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Abstract

The promise of active learning is to reduce the number of labeled examples required by
supervised machine learning algorithms. The largest potential benefits lie in entirely new
domains, for which no labeled examples yet exist. Yet to date, most active learning studies
are retroactive and demonstrate the benefits that could have been gained if active learning
had been used. What are the barriers to true adoption and utilization of active learning?
We focus on two: (1) the cold start or class discovery problem, in which active learning
methods may struggle to make progress with zero labeled examples, and (2) the cost of
having the classifier in the loop to select the next example to be labeled. We assess dif-
ferent active learning approaches in the context of these two barriers and conclude with
recommendations for how to employ active learning in new domains. As an example, we
report on the use of active learning on a large, novel data set of Mars surface images.
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1. Introduction and Related Work

Active learning strategies aim to reduce the labeling burden required for a machine learning
classifier to perform well on a new task. Typical heuristics for example selection prioritize
examples about which the classifier is most uncertain or which may be most informative
by causing the largest changes in the decision boundary (Settles, 2010). Active learning is
a tool best used when we encounter an entirely new domain, with no pre-existing labeled
data. Yet most active learning studies report instead on retroactive studies where all of the
labels already exist, as also noted by Lowell et al. (2019). In so doing, many convenient
yet unrealistic assumptions are made, such as assuming that the number and identity of
all classes are known, that a number of examples for each class are already labeled, and
that the optimal hyperparameters for the base classifier are given. These assumptions may
prevent the lessons learned from applying in new, real-life settings.

We focus on two important barriers to the use of active learning in new domains: (1)
lack of knowledge or examples of classes when learning begins and (2) high computational
cost for example selection. We recommend that these factors influence how active learning
methods are designed and evaluated to yield lessons of greater generalization potential.

First, most active learning studies assume that the number and identity of the classes
of interest are already known and that at least one (or 2, or 10) examples of each class are
given. Working in a new domain raises the cold start problem, in which some or all of the
classes in the data set have zero labeled examples. Clustering the unlabeled data to generate
(ideally) a representative sampling with a small number of items to label can identify some,
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but is not guaranteed to find all, of the classes present (Zhu et al., 2008). If some classes are
rare, the goal of discovering all classes may be at odds with maximizing overall accuracy,
suggesting the need for a joint optimization (Hospedales et al., 2013) or a choice by domain
experts about which objective is most valuable. Either way, for realism we recommend that
active learning evaluations provide only a single initial labeled item, with the expectation
that the active learning method should be responsible for class discovery.

Second, most active learning studies focus solely on sample efficiency or minimizing the
cost of human labeling effort. Yet in many cases, especially when employing deep learn-
ing systems, the cost required to compute the selection heuristic itself is non-negligible.
For uncertainty-based sampling, the classifier must be re-trained before it can generate
new predictions so the most uncertain ones can be identified. Most active learning studies
sidestep this issue by selecting a batch of items at a time rather than re-training the classi-
fier (Guo and Schuurmans, 2007; Settles, 2010). Batch selection has other benefits such as
enabling distributed labeling by a team of labelers, but because they were all chosen based
on the same classifier state, learning may be slower. Some heuristics incorporate diversity
into the process of batch selection (Brinker, 2003) yet the tradeoff between batch size and
performance gain is rarely discussed. In this aspect, model-agnostic selection heuristics
that do not require re-training the classifier at each step are advantageous, such as the
use of curriculum learning (Bengio et al., 2009; Hacohen and Weinshall, 2019) or purely
diversity-based prioritization (Wagstaff et al., 2013). Further, the selections can be re-used
by other algorithms without risking the generalization issues identified by Tomanek and
Morik (2011) and Lowell et al. (2019). We propose that the cost of the selection heuristic
itself be incorporated into active learning evaluations as a guide to future experimenters,
who will necessarily pay this price.

2. Assessing Active Learning Methods in New Domains

We conducted experiments to investigate both issues (cold start and selection heuristic
cost). In all experiments, we start with a single labeled example from one class, and we
assume that the total number of classes is not known and must be discovered during the
course of active learning and labeling.

Data sets. We conducted experiments with seven benchmark data sets obtained from
the UCI Machine Learning Repository (Dua and Graff, 2017) and scikit-learn (Pedregosa
et al., 2011) (see Table 1). We selected data sets with different characteristics to explore the
effectiveness and cost of active learning. We expected dimensionality to affect computational
cost and class balance to affect class discoverability. The optdigits and pendigits data
set have separate training and test sets; our experiments employed cross-validation using
their training sets only.

