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Abstract
Game theory has been increasingly applied in settings where the game is not known outright,
but has to be estimated by sampling. For example, meta-games that arise in multi-agent
evaluation can only be accessed by running a succession of expensive experiments that may
involve simultaneous deployment of several agents. In this paper, we focus on α-rank, a
popular game-theoretic solution concept designed to perform well in such scenarios. We
aim to estimate the α-rank of the game using as few samples as possible. Our algorithm
maximizes information gain between an epistemic belief over the alpha-ranks and the
observed payoff. This approach has two main benefits. First, it allows us to focus our
sampling on the entries that matter the most for identifying the alpha rank. Second, the
Bayesian formulation provides a facility to build in modeling assumptions by using a prior
over game payoffs. We show the benefits of using information gain as compared to the
confidence interval criterion of ResponseGraphUCB (Rowland et al., 2019), and provide
theoretical results justifying our method.
Keywords: Game Theory, α-rank, Information Gain

1. Introduction

Traditionally, game theory is applied in situations where the game is fully known. More
recently, it is being used in situations where the game is not fully known and can only be
interacted with through sampling, known as Empirical Game Theory (Wellman, 2006). One
area in which this is becoming increasingly common is the ranking of trained agents relative
to one another. Specifically, in the field of Reinforcement Learning game-theoretic rankings
are used not just as a metric for measuring algorithmic progress (Balduzzi et al., 2018), but
also as an integral component of many population-based training methods (Muller et al.,
2020; Lanctot et al., 2017; Vinyals et al., 2019). In particular, for ranking, two popular
solution concepts have recently emerged: Nash averaging (Balduzzi et al., 2018; Nash, 1951)
and α-rank (Omidshafiei et al., 2019).

We use the α-rank solution concept for two reasons. First, it admits a unique solution
whose computation easily scales to N -player games. Second, unlike older schemes such as
Elo (Elo, 1978), α-rank is designed with intransitive interactions in mind. Because measuring
payoffs can be very expensive, it is important to do it by using as few samples as possible.

∗. Work done during an internship at Microsoft Research Cambridge.
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For example, playing a match of chess (Silver et al., 2017) in a self-play algorithm (Lanctot
et al., 2017; Muller et al., 2020) can take roughly 40 minutes1. Our objective is thus to
accurately estimate the α-rank using a small number of payoff queries.

Rowland et al. (2019) proposed ResponseGraphUCB (RG-UCB) for this purpose, inspired
by the pure exploration bandit literature. RG-UCB aims to correctly determine the ordering
between entries relevant to the computation of α-rank by maintaining confidence intervals
over their values, and concluding that the correct ordering has been found between two
entries when their confidence intervals do not overlap. While they prove that this is sufficient
to determine the true α-ranking with a high probability in the infinite α regime, their
approach has two important limitations. First, since the frequentist criterion is indirect,
relying on payoff ordering, the obtained payoffs aren’t always used optimally. Second, it is
not straightforward to include useful domain knowledge about the entries or structure of the
payoff matrix.

To remedy these problems, we propose a Bayesian approach. Specifically, we utilize
a Gaussian Process to maintain an epistemic belief over the entries of the payoff matrix,
providing a powerful framework in which to to supply domain knowledge. This payoff
distribution induces an epistemic belief over the α-ranking. We determine which payoff to
sample by maximizing information gain between the α-rank belief and the obtained payoff.
This allows us to focus our sampling on the entries that are expected to have the largest
effect on our belief over possible α-ranks.

Contributions Theoretically, we justify the use of information gain by showing a regret
bound for a version of our criterion in the infinite-α regime. Empirically, our contribution
is twofold. First, we compare to RG-UCB on stylized games, showing that maximizing
information gain provides competitive performance by focusing on sampling the more rele-
vant payoffs. Second, we evaluate another objective based on minimizing the Wasserstein
divergence, which offers competitive performance while being computationally much cheaper.

2. Background
A game with K players, each of whom can play S strategies is fully characterized by its
payoff matrix M ∈ RN , where N = SK (Fudenberg and Tirole, 1991). The α-rank r ∈ RS
(Omidshafiei et al., 2019; Rowland et al., 2019) of a game is defined2 as the unique stationary
distribution of a Markov Chain C ′. Please see Appendix A for a more detailed description.

3. Method
On a high level, our method works by maintaining an epistemic belief over alpha ranks and
selecting payoffs that lead to the maximums reduction in the entropy of that belief. Figure 1
provides a pictorial overview. In the middle of the figure, we maintain an explicit distribution
over the entries of the payoff matrix. This payoff distribution induces a belief over α-ranks,
shown on the left. When deciding which payoff to sample, we examine hypothetical belief
states after sampling, striving to end up with a belief with the lowest entropy. One such
hypothetical, or ‘hallucinated’ belief is shown on the right. We now describe our method
formally, first describing the probabilistic model and then the implementation.

1. Assuming a typical game-length of 40 and up to 1 minute per move.
2. We focus on the single population case K = 1. Our method can be extended to multiple populations in a

straightforward way, but we don’t do this for simplicity.
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Figure 1: On the left, a belief over α-ranks is induced by a belief over the payoff matrix,
shown in the middle. A hallucinated belief distribution is shown on the right. See
Section 3 for detailed description.

