
ICML 2020 Workshop on Real World Experiment Design and Active Learning

Active Continual Learning for Planning and Navigation

Ahmed H. Qureshi, Yinglong Miao, Michael C. Yip
University of California San Diego

La Jolla, CA 92093, USA

{a1qureshi, y2miao, yip}@ucsd.edu

Abstract

Recent developments have led to imitation-based planners that learn by imitating expert
demonstrations to solve general motion planning and navigation problems. These planners
are known for their breakneck computational speed during online planning. However,
training these methods offline requires a large number of expert demonstrations, which
makes them impractical in cases where data is expensive to make and can come in streams
on a need basis. For instance, in semi-autonomous driving, the demonstrations could only
be provided on request for given planning problems. To address that challenge, we present
an active continual learning approach that enables learning-based motion planners to learn
from streaming data and actively ask for expert demonstrations when needed, drastically
reducing the data required for training. Our results indicate that the proposed method
consumes about 80 % lesser data than traditional approaches while exhibiting comparable
planning performances.

Keywords: Continual Learning, Active Learning, Deep Learning, Planning & Navigation

1. Introduction

Robotic motion planning aims to compute a collision-free path for the given start and
goal configurations (LaValle, 2006). As motion planning algorithms are necessary for solv-
ing a variety of complicated, high-dimensional problems ranging from autonomous driving
(Lozano-Perez, 2012) to space exploration (Volpe, 2003), there arises a critical, unmet need
for computationally tractable, real-time algorithms. The quest for developing computation-
ally efficient motion planning methods has led to the development imitation-based planners
that learn to plan by imitating an oracle planner (Bency et al., 2019; Ichter et al., 2018;
Qureshi and Yip, 2018; Qureshi et al., 2019, 2020). These planners are known for their
extremely fast computational speed during online planning. Some of these planners even
provide theoretical completeness guarantees derived from an underlying classical planning
method. For instance, Motion Planning Networks (MPNet), a deep neural network-based
method, generates collision-free paths through divide-and-conquer as it divides the problem
into sub-problems and outsources them, in worst-case, to a classical planner while retaining
its computational benefits. However, standard MPNet training assumes the availability
of complete data for offline training and cannot learn from streaming data while avoiding
catastrophic forgetting, which is a known problem for deep learning-based methods.
In this paper, we present an active continual learning approach to train MPNet. Our method
incorporates MPNet into a continual learning process and asks for expert demonstrations

1



Workshop on Real World Experiment Design and Active Learning

(a) (b)

Figure 1: MPNet consists of encoder network (Enet) and planning network (Pnet). Fig (a)
shows that Pnet and Enet can be trained end-to-end and can learn under continual learning
settings from streaming data using constraint optimization and episodic memory M for a
given loss function l(·). Fig (b) shows the online execution of MPNet’s neural models.

only when needed, hence improving the overall training data efficiency. This strategy is in
response to practical and data-efficient learning where planning problems come in streams,
and MPNet attempts to plan a motion for them. In case MPNet fails to find a path for a
given problem, only then an Oracle Planner is called to provide an expert demonstration
for learning. We compare our training method against: 1) standard offline batch learning
which assumes the availability of all training data, and 2) continual learning with episodic
memory which assumes that the expert demonstrations come in streams and the global
training data distribution is unknown.

2. MPNet: A Neural Motion Planner

MPNet comprises of two neural networks: an encoder network (Enet) and a planning net-
work (Pnet). Enet takes the robot’s surrounding information such as a raw point-cloud and
transforms it to a latent space embedding using a fully-connected deep neural network. Pnet
takes the encoding of the environment, the robot’s current state and goal state to output
samples for a path generation. In remaining section, we describe the notations necessary to
outline MPNet.
Let robot configuration space (C-space) be denoted as C ⊂ Rd comprising of obstacle space
Cobs and obstacle-free space Cfree = C\Cobs, where d is the C-space dimensionality. Let
robot’s surrounding environment, also known as workspace, be denoted as X ⊂ Rm, where
m is a workspace dimension. Like C-space, the workspace also comprise of obstacle, Xobs,
and obstacle-free, Xfree = X\Xobs, regions. The workspaces could be up to 3-dimensions
whereas the C-space can have higher dimensions depending on the robot’s degree-of-freedom
(DOF). Let robot initial and goal configuration space be cinit ∈ Cfree and cgoal ⊂ Cfree, re-
spectively. Let σ = {c0, · · · , cT } be an ordered list of length T . We assume σi corresponds
to the i-th state in σ, where i = [0, T ]. For instance σ0 corresponds to state c0. Further-
more, we consider σend corresponds to the last element of σ, i.e., σend = cT .
We consider a practical scenario, where MPNet plans feasible, near-optimal paths using raw

