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Abstract

We consider the problem of optimizing a black-box function f : X 7→ R under the
assumption that it has bounded norm in the Reproducing Kernel Hilbert Space (RKHS)
associated with a given kernel K. This problem is known to have an agnostic Gaussian
Process (GP) bandit interpretation in which an appropriately constructed GP surrogate
model with kernel K is used to obtain an upper confidence bound (UCB) algorithm. In
this paper, we propose a new algorithm (LP-GP-UCB) where the usual GP surrogate model
is augmented with Local Polynomial (LP) estimators to construct a multi-scale upper
confidence bound guiding the search for the optimizer. We analyze this algorithm and
derive high probability bounds on its simple and cumulative regret for a practically relevant
class of kernels called the Matérn family (Kν)ν>0. We show that for certain ranges of ν,
the algorithm achieves near-optimal bounds on simple and cumulative regrets, matching
the algorithm-independent lower bounds up to poly-logarithmic factors, and thus closing
the large gap between the existing upper and lower bounds for these values of ν.

Keywords: RKHS, GP Bandits, Local Polynomial Estimators

1. Introduction

Consider the problem of maximizing a black-box objective function f : X 7→ R which can
be accessed through a noisy zero-order oracle which upon querying the objective function
f at an arbitrary point x ∈ X provides an observation yx = f(x)+ηx. Our goal is to design
a query-point selection strategy A, which can efficiently learn about a maximizer x∗ of f
given a finite query (or evaluation) budget n. After the evaluation budget is exhausted, the
algorithm A must recommend a point, denoted by zn. Two commonly used measures for
the performance of a sampling strategy are its simple regret Sn and its cumulative regret
Rn defined as Sn = f(x∗)− f(zn) and Rn =

∑n
t=1 f(x∗)− f(xt).

This problem is intractable without any regularity assumptions on the objective function
f . In this paper, we assume that f has a bounded norm in the RKHS associated with a
kernel K (denoted by HK). This formulation is referred to as the agnostic Gaussian Process
(GP) bandit problem in literature (Srinivas et al., 2012) where a GP surrogate can be used to
derive an upper confidence bound (UCB) on the function which then is utilized to guide the
search for the optimizer. We propose a new algorithm which exploits smoothness properties
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of functions lying in the HK of commonly used kernels, to obtain tighter bounds on both Sn
and Rn. Our work is motivated by a large gap, in the agnostic GP bandits setting, between
the best known upper bounds and the algorithm-independent lower bounds on the regret
for the Matérn family, the most commonly used family of kernels (Scarlett et al., 2017).

Notations. Recall that f is the objective function mapping X = [0, 1]D to Y = R, and
can be accessed through a noisy evaluations of the form y = f(x) + η, where the additive
noise η is assumed to be σ sub-Gaussian. We will use the term cell to refer to subsets E
of X of the form E = {x ∈ X : ‖x − xE‖∞ ≤ rE/2} for some xE ∈ X and rE > 0. The
terms xE and rE shall be referred to as the center and the side-length of E. Given a kernel
K, we shall use the term HK and ‖ · ‖K to denote the associated RKHS and the RKHS
norm respectively. An important quantity of interest associated with K is the maximum
information gain γn := maxS⊂X ,|S|=n I (yS ; f), where I denotes the mutual information
between a Gaussian process f and noisy observation vector yS . For k ∈ N and 0 < α ≤ 1,
we use Ck,α to denote the Hölder space with parameters k and α (see App. A of Shekhar and
Javidi (2020) for definition). Let D = {(xi, yi) : 1 ≤ i ≤ m} ⊂ X×Y denote a labelled data
set, and introduce DX := {x : ∃y ∈ Y, (x, y) ∈ D} and DY := {y : ∃x ∈ X , (x, y) ∈ D}.
For a cell E ⊂ X , we use D(E) to denote the subset of D with xi ∈ E. The sets D(E)

X and

D(E)
Y are also defined in an analogous manner. For positive integers k and D, we use PkD to

denote the set of all polynomials in D variables of degree k. Given g : X 7→ R and E ⊂ X ,
we define Φk(g,E) := infp∈PkD

supx∈E |g(x) − p(x)| as the smallest uniform approximation

error of g with p in PkD.