Payoffs: Ground Truth and Belief We denote the unknown true payoff vector as M?.
To quantify our uncertainty about what this true payoff is, we employ a Gaussian Process M ,
which also allows us to encode prior knowledge about payoff dependencies. The GP models
noise in the payoffs as M̃ = M + ε, where ε ∼ N (0, Iσ2

A). When interacting with the game
sequentially, the received payoffs are assumed to be generated as mt = Mat

? + ε′t. Here, ε′t
are i.i.d. random variables with support on the interval [−σA, σA]. While it may at first
seem surprising that we use Gaussian observation noise in the GP model, while assuming
a truncated observation noise for the actual observation, this does not in fact affect our
theoretical guarantees. We provide more details in Section 4. We denote by Ht the history of
interactions at time t. Because of randomness in the observations, Ht is a random variable.
The sequence of random variables H1, H2, . . . forms a filtration. We use the symbol ht to
denote particular realization of history, so that ht = a1,m1, . . . , at−1,mt−1.
Belief over α-ranks Our explicit distribution over the entries of the payoff matrix induces
an implicit belief distribution over the α-ranks r = f(M), where P (r) = P (M ∈ f−1(r))
and f−1 denotes the pre-image of r under f . In other words, the probability assigned to an
α-rank r is the probability assigned to its pre-image by our belief over the payoffs. Since r
is represented implicitly, we cannot query its mass function directly. Instead, we access r
via sampling. This is done by first drawing a payoff from m ∼M and then computing the
resulting α-rank f(m).
Picking Payoffs To Query At time t, we query the payoff that provides us with the
largest information gain about the α-rank. Formally,

at = arg max
a

I(r ; (M̃a
t , a) | Ht = ht)

= arg max
a

H (r | Ht = ht)− Em̃t∼M̃a
t

[
H
(
r | Ht = ht, At = a, M̃a

t = m̃t

)]
(1)

= arg min
a

Em̃t∼M̃a
t

[
H
(
r | Ht = ht, At = a, M̃a

t = m̃t

)]
. (2)

In equation (1), H (r | Ht = ht) is the entropy of our current belief distribution over α-ranks,
which does not depend on a and can be dropped from the maximization, producing equation
(2). The expectation in (2) has an intuitive interpretation as the expected negative entropy of
our hallucinated belief, i.e. belief obtained by conditioning on a sample m̃t from the current
model. In essence, we are pretending to receive a sample for entry a, and then computing
what our resulting belief over α-ranks will be. By picking the entry as in (2), we are picking
the entry whose sample will lead to the largest reduction in the entropy of our belief over
α-ranks in expectation.
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Algorithm 1 αIG algorithm. (NSB) and (Bin) variants differ in entropy estimator (line 7).
1: for t = 1, 2, . . . T do
2: for a = 1, 2, . . . N do
3: for i = 1, 2, . . . Ne do
4: m̃t ∼ M̃a

t . ‘Hallucinate’ a payoff.
5: Obtain posterior payoff distribution P (M̃a

t |Ht = ht, At = a, M̃a
t = m̃t)

6: D = {r1, . . . , rNb}, where ri ∼ f(M̃a
t ) i.i.d.

7: ĥia = estimate-entropy( D )
8: end for
9: ĥa = 1

Ne

∑Ne
i=1 ĥ

i
a

10: Query payoff at = arg mina ĥa. . Implements equation (1).
11: end for
12: end for

Implementation The αIG method is summarized in algorithm 1. In line 4, we use our
epistemic model to obtain a ‘hallucinated’ outcome resulting from selecting payoff a. In line
7, we use empirically estimate the entropy of the resulting distribution over ranks. In line 9,
we average out entropy estimates obtained from Ne different possible hallucinated payoffs.
In line 10, we use these estimates to perform query selection as in (1).

Our algorithm depends on an entropy estimator estimate-entropy, used in line 7.
We present results for 2 different entropy estimators: simple binning and NSB. The simple
binning estimator estimates the entropy using a histogram. For comparison, we also used
NSB (Nemenman et al., 2002), an entropy estimator designed to produce better estimates in
the small-data regime.

In addition, we perform two optimizations when deploying the algorithm in practice. To
save computational cost, in line 10, we observe the same payoff Nr times rather than once.
Moreover, to obtain better differentiation between beliefs arising from sampling different
payoffs, we heuristically perform conditioning in line 5 Nc times.

4. Theoretical Results
Notions of Regret We quantify the performance of our method by measuring regret. Our
main analysis relies on Bayesian regret (Russo and van Roy, 2018), defined as

JBt = 1− Eht (P (r = r?|HT = ht)) , (3)

where we used r? to denote the alpha rank with the highest probability under r at time
t. In (3), the expectation is over realizations of the observation model. Since JBt , like
all purely Bayesian notions, does not involve the ground truth payoff, we need to justify
its practical relevance. We do this by benchmarking it against two notions of frequentist
regret. First, JFt = 1 − Eht (P (r = rGT|HT = ht)) , where rGT = f(M?). Second, JMt =

1− Eht
(
δ
[
f(Mµ) = rGT

])
, where we denote the mean of the payoff belief with Mµ and the

symbol δ
[
predicate

]
evaluates to 1 or 0 depending on whether the predicate is true or false.

