, we can train a single model for all individuals and still distinguish
among observations from different individuals in the input representation.

Association Model We consider the linear mixed effects model (1) for estimating asso-
ciation, given by . Restricted maximum likelihood-based estimation is used for parameters
in the random effects and noise components i.e. ¥, o2, V; (Schafer, 2006) and B is obtained
by the ordinary least squares estimate (2).

The steps involved in the design process are sketched in Algorithm 1. The study period
is divided into time blocks, say by days. For each time block, a design is computed by
minimizing the design criterion, followed by sampling data according to the design. Finally,
both the models are updated for use in the next time block.

Next, we describe a simulation setting to test the feasibility of the approach. We specify
the data generating process, the heuristic used for optimization, and the evaluation metrics.
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4. Experiments

To understand the behavior of the proposed approach, we start with experiments on syn-
thetic datasets where the underlying data generating process is known.

Synthetic Data For each individual ¢ € {1,2,...,20} and for 100 equally-spaced time
points t € [0, 1], covariates and responses are generated from a linear mixed effects model
as follows,

Xi(t) =[1 a(t) x2(®)l, Zi(t) = [1],
b; ~ N(0,0.1),

Yi(t) ~ N(Xi(t)B + Zi(t)bs, %),
B=[1 -05 1T,02=0.1

Covariates (z1(t), z2(t)) are constructed using different functions such as sinusoidal and
exponential. Design criterion is taken to be D-optimality, i.e. the objective function in (4)
is det(var(8;)). To solve the optimization problem, time range [0,1] is discretized into 100
time points. Then, we use greedy search to select m time points i.e. each of the m iterations
selects the time point with minimum objective function value when combined with already
selected points. To simplify the search space and to reduce computations, we assume that
all individuals are sampled at the same design points. More principled search procedures
such as Federov’s exchange algorithm (Cook and Nachtrheim, 1980) can be investigated.
First 50 time points for all N = 20 individuals are considered to be fully observed. The
next 50 time points are the test set, where we select m = 10 time points according to the
design criterion using forecasting and association models learned from the training data.

Evaluation Measurement times obtained using the optimal design framework are com-
pared with times chosen with uniform random sampling, in which m = 10 time points are
sampled uniformly at random from the 50 test points. Since we know the true parameters
B for the synthetic data, we can compute the bias in estimates 3 , quantified as bias squared
I8 — BH% Variance of 3 is computed empirically over multiple runs with sampled datasets.

Results The estimates from the two design criteria with different covariate functions are
compared in Figure 1. Comparing the bias squared, we observe that optimal designs have
similar or slightly lower bias than uniform random designs (Figure 1, first column). We also
plot the design criterion, i.e. det (V&I‘(,@)), for both the designs, observing that D-optimal
designs have lower values as expected (Figure 1, second column). Thus, the proposed
approach increases the statistical efficiency of estimation while keeping the bias low.

5. Conclusion and Future Work

We describe the problem of finding optimal designs for longitudinal data analysis where
design space is not fully observable or controllable. Advances on the problem can lead to
improved designs for mobile phone-aided studies of human behavior. Through simulations,
we observe promising preliminary results for the proposed approach that employs machine
learning for predicting the unobserved covariates. Future work includes study of designs
under larger model classes e.g. under non-linear mixed effects models (Foster et al., 2018)
and a principled way to incorporate prediction uncertainty in the design process.
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Figure 1: Bias squared (first column) and design criterion value (second column) for esti-
mates by D-optimal designs and uniform random sampling-based designs. Box plots show
the mean along with first and third quantiles from 10 simulated datasets. Observe that op-
timal designs result in low bias while significgntly decreasing the variance of the estimate.
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