We also conducted experiments in a new domain using Mars rover images (Lu and
Wagstaff, 2020). The Mars Science Laboratory (MSL) rover collected these images in its
first 2224 sols (days) on Mars, using the Mastcam and MAHLI cameras. We randomly
sampled 2900 of the 54,850 images available for this study. Our goal was to expand on
classes previously identified in MSL images (mostly rover parts) (Wagstaff et al., 2018) to
include classes of scientific interest, such as layered rocks, veins, and sand. While applying
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Table 1: Benchmark data sets: digits is from scikit-learn and the rest are from the UCI
Machine Learning Repository.

Data set Samples Features Classes Class distribution
digits 1797 64 10 balanced
wine 178 13 3 balanced
optical digits (optdigits) 3823 64 10 balanced
pen digits (pendigits) 7494 16 10 balanced
sonar 208 60 2 imbalanced
Wisconsin breast cancer,
Diagnostic

569 32 2 imbalanced

page blocks 5473 10 5 severely imbalanced

active learning, we discovered and labeled other classes such as night sky, wheel tracks, and
artifacts.

Selection heuristics. We compared five item selection heuristics in terms of class
discovery and computational cost. The model-agnostic heuristics include random (pas-
sive) selection, diversity-based class discovery (DEMUD), and marginal-probability based
active learning (MP-AL). DEMUD uses an incremental singular value decomposition of
previous selections to iteratively select the most novel next item based on reconstruction
error (Wagstaff et al., 2013). DEMUD selects (ranks) all items up front; we adapted it
to select one batch at a time for comparison with other heuristics. We set K (number
of singular vectors) to preserve 80% of data variance. MP-AL selects a batch of items so
as to match the distribution of remaining unlabeled examples (representative) while also
minimizing within-batch similarity (redundancy) and similarity to already-labeled items
(diversity) (Chattopadhyay et al., 2012). We used an RBF kernel with γ = 1.0 and solved
the quadratic programming problem using CVXOPT (Andersen et al., 2020). The model-
dependent heuristics include uncertainty-based selection (Tong and Koller, 2002) and a
random-uncertainty hybrid motivated by Mussmann and Liang (2018) that uses random
sampling until internal validation accuracy exceeds a threshold value1 and then switches to
more costly uncertainty-based sampling.

Methodology. We assessed active learning with 5-fold cross-validation on the bench-
mark data sets with three base learners: logistic regression, support vector machine (SVM)
(Cortes and Vapnik, 1995), and random forest (Breiman, 2001); implementations are those
of scikit-learn. We did not assume that the optimal hyperparameters for the base classifier
were known and instead estimated them after each selection using internal cross-validation
on the currently labeled data set. The number of folds for this optimization was set to the
size of the smallest known class, up to a maximum of 10. If the smallest known class had
fewer than 2 items, we instead used the scikit-learn default parameter values.

We assessed active learning on the MSL image data set using a convolution neural
network (CNN). We utilized transfer learning to adapt AlexNet (Krizhevsky et al., 2012),
whose weights were pretrained using images from ImageNet (Deng et al., 2009), to apply to
the MSL image data set. The weights of the network were re-fine-tuned after the addition
of each batch of 10 labeled images. To prevent the model from overfitting to the training

1. For the threshold value, we used 70% for the benchmark data sets and 60% for the MSL image data set.
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(a) digits class discovery
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(b) digits learning curve
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(c) digits tradeoff curve
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(d) page blocks class discovery
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(e) page blocks learning curve
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(f) page blocks tradeoff curve

Figure 1: SVM results for balanced (digits, top row) and imbalanced (page blocks,
bottom row) benchmark data sets, over 5 folds (standard error indicated with error bars).

data, we employed an early stopping technique to terminate the training processes if the
validation loss did not improve over three consecutive epochs.

Metrics. Active learning performance is often characterized with a learning curve that
reports test accuracy as a function of the number of labeled items (Settles, 2010). To assess
performance on the issues highlighted in this paper, we also employ class discovery curves
(number of classes discovered for a given number of selections) and accuracy as a function
of (selection heuristic) runtime. All benchmark experiments were run sequentially on a
machine with Intel Xeon CPU that has 32 GB RAM available; the CNN experiment was
run on the same machine with NVIDIA Tesla M20 24GB GPU.