In section 5, we empirically conclude that the three notions of regret are closely coupled in
practice, changing at a comparable rate.
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Separability Assumption Similarly to the work of Rowland et al. (2019), we limit
ourselves to payoffs that are distinguishable in order to make α-rank robust to small changes
in the payoffs. We assume that there exists a constant ∆ > 0 such that for all payoff indices
i, j ∣∣M i

? −M j
?

∣∣ ≥ ∆. (4)

Regret Bounds As an intermediate step before discussing information gain on the alpha-
ranks, we first analyze the behavior of a query selection rule which maximizes information
gain over the payoffs.

πIGM(a|Ht = ht) = arg max
a

I(M ; (M ′, a) | Ht = ht). (5)

The following result shows that using sampling strategy πIGM for T timesteps leads to a
decay in regret of at least TeO(−∆2T ).

Proposition 1 (Regret Bound For Information Gain on Payoffs) If we select actions
using strategy πIGM, regret is bounded as

JBT ≤ JFT ≤ 1− Eht (P (r = rGT|HT = hT )) ≤ 1− Teg(T ) where g(T ) = O(− 3
√

∆2T ). (6)

The proof, and an explicit form of g are found in supplementary material. We now proceed to
our second result, where we maximize information gain on the alpha ranks directly. Consider
a querying strategy that is an extension of (1) to T -step look-ahead, defined as

πIGR = arg max
a1,...,aT

I(r ; M ′a1 , . . . ,M
′a
T ). (7)

We quantify regret achieved by πIGR in the proposition below.

Proposition 2 (Regret Bound For Information Gain on Belief over Alpha Ranks)
If we select actions using strategy πIGR, regret is bounded as

1− P (r = r?|HT = ht) ≤ δ
[
z(T ) ≤ hb(|R|−1)

]
h−1
b (z(T )) + δ

[
z(T ) > hb(|R|−1)

]
,

where z(T ) = δ
[
Teg(T ) ≥ 1

2

]
hb(Te

g(T )) + δ
[
Teg(T ) ≤ 1

2

]
N logN and g(T ) is defined as in

Proposition 1.

Proof is provided in supplementary material. The symbol δ
[
predicate

]
evaluates to 1 or 0

depending on whether the predicate is true or false. In practice, to avoid the combinatorial
expense of selecting action sequences using πIGR, we use the greedy query selection strategy
in equation (1). While the regret result above does not carry over, this idealized setting at
least provides some justification for information gain as a query selection criterion.

5. Experiments

In this section, we describe our results on 3 synthetic games, graphing the notions of regret
described in Section 4. We benchmark two versions of our algorithms, αIG (Bins) and αIG
(NSB), which differ in the employed entropy estimator. We also benchmark αWass, a variant
of our algorithm optimising a Wasserstein based objective which is described in more detail
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Figure 2: Results for 2 Good, 2 Bad. Graphs show the the mean and standard error of the
mean over multiple runs (shown in brackets) of 10 repeats each.

Figure 3: Results for 3 Good, 3 Bad. Graphs show the the mean and standard error of the
mean over multiple runs (shown in brackets) of 10 repeats each.

in Appendix C. A detailed explanation of the experimental setup and details on the baselines
and hyperparameters are included in Appendix F.

The first 2 synthetic games we examine feature X Good and Y Bad agents, in which the
Good agents always beat the Bad agents. In these games it is highly beneficial to concentrate
sampling on the payoffs between the Good agents. Figures 2 and 3 demonstrate the benefits
of our methods, particularly on the larger scenario, since they are able to concentrate their
sampling on the relevant payoffs. The final game we examine features a randomly generated
payoff matrix with Gaussian observation noise, providing empirical confirmation of our
theoretical results.

Additional experiments and details of the games are included in Appendix E.

6. Conclusions

We described αIG, an algorithm for estimating the α-rank of a game using a small number
of payoff evaluations. αIG works by maximizing information gain. It achieves competitive
sample efficiency and allows a way of building in prior knowledge about the payoffs.

Figure 4: Results for the 4x4 Gaussian Game. Graphs show the the mean and standard
error of the mean over multiple runs (shown in brackets) of 10 randomly sampled
games.
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Appendix A. Background

Games and α-Ranks A game with K players, each of whom can play S strategies is fully
characterized by its payoff matrix M ∈ RN , where N = SK (Fudenberg and Tirole, 1991).
The α-rank r ∈ RS (Omidshafiei et al., 2019; Rowland et al., 2019) of a game is defined3 as
the unique stationary distribution of a Markov Chain C ′, i.e.

r>C ′ = r>.

Here, C ′ is a small perturbation of the chain C ∈ RS×S , motivated by evolutionary dynamics
in the population of strategies and defined as

Cσ,τ =


(S − 1)−1(1− ε) if M (τ,σ) > M (σ,τ),

(S − 1)−1ε if M (τ,σ) < M (σ,τ),

0.5(S − 1)−1 if M (τ,σ) = M (σ,τ).

for σ 6= τ and Cσ,σ = 1−
∑

τ 6=σ Cσ,τ for transitions from a strategy σ to itself. We abstract
the above computation into the α-rank function f :M→RS . It represents the special case
α→∞ of a more general α-rank concept (Omidshafiei et al., 2019; Rowland et al., 2019).