2



ICML 2020 Workshop on Real World Experiment Design and Active Learning

point-cloud/voxel data of obstacles xobs ⊂ Xobs. However, like other planning algorithms,
we do assume an availability of a collision-checker that verifies the feasibility of MPNet
generated paths based on Xobs. Precisely, Enet, with parameters θe, takes the environ-
ment information xobs and compresses them into a latent space, i.e., Z ← Enet(xobs; θ

e).
Pnet, with parameters θp, takes the environment encoding Z, robot’s current or initial con-
figuration ct ∈ Cfree, and goal configuration cgoal ⊂ Cfree to produce a trajectory through
incremental generation of states ĉt+1 (Fig. 1 (b)), ĉt+1 ← Pnet(Z, ct, cgoal).

3. Active Continual Learning

In this section, we formally present the active continual learning (ACL) approach for
learning-based planning algorithms such as MPNet. MPNet primarily used offline batch
learning method (Qureshi et al., 2019; Qureshi and Yip, 2018) which requires the avail-
ability of complete data to train MPNet offline before running it online to plan motions
for unknown/new planning problems. The ACL incorporates MPNet into the continual
learning process where MPNet actively asks for an expert demonstration when needed for
the given problem.
In ACL settings, the data comes in streams with targets, i.e.,

(s1, y1, · · · , si, yi, · · · , sN , yN )

where s = (ct, cT , xobs) is the input to MPNet comprising of the robot’s current state ct,
the goal state cT , and obstacles information xobs. The target y is the next state ct+1 in
the expert trajectory given by an oracle planner. Generally, continual learning using neural
networks suffers from the issue of catastrophic forgetting since taking a gradient step on a
new datum could erase the previous learning.
To overcome catastrophic forgetting, we employ the Gradient Episodic Memory (GEM)
method for lifelong learning (Lopez-Paz and Ranzato, 2017). GEM uses the episodic mem-
ory M that has a finite set of continuum data seen in the past to ensure that the model
update doesn’t lead to negative backward transfer while allowing only the positive back-
ward transfer. For MPNet, we adapt GEM for the regression problem using the following
optimization objective function.

min
θ
l(f tθ(s), y) s.t Ê(s,y)∼M[l(f tθ(s), y)] ≤ Ê(s,y)∼M[l(f t−1θ (s), y)] (1)

where l = ‖f tθ(s) − y‖2 is a squared-error loss, f tθ is the MPNet model at time step t (see
Fig. 1). Furthermore, note that, if the angle between proposed gradient (g) at time t, and
the gradient overM (gM) is positive, i.e., 〈g, gM〉 ≥ 0, there is no need to maintain the old
function parameters f t−1θ because the above equation can be formulated as:

〈g, gM〉 :=

〈
5θ l

(
fθ(s), y

)
, Ê(s,y)∼M 5θ l

(
fθ(s), y

)〉
(2)

where Ê denotes empirical mean.
In most cases, the proposed gradient g violates the constraint 〈g, gM〉 ≥ 0, i.e., the proposed
gradient update g will cause increase in the loss over previous data. To avoid such violations,

3



Workshop on Real World Experiment Design and Active Learning

Lopez-Paz and Ranzato (2017) proposed to project the gradient g to the nearest gradient
g′ that keeps 〈g′, gM〉 ≥ 0, i.e,

min
g′

1

2
‖g − g′‖22 s.t 〈g′, gM〉 ≥ 0 (3)