3. Results

We first show results for two benchmark data sets, one with balanced classes (digits) and
one with imbalanced classes (page blocks). Due to space constraints, we show results for
the SVM base learner only. We used an RBF kernel with γ set to “auto” ( 1

dσ2 where σ
is the data standard deviation and d is the dimensionality) and searched data set specific
values for C, determined by pairwise distances in feature space, following Chapelle and Zien
(2005).

The class discovery curves in Figure 1(a,d) show that MP-AL achieved the fastest class
discovery on digits while DEMUD was the best performer on the page blocks data set.
We found that MP-AL also performed the best on the optdigits, pendigits, and wine data
sets, all of which are approximately balanced. The combined emphasis on representativity
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(a) Class discovery
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(b) Learning curve
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(c) Tradeoff curve

Figure 2: CNN active learning results for the imbalanced MSL image data set.

and diversity enabled MP-AL to identify items that span the data set yet are different from
previously labeled items. However, MP-AL performed about the same as random selection
on the severely imbalanced page blocks data set. DEMUD’s emphasis on diversity with
respect to the previously selected items allowed it to find rare classes quickly.

The learning curves for digits and page blocks data sets are shown in Figure 1(b,e).
For the balanced digits data set, MP-AL significantly outperformed other heuristics in
early selections; the uncertainty heuristic outperformed the random-uncertainty hybrid
heuristic during its random selection phase; and DEMUD performed about the same as
the random heuristic. For the severely imbalanced page blocks data set, the DEMUD and
uncertainty heuristics outperformed the other heuristics for the first 5 selections, with mixed
performance after that until selection 23, at which point all heuristics performed about the
same. The performance tradeoff curves in Figure 1(c,f) show accuracy scores as a function
of runtime. Random selection was, of course, the fastest heuristic, followed by DEMUD. We
found that the MP-AL heuristic was by far the most expensive heuristic (note log x axis).
Although it achieved higher accuracy for a given number of selections, other methods were
able to achieve the same overall accuracy at a tiny fraction of the MP-AL computational
cost. In real-world applications, one must assess the relative costs of item labeling versus
the cost of selecting the next item to be labeled. For digits, MP-AL required ∼10 seconds
to select each item, while for page blocks it required ∼2 minutes per item (cost scales with
the data set size). We also observed the same pattern in the breast cancer, optdigits,
and pendigits data sets. Can you wait that long to receive the next item to be labeled?

We also assessed active learning in a real setting using the MSL data set containing
images from the surface of Mars. The total number and nature of the image classes was
not known in advance. We used DEMUD to rank the images for labeling and identified 19
severely imbalanced classes. Given the now-labeled data set, we retroactively assessed the
other methods. Figure 2(a) shows that all methods identify several of the classes quickly,
but DEMUD found all 19 with the fewest selections. MP-AL did not find the 19th class
within 1000 selections. Figure 2(b,c) show the learning curve and performance tradeoff
results for DEMUD, MP-AL, random, and uncertainty heuristics. Strikingly, we did not
see a benefit in overall accuracy from using active learning, a phenomenon that has been
noted elsewhere (Settles, 2010; Lowell et al., 2019). Mussmann and Liang (2018) found that
active learning benefits correlated with inverse error (i.e., how easy or separable or noise-
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free a data set was), and the inability of active learning to improve over random sampling,
along with the relatively low asymptotic performance, suggests that the concepts in data
set are quite challenging to learn. The runtimes of MP-AL and DEMUD include the time
to extract image feature vectors using AlexNet’s “fc6” layer (Wagstaff and Lee, 2018).

4. Conclusions and Next Steps

Our goal in this work is to identify and explore issues associated with the use of active
learning in new domains. Large, unlabeled data sets present exactly the setting for which
active learning was designed, yet to be of true utility, the selection heuristics must operate
starting with very few labeled examples (perhaps only one) and without knowledge of the
total number and nature of the classes or knowledge about the optimal hyperparameters for
the base classifier. In this study we have placed more responsibility on the active learning
heuristic to bootstrap itself entirely by starting with a single labeled example.

We found that selection heuristics that emphasize diversity are, unsurprisingly, the ones
that can most quickly discover all classes that are present. MP-AL achieved the fastest class
discovery for balanced data sets, while DEMUD was the best performer on imbalanced data
sets. Fast class discovery did not always lead to the most sample-efficient learning in terms of
overall accuracy, because rare classes have less impact on total accuracy. However, complete
knowledge of the classes in a domain increases understanding of the domain and can guide
the next analysis steps. Determining when all classes have been discovered remains an open
question.