Wasserstein Divergence Let p and q be probability distributions supported on X , and
c : X ×X → [0,∞) be a distance. Define Π as the space of all joint probability distributions
with marginals p and q. Wasserstein divergence (Villani, 2008) with cost function c, is defined
as:

Wc(p, q) := minπ∈Π

∫
X×X c(x, y)dπ(x, y).

In this paper, we will utilize the Wasserstein distance between our belief distributions over
α-rank, and so we set X = ∆S−1 and use c(x, y) = 1

2‖x− y‖1. We will drop the suffix and
denote this simply as W.

Appendix B. Related Work

There are many methods related to the ranking and evaluation of agents in games. ELO
(Elo, 1978) and TrueSkill (Herbrich et al., 2007; Minka et al., 2018) both quantify the
performance of an agent using a single number, which means they are unable to model
intransitive interactions. Chen and Joachims (2016) extend TrueSkill to better model such
interactions, while Balduzzi et al. (2018) do the same for ELO, improving its predictive
power by introducing additional parameters. Balduzzi et al. (2018) also re-examines the use
of Nash equilibrium, proposing to disambiguate across possible equillibria by picking the one
with maximum entropy. However, it is well known that computing the Nash equilibrium is
computationally difficult (Daskalakis et al., 2009) and only computationally tractable for
restricted classes of games. In this paper, we focus on α-rank (Omidshafiei et al., 2019) since
it has been designed with intransitive interactions in mind, is computationally tractable for
N -player games and shows considerable promise as a component of self-play frameworks
(Muller et al., 2020).

3. We focus on the single population case K = 1. Our method can be extended to multiple populations in a
straightforward way, but we don’t do this for simplicity.
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Empirical Game Theory (Wellman, 2006) is concerned with situations in which a game
can only be interacted with through sampling. The most related work to ours investigates
sampling strategies and concentration inequalities for the Nash equilibrium as opposed to
the α-rank. Walsh et al. (2003) introduce Heuristic Payoff Tables (HPTs) in order to choose
the samples that provide the most information about the currently chosen Nash equilibrium,
where information is quantified as the reduction in estimated error. This differs from our
approach both in the use of α-rank as opposed to the Nash equilibrium as our solution
concept, and in the criterion used to select the observed payoff. Tuyls et al. (2020) provide
concentration bounds for estimated Nash equilibria. Jordan et al. (2008) find Nash equilibria
from limited data by using information gain on distributions over strategies, a concept
different from our information gain on distributions over ranks. We also utilizes α-rank as
the solution concept, rather than Nash equilibria.

Rowland et al. (2019) introduce ResponseGraphUCB (RG-UCB), which can be viewed
as a frequentist analogue to our method. They prove regret bounds in the infinite-α regime
and also provide a method for obtaining uncertainty estimates in the finite-α regime, which
is, however, not used as part of an adaptive sampling strategy.

Muller et al. (2020) utilise α-rank as part of a PSRO (Lanctot et al., 2017) framework.
They do not use an adaptive sampling strategy for deciding which entries to sample, but
are a natural application for applying our algorithm (and RG-UCB). Yang et al. (2019)
introduce an approximate gradient-based algorithm which does not require access to the
entire payoff matrix at once in order to compute α-rank. Although their method does not
require the entire payoff matrix at every iteration, it is not designed for operating in the
same incomplete information setting that we explore in this paper since they assume every
entry can be cheaply queried with no noise.

Srinivas et al. (2009) prove regret bounds for Bayesian optimization with GPs. We use
their concentration result to derive our bounds as well as as inspiration for our information
gain criterion.

Appendix C. Query Selection by Maximizing Wasserstein Divergence

While the query objective proposed in (2) is backed both by an appealing intuition and
a theoretical argument (see Section 4), is can be expensive to evaluate due to the cost of
accurate entropy estimation. To address this difficulty, we also investigate an alternative
involving the Wasserstein distance. The objective we consider is

arg max
a

Em̃t∼M̃t
[W(P (r|Ht = ht), P (r|Ht = ht, At = a, M̃a

t = m̃t))]. (8)

Since the computation of Wasserstein distance from empirical distributions can be achieved
by solving a linear program (Bonneel et al., 2011), equation (8) naturally lends itself to being
approximated via samples. In our implementation we use POT (Flamary and Courty, 2017)
to approximate this distance.

The Wasserstein distance is built on the notion of cost, which allows a practitioner the
opportunity to supply additional prior knowledge. In our case, since α-ranks are probability
distributions, a natural way to measure accuracy is to use the total variation distance, which
corresponds to setting the cost to c(x, y) = 1

2‖x− y‖1. On the other hand, in cases where we
are interested in finding the relative ordering of agents under the α-rank, an alternative cost,
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Figure 5: Diagram depicting the current belief (Blue) and 2 different hallucinated beliefs
(Red). We are assuming a discrete distribution over α-ranks, where the belief is
uniform across the relevant circles.

such as the Kendall Tau metric (Fagin et al., 2006) could be used. While we emphasize the
ability of the Wasserstein divergence to work with any cost, we leave the empirical study of
non-standard costs for future work.