The projection of proposed gradient g to g′ can be solved efficiently using Quadratic Pro-
gramming (QP) based on the duality principle, for details refer to (Lopez-Paz and Ranzato,
2017).
Various data parsing methods are available to update the episodic memory M. These
sample selection strategies for episodic memory play a vital role in the performance of
continual/life-long learning methods such as GEM (Isele and Cosgun, 2018). There ex-
ist several selection metrics such as surprise, reward, coverage maximization, and global
distribution matching (Isele and Cosgun, 2018). In our ACL framework, we use a global
distribution matching method to select samples for the episodic memory. For details and
comparison of different sample selection approaches, please refer to (Qureshi et al., 2020).
The global distribution matching method, also known as reservoir sampling, uses random
sampling techniques to populate the episodic memory. The aim is to approximately capture
the global distribution of the training dataset since it is unknown in advance.
In addition to episodic memory M, we also maintain a replay/rehearsal memory B∗. The
replay buffer lets MPNet rehearse by learning again on the old samples. We found that
rehearsals further mitigate the problem of catastrophic forgetting and leads to better per-
formance, as also reported by Rolnick et al. (2018) in reinforcement learning setting. Note
that replay or rehearsal on the past data is done with the interval of replay period r ∈ N≥0.
Algorithm 1 presents the outline of ACL method. At every time step t, the environment
generates a planning problem (cinit, cgoal,Xobs) comprising of the robot’s initial cinit and goal
cgoal configurations and the obstacles’ information Xobs (Line 7). Before asking MPNet to
plan a motion for a given problem, we let it learn from the expert demonstrations for up to
Nc ∈ N≥0 iterations (Line 9-10). If MPNet is not called or failed to determine a solution,
an expert-planner is executed to determine a path solution σ for a given planning problem
(Line 13). The expert trajectory σ is stored into a replay buffer B∗ and an episodic M
memory based on their sample selection strategies (Line 14-15). MPNet is trained (Line 16-
19) on the given demonstration using the constraint optimization mentioned in Equations
1-3. Finally, similar to continual learning, we also perform rehearsals on the old samples
(Line 20-25).
It can be seen that ACL introduces a two-level of sample selection strategy. First, ACL
gathers the training data by actively asking for the demonstrations on problems where MP-
Net failed to find a path. Second, it employs a sample selection strategy that further prunes
the expert demonstrations to fill episodic memory so that it approximates the global distri-
bution from streaming data. The two-level of data selection in ACL improves the training
samples efficiency while learning the generalized neural models for the MPNet.

4. Results & Conclusions

In this section, we present results evaluating MPNet models trained with batch learning
(B), continual learning (C), and active continual learning (AC). We also compare these

4



ICML 2020 Workshop on Real World Experiment Design and Active Learning

Algorithm 1: Active Continual Learning

1 Initialize memories: episodicM and replay B∗
2 Initialize MPNet fθ with parameters θ.
3 Set the number of iterations C to pretrain MPNet.
4 Set the replay period r
5 Set the replay batch size NB
6 for t = 0 to T do
7 {Xobs, cinit, cgoal}t ← GetPlanningProblem()
8 σ ← ϕ \\ an empty list to store path solution
9 if t > Nc then

10 xobs ⊂ Xobs

11 σ ← fθ(xobs, cinit, cgoal)

12 if not σ then
13 σ ← GetExpertDemo(Xobs, cinit, cgoal)
14 B∗ ← B∗ ∪ σ
15 M← UpdateEpisodicMemory(σ,M)

16 g ← Ê(s,y)∼σ 5θ l
(
fθ(s), y

)
17 gM ← Ê(s,y)∼M 5θ l

(
fθ(s), y

)
18 Project g to g′ using QP based on Equation 3
19 Update parameters θ w.r.t. g′

20 if B∗.size() > NB and not t mod r then
21 B ← SampleReplayBatch(B∗)
22 g ← Ê(s,y)∼B 5θ l

(
fθ(s), y

)
23 gM ← Ê(s,y)∼M 5θ l

(
fθ(s), y

)
24 Project g to g′ using QP based on Equation 3
25 Update parameters θ w.r.t. g′

(a) tR = 5.3, tM = 0.02 (b) tR = 6.8, tM = 0.1 (c) tR = 9.7, tM = 0.1 (d) tR = 27.8, tM = 0.3

Figure 2: Time comparison of MPNetPath (Red) and RRT* (Blue) for computing the near-
optimal path solutions in example environments. Figs.(a) and (b) present simple 2D and
complex 2D environments. Fig. (c) indicates complex 3D case whereas Figs. (d) shows the
rigid-body-SE2 case.

models against state-of-the-art classical planners: RRT* (Karaman and Frazzoli, 2011),
Informed-RRT* (Gammell et al., 2014), and BIT* (Gammell et al., 2015). For more details
on the experimental setup, please refer to (Qureshi et al., 2020).