In terms of accuracy, we found that model-agnostic selection heuristics such as random,
DEMUD, and MP-AL were often competitive with model-sensitive heuristics based on un-
certainty. Because they are model-agnostic, they can be computed once and employed for
multiple different base classifiers rather than requiring that the selection heuristic re-train
the classifier each time new examples are chosen. MP-AL was the most costly heuristic to
compute by far and may be infeasible for large data sets or those with high dimensionality.
Of the heuristics assessed so far, we found DEMUD to provide the best balance between
class discovery and efficient operation. If overall accuracy is more important than finding
all classes, then simple random selection achieved this goal with the least computational
time (but perhaps more selections) on the benchmark data sets, and it was the strongest
performer on the more challenging MSL data set. Others have noted that random selection
may be the best choice for challenging or novel domains (Settles, 2010; Lowell et al., 2019).

Our next steps include the investigation of additional selection heuristics and a broader
assessment of performance with more data sets to more fully answer this question.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th International Conference on Machine Learning, pages
41–48, 2009.

Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

Klaus Brinker. Incorporating diversity in active learning with support vector machines. In
Proceedings of the International Conference on Machine Learning, pages 59–66, 2003.

Olivier Chapelle and Alexander Zien. Semi-supervised classification by low density separa-
tion. In Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics, pages 57–64, 2005.

Rita Chattopadhyay, Zheng Wang, Wei Fan, Ian Davidson, Sethuraman Panchanathan,
and Jieping Ye. Batch mode active sampling based on marginal probability distribution
matching. In Proceedings of the Knowledge Discovery and Data Mining Conference, 2012.

Corinna Cortes and Vladimir Vapnik. Support-vector network. Machine Learning, 20:
273–297, 1995.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Computer Vision and Pattern Recognition, 2009.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://

archive.ics.uci.edu/ml.

Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Pro-
ceedings of the 20th International Conference on Neural Information Processing Systems,
pages 593–600, 2007.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep
networks. In Proceedings of the 36th International Conference on Machine Learning,
2019.

Timothy M. Hospedales, Shaogang Gong, and Tao Xiang. Finding rare classes: Active
learning with generative and discriminative models. IEEE Transactions on Knowledge
and Data Engineering, 25(2):374–386, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
25, 2012.

David Lowell, Zachary C. Lipton, and Byron C. Wallace. Practical obstacles to deploying
active learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing, pages 21–30, 2019.

7

https://cvxopt.org/index.html
https://cvxopt.org/index.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Wagstaff and Lu

Steven Lu and Kiri L. Wagstaff. MSL Curiosity rover images with science and engineering
classes, 2020. URL https://zenodo.org/record/3892024.

Stephen Mussmann and Percy Liang. On the relationship between data efficiency and error
for uncertainty sampling. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Burr Settles. Active learning literature survey. Technical Report 1648, University of Wis-
consin–Madison, 2010.

Katrin Tomanek and Katharina Morik. Inspecting sample reusability for active learning.
In Proceedings of the Active Learning and Experimental Design Workshop in conjunction
with AISTATS 2010, pages 169–181, 2011.

Simon Tong and Daphne Koller. Support vector machine active learning with applications
to text classification. Journal of Machine Learning Research, 2:45–66, 2002.

Kiri L. Wagstaff and Jake Lee. Interpretable discovery in large image data sets. In Pro-
ceedings of the ICML Workshop on Human Interpretability in Machine Learning (WHI),
pages 107–113, 2018.

Kiri L. Wagstaff, Nina L. Lanza, David R. Thompson, Thomas G. Dietterich, and Martha S.
Gilmore. Guiding scientific discovery with explanations using DEMUD. In Proceedings
of the Twenty-Seventh Conference on Artificial Intelligence, pages 905–911, 2013.

Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and Jordan
Padams. Deep Mars: CNN classification of Mars imagery for the PDS Imaging Atlas. In
Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial
Intelligence, pages 7867–7872, 2018.

Jingbo Zhu, Huizhen Wang, Tianshun Yao, and Benjamin K. Tsou. Active learning with
sampling by uncertainty and density for word sense disambiguation and text classification.
In Proceedings of the 22nd International Conference on Computational Linguistics, pages
1137–1144, 2008.

8

https://zenodo.org/record/3892024

	Introduction and Related Work
	Assessing Active Learning Methods in New Domains
	Results
	Conclusions and Next Steps