2. Main Results

We first formally state the main assumptions required in our analysis.

Assumption 1. We make the following assumptions: (A1.1) f ∈ HK for some known
kernel K and furthermore ‖f‖K ≤ B for some known constant B > 0. (A1.2) f ∈ Ck,α for
k ∈ N∪{0} and α ∈ (0, 1] with ‖f‖Ck,α ≤ L for some known L > 0. (A1.3) the observation
noise (ηt)t≥0 are i.i.d and σ2-sub-Gaussian for some known constant σ2 > 0.

Assumption (A1.1) and (A1.3) are standard, and have been used in most prior works in
agnostic GP bandits. For the case of Matérn kernels, we next show that Assumption (A1.2)
follows as a consequence of (A1.1).

Proposition 1. If f ∈ HK with K ∈ {Kν : ν > 0}, then there exists constants 0 < C1, C2 <
∞ such that we have ‖f‖Ck,α ≤ C1C2‖f‖K where k ∈ N and α ∈ (0, 1] such that k+α = ν.

The proof of this statement relies on the norm-equivalence of RKHS with certain frac-
tional Sobolev spaces followed by an application of a Sobolev embedding theorem. Details
are in App. B.1 of (Shekhar and Javidi, 2020). The constant C1 in the proof outline of
Prop. 1 can be computed in terms of the parameters ν and D. Appropriate bounds on
the other term C2 also exist for some cases, see for example (Talenti, 1976). For simplicity
however, we make the following assumption.

Assumption 2. We assume that n is large enough to ensure that C2 ≤ log(n) for K = Kν

where C2 is the constant introduced in Proposition 1.

We now describe the steps of our algorithm LP-GP-UCB (pseudo-code in Algorithm 1).
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Algorithm 1: LP-GP-UCB

Input: n, K, B, (k, α), L, ρ0.

1 Initialize: t = 1, ne = 0, Pt = {X}, u(0)X = +∞, Dt = ∅;
2 while ne < n do
3 for E ∈ Pt do

4 Draw xt,E ∼ Unif(E), Ut,E = min{u(0)E , u
(1)
t,E , u

(2)
t,E}

5 end
6 Et ∈ arg maxE∈Pt Ut,E , xt = xt,Et

7 Q1 = Q2 = {Et}
8 if βnσt(xt) < L(

√
DrE)α1 AND rEt ≥ ρ0 then

9 val = u
(1)
t,Et

, flag = 1, Q2 = ExpandAndBound(Et, flag, val,Dt, . . .)

10 else if bt(Et) ≤ L(
√
DrE)α1 AND rEt ≥ ρ0 then

11 val = u
(2)
t,Et

, flag = 1, Q2 = ExpandAndBound(Et, flag, val,Dt, . . .)

12 else if bt(Et) ≤ L(
√
DrE)k+α AND rEt ∈ [ 1n , ρ0) then

13 val = +∞, flag = 2, Q2 = ExpandAndBound(Et, flag, val,Dt, . . .)

14 else
15 Observe yt = f(xt) + ηt, Update µt, σt, ne ← ne + 1,

Dt ← Dt ∪ {(xt, yt)}
16 end
17 Pt ← (Pt \ Q1) ∪Q2, t← t+ 1

18 end
Output: zn using Recommend function (Def.1).

Inputs. Algorithm 1 takes in as inputs the query (or evaluation) budget n, the kernel K,
the parameter B which is a bound on ‖f‖K , the noise parameter σ, an integer k and an
α ∈ (0, 1] for the local polynomial estimator, the parameter L which is an upper bound on
‖f‖Ck,α and a real-number ρ0 ≥ (γn/

√
LnDα1)1/α1 for α1 := max{α,min{1, k}}.