It is important to note that the objective in (8) is qualitatively different to the information
gain objective proposed in (2). Figure 5 provides a diagram illustrating a major difference
between the two objectives. The entropy for both belief distributions shown in red is the
same. In contrast, the Wasserstein distance in (8) between the current belief in blue and the
hallucinated belief in red is much smaller for the distribution on the left compared to the
distribution on the right.

Appendix D. Implementation Details

D.1 αIG (Bins).

For this binning entropy estimator we split [0, 1] into 101 equal bins of width 0.005 (imple-
mented by rounding to the nearest second decimal place). We then estimated the entropy
using a histogram.

D.2 αIG (NSB).

The NSB estimator requires an upper bound on the total number of atoms, but since we
do not know the true upper bound we utilize an estimate on the total number of possible
α-ranks, which we describe below. We use the open-source implementation provided in
(Marsili).

D.3 Upper bound on number of α-ranks

In the Infinite-α regime there are a finite number of possible α-ranks.
This is because only the ordering between relevant entries in the payoff matrix changes

the transition matrix of the Markov Chain produced in the computation of α-rank (Rowland
et al., 2019).

Let there be k populations each with S strategies. Then there are Sk strategies considered
and so the transition matrix of the Markov Chain has Sk rows, one for each of the possible
joint-strategies.

11
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Each possible joint-strategy σ can transition to at most k(S − 1) other strategies τ 6= σ.
The probability of a self-transition is uniquely determined based on these probabilities.

This gives at most 2(k(S−1)) unique values for that row.
There are then [2(k(S−1))]S

k
= 2S

k(k(S−1)) unique transition matrices. Thus, the possible
number of unique α-ranks is upper-bounded by 2S

k(k(S−1)). This bound is not tight, since
there are many transition matrices with equal stationary distributions.

In our experiments with K = 1 this gives 2S(S−1). Note that this produces a tighter
bound than (10) used in our theory.

D.4 Conditioning of the belief distribution

In our experiments we found that setting Nc = 1 as suggested by theory is not always
sufficient and use Nc = 100 for all experiments.

Figure 6: Comparing the values of the objectives for each entry after sampling 5 values for
every entry. Top shows the results for Nc = 1. Bottom shows the results for
Nc = 100. Mean and standard deviation are plotted across 10 seeds, maximum
entry is highlighted in black. The mean and standard deviation of the (estimated)
entropy of the current belief distribution is also plotted as a dashed horizontal line.

After drawing a sample m′t ∼Mt+ε, we then condition our belief distribution over α-rank
on this sample Nc times and then approximate the Entropy of the resulting hallucinated belief
distribution (or the Wasserstein distance between the current belief and the hallucinated
belief). Theory suggests that setting Nc = 1 is sufficient, however empirically we found that
this did not produce satisfactory results. Figure 6 shows that only conditioning once produces
very little separation between the values for the different entries. Additionally, we can see
that there is very little separation between the current belief’s entropy and the hallucinated
belief’s entropy. In contrast, we can see that conditioning 100 times produces significantly
more separation. Figure 7 shows the same trend, after additionally sampling 250 values for
the red entries. The Wasserstein objective shows the same trend, that conditioning more

12
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Figure 7: Comparing the values of the objectives for each entry after sampling 5 values for
every entry, and then additionally sampling 250 values for the Red entries. Top
shows the results for Nc = 1. Bottom shows the results for Nc = 100. Mean and
standard deviation are plotted across 10 seeds, maximum entry is highlighted in
black. The mean and standard deviation of the (estimated) entropy of the current
belief distribution is also plotted as a dashed horizontal line.

than once produces significantly more separation. A Wasserstein Distance of 0 indicates that
the two distributions are identical.

Appendix E. Further Results

Good-Bad Games To investigate our algorithm, we study two environments whose payoffs
are shown in Figure 8. We start with the relatively simple environment with 4 agents. Figure

Figure 8: Payoff matrices for 2 Good, 2 Bad (Left) and 3 Good, 5 Bad (Right). Best viewed
in color.

8 (Left) shows the expected payoffs, which we can interpret as the win-rate. Samples are
drawn from a Bernoulli distribution with the appropriate mean. We refer to the environment
as ‘2 Good, 2 Bad’ since agents 1 and 2 are much stronger than the other 2 agents, winning
100% of the games against them. Since, the ordering between agents 3 and 4 has no effect
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Figure 9: Proportion of entries sampled on 2 Good, 2 Bad for different methods and objec-
tives.

on the α-rank, gathering samples to determine this ordering (highlighted in Purple) does not
affect the belief distribution over α-ranks. Furthermore, since we treat this as a 1-population
game, the entries highlight in Green where each agent plays against themselves do not affect
the α-rank. Entries that are are necessary to determine the ordering between agents 1 and
2 are the most relevant for the α-rank and highlighted in Red. Since agent 2 is slightly
better than agent 1, the true α-rank is (0, 1, 0, 0). However, it can be difficult to determine
the correct ordering between agents 1 and 2 without drawing many samples from these
entries. The game thus provides a model for the common scenario of agents with clustered
performance ratings.