5



Workshop on Real World Experiment Design and Active Learning

Methods
Environments

Simple 2D Complex 2D Complex 3D Rigid-body-SE2

Informed-RRT* 1.10± 0.09 1.49± 0.16 2.76± 0.20 14.80± 2.83

BIT* 0.65± 0.30 1.61± 0.53 0.20± 0.04 6.52± 1.65

MPNetPath:NP (B) 0.02± 0.00 0.04± 0.01 0.07± 0.01 0.37± 0.02

MPNetPath:NP (C) 0.02± 0.00 0.05± 0.01 0.08± 0.0) 0.39± 0.07

MPNetPath:NP (AC) 0.03± 0.01 0.06± 0.01 0.08± 0.01 0.42± 0.08

Table 1: Mean computation times with standard deviations are presented for MPNet (all
variations), Informed-RRT* and BIT* on two test datasets, i.e., seen and unseen (shown
inside brackets), in four different environments. In all cases, MPNet path planners trained
with continual learning (C), active continual learning (AC) and offline batch learning (B)
exhibt similar performance which is significantly better than classical planners such as
Informed-RRT* and BIT* by an order of magnitude.

simple 2D complex 2D complex 3D rigid-body
0

50

100

150

200

250

300

350

400

no
. o

f t
ra

in
in

g 
pa

th
s (

x1
00

0)

Active Continual Learning
Batch/Continual Learning

Figure 3: The number of training trajectories required by MPNet when trained with active
continual learning as compared to traditional batch/continual learning approaches.

Fig. 2 shows the paths generated by MPNet(red), and its expert demonstrator RRT*(blue).
The average computations times of MPNet and RRT* are denoted as tR and tM , respec-
tively. It can be seen that MPNet finds paths of similar lengths as its expert demonstrator
RRT* while retaining consistently low computational time. Overall, we observed that MP-
Net is at least 100× faster than RRT* and finds paths that are within a 10% range of
RRT*’s paths cost.

Table 1 compares mean computation times of different MPNet models with each other
and against advanced classical planners in four different scenarios as shown in the Fig. 2.
Fig. 3 shows the number of training paths consumed by all MPNet models presented in
the Table 1. It can be seen that ACL exhibits significant improvement in data-efficiency
and yet provides similar performance as conventional training methods in terms of compu-
tation times and success rates. Furthermore, the success rate of all MPNet models were
compareable to each other, i.e., 90− 99%.

6



ICML 2020 Workshop on Real World Experiment Design and Active Learning

References

M. J. Bency, A. H. Qureshi, and M. C. Yip. Neural path planning: Fixed time, near-optimal
path generation via oracle imitation. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3965–3972, 2019.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 2997–3004. IEEE, 2014.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch informed
trees (bit*): Sampling-based optimal planning via the heuristically guided search of im-
plicit random geometric graphs. In 2015 IEEE international conference on robotics and
automation (ICRA), pages 3067–3074. IEEE, 2015.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot
motion planning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7087–7094. IEEE, 2018.

David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The international journal of robotics research, 30(7):846–894, 2011.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In Advances in Neural Information Processing Systems, pages 6467–6476, 2017.

Tomás Lozano-Perez. Autonomous robot vehicles. Springer Science & Business Media, 2012.

Ahmed H Qureshi and Michael C Yip. Deeply informed neural sampling for robot motion
planning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6582–6588. IEEE, 2018.

Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion planning
networks. In 2019 International Conference on Robotics and Automation (ICRA), pages
2118–2124. IEEE, 2019.

Ahmed H Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C Yip. Motion planning
networks: Bridging the gap between learning-based and classical motion planners. IEEE
Transactions on Robotics, 2020.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne.
Experience replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.

Richard Volpe. Rover functional autonomy development for the mars mobile science labo-
ratory. In Proceedings of the 2003 IEEE Aerospace Conference, volume 2, pages 643–652,
2003.

7


	Introduction
	MPNet: A Neural Motion Planner
	Active Continual Learning
	Results & Conclusions

