
ICML 2020 Workshop on Real World Experiment Design and Active Learning

Promoting Fairness in Learned Models
by Learning to Active Learn under Parity Constraints

Amr Sharaf amr@cs.umd.edu
Department of Computer Science
University of Maryland
College Park, MD 20742, USA

Hal Daumé III me@hal3.name
Department of Computer Science
University of Maryland
College Park, MD 20742, USA
Microsoft Research
New York, NY 10011, USA

Abstract
Machine learning models can have consequential effects, and disparities in error rate

can lead to harms suffered more by some groups than others. Past algorithmic approaches
mitigate such disparities for fixed training data; we ask: what if we can gather more data?
We develop a meta-learning algorithm for parity-constrained active learning that learns
a policy to decide which labels to query so as to maximize accuracy subject to parity
constraints, using forward-backward splitting at the meta-learning level. Empirically,our
approach outperforms alternatives by a large margin.
Keywords: Meta-Learning, Parity-Constrained Active Learning

1. Introduction

Machine learning models often lead to harms due to disparities in behavior across social
groups: an automated hiring system may be more likely to recommend hiring people of
privileged races, genders, or age groups (Wachter-Boettcher, 2017; Giang, 2018). These
disparities are typically caused by biases in historic data (society is biased); a substantial
literature exists around “de-biasing” methods for algorithms, predictions, or models (, i.a.).
Such approaches always assume that the training data is fixed, leading to a false choice
between efficacy (e.g., accuracy, AUC) and “fairness” (typically measured by a metric of
parity across subgroups (Chen et al., 2018; Kallus and Zhou, 2018)). This is in stark contrast
to how machine learning practitioners address disparities in model performance: they collect
more data that’s more relevant or representative of the populations of interest (Veale and
Binns, 2017; Holstein et al., 2019). This disconnect leads to a mismatch between sources of
bias, and the algorithmic interventions developed to mitigate them (Zarsky, 2016).

We consider a different trade-off: given a pre-existing dataset, which may have been
collected in a highly biased manner, how can we manage an efficacy vs annotation cost
trade-off under a target parity constraint? We call this problem parity-constrained active
learning, where a maximal disparity (according to any of a number of different measures,

1

Workshop on Real World Experiment Design and Active Learning

see Table 1) is enforced during a data collection process. We specifically consider the case
where some “starting” dataset has already been collected, distinguishing our procedure from
more standard active learning settings in which we typically start from no data ((Settles,
2009), see § B). The goal then is to collect as little data as is needed to keep accuracy
high while maintaining a constraint on parity (as a measure of fairness). As an example,
consider disparities in pedestrian detection by skin tone (Wilson et al., 2019): A pedestrian
detector is trained based on a dataset of 100k images, but an analysis shows that it performs
significantly better at detecting people with light skin than people with dark skin. Our goal
is to label few additional samples while achieving a high accuracy under a constraint on the
disparity between these groups.1

We propose to solve the parity-constrained active learning problem using a meta-
learning approach, very much in the style of recent work on meta-learning for active
learning (Konyushkova et al., 2017; Bachman et al., 2017; Fang et al., 2017). Our al-
gorithm, Parity-constrAiNeD metA active learning (Panda; see §2), uses data to
learn a selection policy that picks which examples to have labeled. The data on which it
learns this selection policy is the pre-existing (possibly biased!) dataset from which it will
continue learning.

To achieve this, Panda simulates many parity-constrained active learning tasks on
this pre-existing dataset, to learn the selection policy. Technically, Panda formulates
the parity-constrained active learning task as a bi-level optimization problem. The inner
level corresponds to training a classifier on a subset of labeled examples. The outer level
corresponds to updating the selection policy choosing this subset to achieve a desired fairness
and accuracy behavior on the trained classifier. To solve this constrained bi-level optimization
problem, Panda employs the Forward-Backward Splitting (FBS, Lions and Mercier (1979);
Combettes and Wajs (2005); Goldstein et al. (2014)) optimization method (also known
as the proximal gradient method). Despite its apparent simplicity, FBS can handle non-
differentiable objectives with possibly non-convex constraints while maintaining the simplicity
of gradient-descent methods.