Focusing on Relevant Payoffs Figure 9 presents the behavior of our method and RG-
UCB on this task. As expected, RG-UCB splits its sampling between the Red entries and
the Purple entries, whereas our method concentrates its sampling much more significantly
on the relevant entries, determining the ordering between agents 1 and 2. This is because,
in contrast to our method, RG-UCB aims to correctly determine the ordering between all
entries used in the calculating of α-rank, irrespective of whether they matter for the final
outcome.

Wasserstein Payoff Selection Does Well Comparing the Wasserstein Criterion with
Information Gain payoff section, we can see that it enjoys better concentration of the sampling
on the Red entries, and improved performance towards the end of training. Appendix ??
provides a more detailed analysis of this.

Bayesian and Frequentist Regret Go Down Figure 2 shows the resulting performance
of the methods on this task, measured by the regret. Due to the relative simplicity of the
game, there is limited benefit to our method over RG-UCB, but there is a clear benefit over
more naive methods that systematically or uniformly sample the entries. We can see that
the Bayesian regret JBt and Frequentist regrets JFt and JMt are highly correlated, providing
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Figure 10: Proportion of entries sampled on 3 Good, 5 Bad.

empirical justification for minimizing JBt and validating that our method is concentrating on
the ground truth.

Comparing Entropy Estimators We also investigate a larger scale version of 2 Good, 2
Bad with 3 good and 5 bad agents. Figure 3 shows the results, demonstrating a clear benefit
for our method using the Binning estimator for the Information Gain or the Wasserstein
objective. The performance of the NSB entropy estimator is not surprising, given the
significantly larger nature of this task compared to ‘2 Good, 2 Bad’. A necessary part of
the NSB estimator is an upper-bound on the total number of atoms in the distributions,
for which we only have a crude approximation that grows exponentially with the size of
the payoff matrix. Figure 10 shows the proportion of entries sampled for αIG (Bins), the
Wasserstein objective and RG-UCB. Once again, RG-UCB spends a significant part of its
sampling budget determining the ordering between agents that do not have an effect on the
α-rank of the game (in this task agents 3 to 8). In contrast, our methods concentrate their
sampling on the Red entries that determine the payoffs between the top 3 agents, and hence
the true α-rank. In general, our algorithm does not depend as much on accurate estimates
on entropy but on identifying the distribution with a lowest entropy, for which the NSB
estimator isn’t tuned.

Figure 11 shows the values used by the different objectives during training. The top row
shows the values after sampling 5 values for each entry, showing a clear seperation between
the Red entries and the rest. The bottom row shows the values after additionally sampling
250 values for the Red entries. We can then see a large difference between the Wasserstein
and Entropy-based objectives. As desired the Wasserstein-based objective shows a large
separation between the Red entries and the others, additionally assigning the smallest values
to the irrelevant Green, and Purple entries.

Figures 13, 14 and 15 show similar results for 3 Good, 5 Bad.

Gaussian Games Finally, Figure 4 shows the results on 4x4 games with Gaussian noise,
demonstrating improved performance across all 3 regret metrics for the αIG (Bins). This is
empirical confirmation of our theoretical results, and shows that our method achieves better
performance compared to RG-UCB on general games.
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Figure 11: Value of the objectives for each entry after sampling 5 values for every entry
(top) and additionally sampling 250 values for the red entries (below). Mean and
standard deviation are plotted across 10 seeds, maximum entry is highlighted in
black.
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Figure 12: Proportion of entries sampled on 2 Good, 2 Bad for more seeds.
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Figure 13: Values of the objectives for each entry on ‘3 Good, 5 Bad’ after sampling 5 values
for every entry. Mean and standard deviation across 10 seeds is shown, maximum
highlighted in black.

Figure 14: Values of the objectives for each entry on ‘3 Good, 5 Bad’ after sampling 5 values
for every entry, and additionally sampling 1000 values for the red entries. Mean
and standard deviation across 10 seeds is shown, maximum highlighted in black.
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Figure 15: Proportion of entries sampled on 3 Good, 5 Bad for more seeds.
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Appendix F. Experimental Setup

F.1 α-Rank

In the computation of α-rank we set ε = 10−6 in all of our experiments.

F.2 Baselines

ResponseGraphUCB, uses a Hoeffding Bound to construct the confidence interval:

(µ −
√

log(2/δ)(b−a)
2N , µ +

√
log(2/δ)(b−a)

2N ). Where δ is the confidence hyperparameter of the
algorithm, b is the maximum value an entry can take, a is the minimum value, and N is
the number of times a value has been seen for an entry. For all experiments we swept over
δ ∈ {0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.001}, and the final value is selected by considering the area
under the curve for 1− P (f(M̄) = rGT ).

Uniform. The entry to sample if picked uniformly from all possible entries.
Payoff. The entry which maximises the information gain between its sample and the

payoff distribution is chosen. For an isotropic Gaussian this is equivalent to picking the
entry which the lowest count, which results in systematic sampling of each entry. For a non
isotropic Gaussian the same procedure as (Srinivas et al., 2009) is used.