Algorithm Outline. The LP-GP-UCB algorithm maintains a partition, Pt, of the do-

main X at any time t, and to each cell E in the partition, it assigns a term u
(0)
E which is an

upper bound on the maximum f value in the cell, calculated using local estimates based on

prior observations. At t = 1, Pt is initialized as {X} and u
(0)
X is set to +∞. As new cell E is

added to Pt, the value of u
(0)
E are decided by the ExpandAndBound algorithm (pseudo-code

in Algorithm 2). For every t ≥ 1, the LP-GP-UCB algorithm loops through all the cells in

Pt, and constructs a UCB denoted by Ut,E , by taking the minimum of u
(0)
E and two other

terms: u
(1)
t,E and u

(2)
t,E defined as

u
(1)
t,E = µt(xt,E) + βnσt(xt,E) + L(

√
DrE)α1 , u

(2)
t,E = µ̂t(E) + bt(E) + L(

√
DrE)α1 ,

where xt,E is a point drawn uniformly from E and µt and σt are the posterior mean and
variance of the surrogate GP model, and βt is a factor defined in Lemma 2 in App. C.1 of
Shekhar and Javidi (2020). The term µ̂t(E) is the empirical estimate of f̃E , the average f
value in the cell E, and bt(E) =

√
2 log(n/δ)/nE is the length of the confidence interval of f̃E
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(see Lemma 3 in App.C.1 of Shekhar and Javidi (2020) for details). Then, the algorithm
selects a candidate cell Et and the corresponding point xt with the largest value of Ut,E , and
decides to either expand the partition or evaluate the function at the point xt. When the
budget n is exhausted, it recommends a point zn according to the rule Recommend described
in Definition 1 below.

Definition 1 (Recommend). Suppose the algorithm stops in round tn and let T ⊂ {1, 2, . . . , tn}
denote the set of times at which Algorithm 1 performed function evaluations (note that
|T| = n). Define En = arg minE∈Ptn rE, and ξ := mint∈T βtσt(xt). If L(

√
DrEn)α1 ≤ ξ,

then return zn = xEn, where xEn is the center of the cell En. Else, return zn = xτ where
τ := arg mint∈T βtσt(xt).

Algorithm 2: ExpandAndBound

Input: E, flag, val, D, k, α, δ
1 nE ← |D(E)|
2 if flag==1 then
3 Q2 = Partition(E, rE/2)
4 for F ∈ Q2 do

5 u
(0)
F = val

6 end

7 else
8 err =

MaxErr(E,D,K,B, k, δ, σ)
9 r̃ =

min
{
rE
2 ,

1√
D

(
err
L

)1/α1
}

10 Q2 = Partition(E, r̃)
11 for F ∈ Q2 do

12 f̂F =
LocalPoly(F,D, xF )

13 u
(0)
F = f̂F + 2err

14 end

15 end
Output: Q2

The update of the partition Pt in Algo-
rithm 1 requires calls to the ExpandAndBound algo-
rithm (pseudo-code in Algorithm 2). This function
takes as inputs a cell E, data D, an integer k, confi-
dence parameter δ > 0, a variable flag with values in
{1, 2}, a positive quantity val along with the terms
k, α, B and L, and outputs Q2, which is a partition
of the cell E, and assigns an upper bound (u0F ) on
the value of f in every F ∈ Q2. Q2 is constructed
in ExpandAndBound by a call Partition operation
which we define next.

Definition 2 (Partition). Given a cell E =

×D
i=1[ai, bi] ⊂ X , the function call Partition(E, r)

for an some r < rE returns a partition of E of
cardinality drE/reD, consisting of sets of the form
F =×D

i=1[ãi,min{ãi + r, bi}], where ãi = ai + lr for
l ∈ {0, 1, . . . , brE/rc}.

To complete the description of the ExpandAndBound
algorithm, we next describe the construction of local
polynomial estimators, and introduce the functions
LocalPoly (in Def. 3) and MaxErr (in Def. 4) which are called by ExpandAndBound.