2. Problem Definition and Proposed Approach

In this section we define parity-constrained active learning and describe our algorithm.

2.1 Problem Definition: Parity-Constrained Active Learning

We consider the following model. We have collected a dataset of N labeled examples,
D0 = (xn, yn)Nn=1 over an input space X (e.g., images) and output space Y (e.g., pedestrian
bounding boxes), and have access to a collection of M -many unlabeled examples, U =
(xm)Mm=1. Each input example x ∈ X is associated with a unique group g(x) (e.g., skin
tone). We fix a hypothesis class H ⊂ YX and learning algorithm A that maps a labeled
sample D to a classifier h ∈ H. Finally, we have a loss function `(y, ŷ) ∈ R≥0 (e.g., squared
error, classification error, etc.) and a target disparity metric, ∆(h) ∈ R≥0 (such as those in
Table 1). The goal is to label as few images from U as possible to learn a classifier h with
high accuracy subject to a constraint that ∆(h) < ρ for a given threshold ρ > 0. We assume

1. Code: https://www.dropbox.com/sh/sbao1hdrxvgmdfw/AAC0LsyQsIxNIYxVaolLhKj_a?dl=0

2

https://www.dropbox.com/sh/sbao1hdrxvgmdfw/AAC0LsyQsIxNIYxVaolLhKj_a?dl=0

ICML 2020 Workshop on Real World Experiment Design and Active Learning

access to a (small) validation set V of labeled examples (which can be taken to be a subset
of D). We will denote population expectations and disparities by E and ∆, respectively, and
their estimates on a finite sample by ÊA and ∆̂A, where A is the sample.

The specific interaction model we assume is akin to standard active learning with labeling
budget B:
1: train the initial classifier on the pre-existing dataset: h0 = A(D0).
2: for round b = 1 . . . B do
3: generate categorical probability distribution Q = π(hb−1, U) over U using policy π.
4: sample an unlabeled example x ∼ Q, query its label y, and set Db = Db−1 ∪ {(x, y)}.
5: train/update classifier: hb = A(Db).
6: end for
7: return classifier hB , it’s validation loss ÊV `(y, hB(x)) and validation disparity ∆̂V (hB).

Under this model, the active learning strategy is summarized in the example selection
policy π.2 The goal in parity constraint actively learning is to construct a π with minimal
expected loss subject to the constraint that ∆(h) < ρ.

2.2 Panda: Learning to Actively Learn under Parity Constraints

We develop a meta-learning approach, Panda, to address the parity-constrained active
learning problem: the selection policy π is trained to choose samples that, if labeled, are
likely to optimize accuracy subject to a parity constraint. This learning happens on D itself:
by simulating many possible ways additional data could be selected on the historic data,
Panda learns how to select additional examples, even if D itself was biased.

To learn π, we construct a distribution of meta-training tasks, M; samples (L, V) ∼M
consist of a labeled dataset L (to simulate unlabeled data U) and a validation set V . We form
M by repeatedly reshuffling D, and produce a finite sample of meta-training tasks D i.i.d.
from M. The meta-learning problem is then to optimize π on D to achieve high accuracy
subject to a constraint on disparity. We begin by first writing the parity-constrained problem
according to its characteristic function:

ĥ ∈ argmin
h∈H : ∆̂V (h)<ρ

ÊV `(x, h(x)) ⇐⇒ ĥ ∈ argmin
h∈H

ÊV `(x, h(x)) + χ∆̂,ρ,V (h) (1)

where χ∆,ρ,V (h) = 0 if ∆̂V (h) < ρ and +∞ otherwise; for brevity we write χ(h) when
()∆̂, ρ, V) is clear from context. Under reasonable assumptions, both minimizers are finite.