F.3 Graphs

1− P (f(M̄) = rGT ). At each timestep we compute the α-rank of the mean payoff matrix.
Equality is determined if |f(M̄) = rGT )|1 < 0.01. The choice of 0.01 is largely arbitrary, we
did not find the results to be sensitive to this.

1− P (rGT ). 100 times during training (evenly spaced), we sample 2000 samples from
the current belief distribution over α-ranks. P (rGT ) is determined from these 2000 samples
(which are aggregated by rounding each value to the nearest 3d.p.) by counting the number
of sampled α-ranks r such that |r − rGT | < 0.01.

1 − P (r∗), is determined similarly to 1 − P (rGT ), except we use the 2000 samples to
calculate the mode.

For ResponseGraphUCB, we construct a distribution over the payoff entries as being
uniform over the confidence intervals.

F.4 Environments

F.5 2 Good, 2 Bad

Observations are sampled from Ber(x), where x is the value in the payoff matrix.
αIG(Bins), αIG(NSB), αWass. Prior used is N (µ0, σ

2
0), with aleatoric noise σ2

A.
µ0 = 0.5. Swept over σ2

0 ∈ {0.5, 1}, σ2
A ∈ {0.25, 0.5, 1}. 20 samples are used to approximate

the expectation, Ne = 20. 1000 samples are drawn from the belief distribution(s) to
approximate the quantities inside the expectation, Nb = 1000. We set Nr = 10.

For all 3 methods we set σ2
0 = 1. For αIG (Bins) and αIG (NSB) we set σ2

A = 0.5, and
for αWass we set σ2

A = 0.25.
ResponseGraphUCB. We set δ = 0.4. Maximum value is 1, minimum value is 0.
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F.6 3 Good, 5 Bad

Observations are sampled from Ber(x), where x is the value in the payoff matrix.
αIG(Bins), αIG(NSB), αWass. Prior used is N (µ0, σ

2
0), with aleatoric noise σ2

A.
µ0 = 0.5. Swept over σ2

0 ∈ {0.5, 1}, σ2
A ∈ {0.25, 0.5, 1}. Ne = 10. Nb = 500. Nr = 500.

For all 3 methods we set σ2
0 = 1. For αIG (Bins) and αIG (NSB) we set σ2

A = 0.5, and
for αWass we set σ2

A = 0.25.
ResponseGraphUCB. We set δ = 0.05.

F.7 4x4 Gaussian

To match the games considered in our theoretical analysis, Observations are sampled from
N (x, 1) and then clipped to be within 1 of x, where x is the value of the entry in the payoff
matrix. The values of x are uniformly drawn from [0, 1).

αIG(Bins), αIG(NSB), αWass. Prior used is N (µ0, σ
2
0), with aleatoric noise σ2

A.
µ0 = 0.5. Swept over σ2

0 ∈ {0.5, 1}, σ2
A ∈ {0.5, 1}. Ne = 10. Nb = 500. Nr = 100. For

αIG(Bins) we set σ2
0 = 1 and sigma2

A = 1. For αIG(NSB) we set σ2
0 = 0.5 and sigma2

A = 0.5.
For αWass we set σ2

0 = 1 and sigma2
A = 0.5.

ResponseGraphUCB. We set δ = 0.3. Maximum value is 2, minimum value is -1.
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Appendix G. Proofs

Permutation Property We begin by explicitly stating a property of the infinite-alpha
version of α-rank.The function f computing the α-rank satisfies the permutation property,
defined as

π(M1) = π(M2) =⇒ f(M1) = f(M2). (9)

Here, π(M) denotes the ordering of the elements of the vector M using the standard ≥
operation on real numbers. This is the same property exploited by frequentist analysis by
Rowland et al. (2019). Property (9) implies that R is a finite set and

|R| ≤ N !. (10)

Information Gain and Entropy We recall a formula for the information gain in terms
of the entropy.

I(r ; (M ′, a) | Ht = ht) = H (r | Ht = ht)−H
(
r | Ht = ht, At = a,M ′t

)
. (11)

We now show a regret bound for a policy that maximizes information gain on the payoffs.
Proposition 1 [Regret Bound For Information Gain on Payoffs] If we select actions

using strategy πIGM, regret is bounded as

JT ≤ 1− Eht (P (r = rGT|HT = hT )) ≤ 1− Teg(T ) where g(T ) = O(− 3
√

∆2T ). (12)

Proof Fix a history hT . By assumption of separability, we have

P (r = rGT|HT = ht) ≥ P
(
|Mt −M?|∞ ≤

∆

2

)
. (13)

We now use concentration results for Gaussian Processes. Specifically, we invoke Corollary 5,
stated in the appendix, together with an explicit formula for g(T ).

We move on to show a bound for a policy that maxinizes information gain on the alpha
ranks.