Given a cell E ⊂ X and a point z ∈ E, we define the LP estimator at z as f̂E(z, ~w) =∑
x∈D(E) wxyx, where ~w = {wx : x ∈ D(E)

X } are defined as the solution of the following
problem (Nemirovski, 2000, Eq. (1.36)):

min
~v={vx : x∈D(E)

X }

∑
x∈D(E)

X

|vx|2 s.t. p(z) =
∑

x∈D(E)
X

vxp(x) ∀p ∈ PkD. (LP)

If the number of data points in the cell E, i.e., |D(E)
X |, is larger than (k + 2)D, then

a unique solution to the problem (LP) is guaranteed to exist. We now introduce the
LocalPoly function used in ExpandAndBound.

Definition 3 (LocalPoly). Given a cell E, a point x ∈ E, the function LocalPoly returns
the estimated function value f̂E(x, ~w) at x, calculated according to the formula stated above.
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If nE := |D(E)| > (k+ 2)D, the weights ~w are the solution to (LP), while if nE < (k+ 2)D,

the weights are set as wx = 1/nE for all x ∈ D(E)
X .

We next state a result which bounds the estimation error between f̂E(x, ~w) and f(x).

Lemma 1. (Nemirovski, 2000, Prop. 1.3.1) Given a labelled dataset D, a cell E ⊂ X ,
and a point xE ∈ E, let ~wE represent the unique solution of the problem (LP) under the
assumption that nE := |D(E)| ≥ (k + 2)D. Then, assuming that the observation noise is
σ−subgaussian, for any δ > 0, we have with probability at least 1− δ:

|f̂E(xE , ~wE)− f(xE)| ≤ (1 + ‖~wE‖1) Φk(f,E) + σ‖~wE‖2
√

2 log(2/δ). (1)

Remark 1. Recall that term Φk(f,E) := infp∈PkD
supx∈E |f(x)− p(x)| depends on how well

elements of HK can be approximated by polynomials in PkD. For functions f with ‖f‖Ck,α ≤
L, it is known that we have Φk(f,E) ≤ L(

√
DrE)k+α. Using this, we can construct an

upper bound on the first term on the RHS of (1), denoted by eD(E, ~wE ,K,B) := (1 +
‖~wE‖1)L(

√
DrE)k+α, from the information available to the algorithm. The second term in

the RHS of (1), which we shall denote by eS(~wE , σ, δ), depends only on the data and known
terms (σ and δ) and thus can be computed as well.

The last definition required is the MaxErr operation, which computes the maximum
estimation error when a LP estimator is used to estimate f in a cell E.

Definition 4 (MaxErr). The function MaxErr takes E, D, K, B, k, δ and σ as inputs, and
returns err defined as err := maxx∈E eD(E, ~wE,x,K,B) + eS(~wE,x, σ, δ), where eS and eD
were introduced in Remark 1, and ~wE,x denotes the solution to (LP) at x ∈ E.

This completes our description of LP-GP-UCB algorithm. The reader is referred to
App. A.3 of (Shekhar and Javidi, 2020) for some additional details.

3. Regret Analysis of LP-GP-UCB

We now state the main result of this section which provides high probability regret bounds
for LP-GP-UCB algorithm for Matérn kernels.

Theorem 1. Suppose Assumptions 1 and 2 hold, and Algorithm 1 is run with budget n,
k = dνe − 1, α = ν − k, L = BC1 log n and other inputs as described in Sec. 2. Then the
following statement is true with probability at least 1− δ, for n large enough:

Sn = Õ
(

min
(
n

1
2−

D(D+1)
2ν+D(D+1) , n−aν

))
, and Rn = Õ

(
min

(
n

1
2+

D(D+1)
2ν+D(D+1) , nbν

))
. (2)

The exponent aν is α1/(2α1+D) for ν > D(D+1)/2 and ν/(2ν+D) otherwise, while the exponent
bν is (D+α1)/(D+2α1) for ν > D(D+1)/2 and (2ν−α1+D)/(2ν+D) otherwise. Recall that α1 =
max{α,min{1, k}}.