Given this, the meta-learning optimization problem is:

min
π∈Π

Ê(L,V)∼D

[
ÊV `(x, hπL(x)) + χ(hπL)

]
where hπL = ActiveLearnSim(A, D, L, π) (2)

Here, ActiveLearnSim(A, D, L, π) is the interactive algorithm in § 2.1, where U is
taken to be L (with labels hidden) and when a label is queried, it is retrieved from L.

When A is, itself, an optimizer—as it is in most machine learning settings—then for-
mulation Eq 2 is a constrained bilevel optimization problem. The outer optimization is

2. For example, margin-based active learning (Roth and Small, 2006) can be realized by setting π(h, U) to
assign a Q(x) = 1[x = x?] where x? = argminx∈U |h(x)|, where h returns the margin.

3

Workshop on Real World Experiment Design and Active Learning

over the sampling policy π, and the inner optimization is over the optimization over h in
ActiveLearnSim. We assume that A can be written as a computational graph, in which
case the outer objective can be optimized by unrolling the computational graph of A. This
introduces second-order gradient terms, but remains computationally feasible so long as the
unrolled graph of A is not too long: we ensure this by only running a few steps of SGD
inside A and using a simple hypothesis class for H.

There remain two challenges to solve Eq 2. The first is to address the discontinuous nature
of the characteristic function χ; we use forward-backward splitting to address this. The second
is that the unrolling of ActiveLearnSim yields a computational graph that has stochasticity
(due to the sampling of unlabeled examples); we use the Gumbel reparameterization trick to
address this.

Forward-Backward Splitting (FBS) is a class of optimization methods (Lions and
Mercier, 1979), which provide the simplicity of gradient descent methods while being able
to enforce possibly non-differentiable constraints. In FBS, the objective is separated into
a differentiable part f(x) and an arbitrary (not even necessarily smooth) part g(x). The
algorithm operates iteratively by first taking a gradient step just with respect to f to an
intermediate value: x′ = x− η∇f(x). Next, it computes a proximal step that chooses the
next iterate x to minimize ηg(x) + ||x− x′||2/2. When f is convex, FBS converges rapidly;
for non-convex problems (like Eq 2), theoretical convergence rates are unknown, but the
algorithm works well in practice.

Gumbel Reparameterization is a generic technique to avoid back-propagating through
stochastic sampling nodes in the computational graph (Gumbel, 1948; Jang et al., 2016; Kool
et al., 2019; Maddison et al., 2016). This trick allows us to sample from the categorical distri-
bution Q by independently perturbing the log-probabilities Qi with Gumbel noise and finding
the largest element, thus enabling end-to-end differentiation through ActiveLearnSim, so
long as A is differentiable.

The Full Training Algorithm for Panda is summarized in 1. Following the Forward-
Backward Splitting template, Panda operates in an iterative fashion. Over iterations, Panda
simulates a parity-constrained active learning setting for the current model parameters θk.
4 performs a simple forward gradient descent step to maximize the classifier performance.
This step begins at iterate θk, and then moves in the direction of the (negative) gradient
of the performance loss, which is the direction of steepest descent. 5 is the proximal (or
backward) step, which enforces the parity constraint; this works even when the parity
metric is non-differentiable. In both the gradient descent step and the proximal step, Panda
performs bilevel optimization. For example, the gradient step is a gradient with respect to the
parameters of the selection policy, of the computational graph defined by ActiveLearnSim.
That function, itself, performs an optimization of h.