Proposition 2[Regret Bound For Information Gain on Belief over Alpha Ranks] If we
select actions using strategy πIGR, regret is bounded as

1− P (r = r?|HIGR
T = ht) ≤ δ

[
z(T ) ≤ hb(|R|−1)

]
h−1
b (z(T )) + δ

[
z(T ) > hb(|R|−1)

]
, (14)

where

z(T ) = δ

[
Teg(T ) ≥ 1

2

]
hb(Te

g(T )) + δ

[
Teg(T ) ≤ 1

2

]
N logN (15)

and g(T ) is as in Proposition 1.
Proof We start by bounding the entropy of the alpha-rank distribution. Denote by
hb(p) = −(p log p + (1 − p) log(1 − p)) the entropy of a Bernoulli random variable with
parameter p. Also, introduce the abbreviation p? = P (r = r?|HT = ht)).
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We have

H
(
r | HIGR

T

)
(a)

≤ H
(
r | HIGM

T

)
(b)

≤ EhT∼HIGM
T

(hb(p
?) + (1− p?) log(|R|))

(c)

≤ EhT∼HIGM
T

(hb(p
?) + (1− p?)N logN) .

Here, (a) follows from the definition of πIGR and equation (11), (b) follows by Lemma 6
and (c) holds because |R| ≤ N ! by equation (10). Combining the above with the bound
p? ≥ Teg(T ) from Proposition 1, we have

H
(
r | HIGR

T

)
≤ δ
[
Teg(T ) ≥ 1

2

]
hb(Te

g(T )) + δ

[
Teg(T ) ≤ 1

2

]
N logN︸ ︷︷ ︸

z(T )

. (16)

We now proceed to bound the probability of r? in terms of the entropy of the alpha-ranks.
We have

hb(P (r = r?|HIGR
T = ht)) ≤ H

(
r | HIGR

T

)
.

This, together with (16) implies

1−P (r = r?|HIGR
T = ht) ≤

δ
[
z(T ) ≤ hb(|R|−1)

]
h−1
b (z(T )) + δ

[
z(T ) > hb(|R|−1)

]
.

Here, we denoted by h−1
b the inverse of the restriction of hb to the interval (0, 1

2).

We use the following result by Srinivas et al. (2009, their Theorem 6), which we specialize
in our notation. We use the term Gaussian Process despite the fact that the index set is
finite, since the model includes observation noise.

Lemma 3 (Srinivas et al., Concentration for a Gaussian Process) Consider a Gaus-
sian Process M , with N indices. Assume M uses a zero-mean prior with constant variance
σ2

0 and observation noise σA. The posterior process Mt is obtained by conditioning on t
observations. The observations are obtained as mt = M?[at] + εt, where εt are i.i.d random
variables with support bounded by [−σ0, σ0]. Denote the RKHS norm of M? under the GP
prior with ‖M?‖k. Denote by γ?t the maximum information gain about M obtainable in t
timesteps. Then, for any ∆ > 0, and for any timestep t, we have

P

[
|M −M?|∞ ≤

∆

2

]
≥ 1− te

−
3

√√√√(
∆

2σmax
t

)2
−2‖M?‖k

300γ?t . (17)
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The above lemma requires knowledge of the RKHS norm and the maximum obtainable
information gain.

Lemma 4 (Worst-Case Constants) For any kernel, we have

‖M?‖k ≤
1

σ−2
0

‖M?‖22 and γ?t ≤
1

2
log det(I + σ−2

A K).

Moreover, for a strategy that maximizes information gain on payoffs, we have

σmax
t ≤ σAσ0√

σ2
A+( T

N
−1)σ2

0

.

Proof The inequalities for posterior variance and the RHKS norm are obtained by using
the independent kernel, which represents the worst-case. The inequality for information gain
follows by writing

γ?t =
1

2
log

det(I + σ−2
A K)

det(I + σ−2
A Σ)

≤ 1

2
log det(I + σ−2

A K). (18)

The inequality follows since the denominator is greater than one. Here, we denoted the prior
covariance with K and the posterior covariance with Σ.

Corollary 5 For a strategy that maximizes the payoff information gain and for any time-step
T , we have:

P

[
|Mt −M?|∞ ≤

∆

2

]
≥ 1− Teg(T ), where g(T ) = O(− 3

√
∆2T )

Specifically,

g(T ) =

(
∆
2

)2 σ2
A+( T

N
−1)σ2

0

σ2
Aσ

2
0

− 2 1
σ−2

0

‖M?‖22
3001

2 log det(I + σ−2
A K)

.

Lemma 6 (Upper Bound on Entropy) For any discrete random variable x with n out-
comes, we have, for each outcome i

H (x) ≤ hb(pi) + (1− pi) log(n− 1).
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Proof Without loss of generality, assume i = 1.

H (x) = −p1 log p1 −
∑
j>1

pj log(pj)

= −p1 log p1 − (n− 1)
∑
j>1

1

n− 1
p1 log(pj)

≤
(a)− p1 log p1 − (n− 1)

∑
j>1

pj
n− 1

 log

∑
j>1

pj
n− 1


= −p1 log p1 − (1− p1) log

(
1− p1

n− 1

)
= −p1 log p1 − (1− p1) log

(
1− p1

n− 1

)
= hb(pj) + (1− pj) log(n− 1)

There, (a) follows from Jensen’s inequality applied to the function x log x.
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