The proof of this statement is given in App.C.3 of (Shekhar and Javidi, 2020). Note
that under the condition ν ≤ D(D+1), the upper bound on γn is Ω(

√
n). In this parameter

range, the LP-GP-UCB algorithm achieves near-optimal rates for Sn, thus closing the large
gap between the upper and lower bounds in the literature. However, the improvement
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achieved for Rn is not as significant as that of Sn. The main reason is that for k ≥ 1, the
LP-GP-UCB algorithm is more exploratory as it performs many function evaluations before
expanding cells with radius smaller than ρ0. While this ensures that the algorithm can find
at least one good point resulting in small Sn, due to insufficient exploitation, the bound
on Rn suffers. A similar trade-off between obtaining tight bounds for both Sn and Rn
occurs in some other bandit problems as well; see for example (Bubeck et al., 2011, § 3).
In Proposition 2 next, we show that the by using a zeroth degree LP estimators, we can
obtain tighter control over Rn for Matérn kernels with ν > 1.

Proposition 2. For f ∈ HKν with ν > 1, the LP-GP-UCB algorithm with k = 0 achieves
the following regret bounds (in the display below we have cν = D(D+3)/4ν+D(D+5)) :

Sn = Õ
(

min
(
n−1/2+cν , n−1/(D+2)

))
, and Rn = Õ

(
min

(
n1/2+cν , n(D+1)/(D+2)

))
. (3)

Combined with the regret bounds derived in Theorem 1, the above result implies that
the LP-GP-UCB algorithm (with appropriate choice of k) achieves improved regret bounds
for the Matérn family of kernels for all values of ν and D.

4. Summary of Improvements

To discuss the improvements in regret bounds, we introduce the notations I0 = (0, 1], I1 =
(1,D(D+1)/2], I2 = (D(D+1)/2, (D2+5D+12)/4] and I3 = (e,∞) where e = max{D(D+1)/2, (D2+5D+12)/4}.
Note that I2 is non-empty only for D ≤ 5. We then have the following as a consequence of
Theorem 1 and Prop. 2:

• Simple Regret. The best bounds on Sn is Õ
(
n−ν/(2ν+D)

)
for ν ∈ I0 ∪I1 and Õ

(
n−1/(D+2)

)
for ν ∈ I2, both of which are achieved by the LP-GP-UCB algorithm with k = dνe − 1,

i.e., (2). For ν ∈ I3, we have Sn = Õ
(
n−

1
2
+cν
)

for cν = D(D+3)
4ν+D(D+5) which is achieved by

LP-GP-UCB with k = 0. Note that for ν ∈ I0∪I1, the regret bound achieved by LP-GP-UCB

algorithm is near-optimal, i.e., it matches the lower bound up to poly-log factors. This
closes the large gap between the upper and lower bounds for existing algorithms, as in
this parameter regime the existing bounds on Sn are O (1) due to γn being Ω(

√
n).

• Cumulative Regret. The LP-GP-UCB algorithm with k = 0 achieves tighter control over
Rn for all values of ν. In particular for ν ∈ I0 we have Rn = Õ

(
n(ν+D)/(2ν+D)

)
, which

matches the lower bound of (Scarlett et al., 2017) up to poly-log factors. For ν ∈ I1 ∪I2,
Rn is Õ

(
n(D+1)/(D+2)

)
while for ν ∈ I3 it is Õ

(
n1/2+cν

)
with cν defined in Prop. 2.

The cumulative regret bounds discussed above improve upon the state-of-the-art for all
values of ν,D. More specifically, (i) since γn based bounds are known only for ν > 1,
our results provide the first explicit (and near-optimal) regret bounds of Matérn kernels
with ν ∈ I0 = (0, 1], and (ii) for ν > 1 our results improve upon the best known bounds

of Õ (neν ) with eν = D(2D+3)+2ν
D(2D+4)+4ν , recently derived by (Janz et al., 2020).

From the above discussion, we can conclude that the LP-GP-UCB algorithm achieves
tighter control over both simple and cumulative regret for all values of ν > 0 than existing
results in literature.
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