3. Experiments

We conduct experiments in the standard active learning manner: pretend that a labeled
dataset is actually unlabeled, and use its labels to answer queries. Experimentally, given a
complete dataset, we first split it 50/50 into meta-training and meta-testing sections. We use
meta-training to pretrain the Transformer model (see §B.1), and also to train Panda. All

4

ICML 2020 Workshop on Real World Experiment Design and Active Learning

Algorithm 1 Parity-constrained Active Learning via Panda
Input: pre-existing datasets D, budget B, loss function `, disparity metric ∆, threshold

ρ, meta-learning learning rate schedule 〈ηk〉k≥1, and inner learning rate η′

Output: Selection policy π
1: Initialize selection policy π(·; θ0) parameterized by θ0

2: for iteration k = 1 . . . convergence do
3: Split D into pool L and validation set V
4: θ̂k+1 = θk − ηk∇θÊV `

(
y,ActiveLearnSim(A, D, L, π(·; θk)(x)

)
5: θk+1 = argminθ η

kχ∆̂,ρ,V

(
ActiveLearnSim(A, D, L, π(·; θ))

)
+ 1/2||θ − θ̂k+1||2

6: end for
7: return π(·; θfinal)

8: function ActiveLearnSim(A, D, L, π)
9: Let 〈xi, yi〉|L|i=1 be an indexing of L

10: for b = 1 . . . B do
11: set Q̃i = π(hb−1,xi) + Gumbel(0) for all i and pick j = arg maxi Q̃i
12: take (a/several) gradient step(s) of the form: hb = hb−1 − η∇h`(yj , h(xj))
13: end for
14: return hB

15: end function

Demographic Disparity vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Error Rate Balance vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Error Rate Balance
0.025 0.119 0.213 0.306 0.4

Demographic Disparity vs F-Score

F-
Sc

or
e

0.45

0.488

0.525

0.563

0.6

Demographic Disparity
0.025 0.044 0.062 0.081 0.1

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware

Figure 1: (Left) A scatterplot of demographic disparity versus F-score for a fixed budget
B = 400, for Panda and baseline approaches. (Right) A similar scatterplot for
error rate balance versus F-score.

algorithms us the same Transformer representation. The meta-testing section is split again
50/50 into the “unlabeled” set and the test set.

3.1 Evaluation Metrics and Results

We evaluate the performance of the learned classifiers using the overall F-score on the
evaluation set V , and report violations for parity-constrains in terms of demographic disparity
and error rate balance (Table 1), as these account for different ends of the constrained spectrum
of parity metrics. In order to set trade-off parameters (the convex combination for FAL and
the constraints for fairlearn and Panda), we first run FAL with several different trade-off
parameters to find a value large enough that disparity matters but small enough that a
non-zero F-score is possible. All results are with 0.6. We then observed the final disparity

5

Workshop on Real World Experiment Design and Active Learning

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget
0 100 200 300 400

Demographic Disparity vs Budget for
different Active Learning Algorithms

D
em

og
ra

ph
ic

D
isp

ar
ity

0

0.035

0.07

0.105

0.14

Budget
0 100 200 300 400

F-Score vs Budget for different
Active Learning Algorithms

F-
sc

or
e

0.3

0.4

0.5

0.6

0.7

Budget

0 100 200 300 400

Random Sampling Fairlearn PANDA Fair Active Learning Entropy Sampling Group Aware Random Sampling

Figure 2: Learning curves for all algorithms, with (Left) budget (x-axis) versus F-score
(y-axis) and (Right) budget (x-axis) versus demographic disparity (y-axis). The
constraint value for fairlearn and Panda is 0.04.

for FAL of 0.8 and set a constraint for Panda and FAL of half of that: 0.4. This choice was
made to ensure that FAL has an overall advantage over Panda.

The main results are shown in Figure 1, where we consider performance for a fixed budget.
Here, we first observe (unsurprisingly) that the baselines that do not take parity into account
(Random Sampling and Entropy Sampling) do quite poorly (we do not plot margin-based
sampling as it was dominated by Entropy sampling in all experiments). For example, while
entropy sampling gets a very high F-score, it has quite poor disparity. Somewhat surprisingly,
group-aware random sampling does worse in terms of disparity than even plain random
sampling. FAL is able to achieve higher accuracy than random sampling, but, again, it’s
disparity is no better despite the fact that it explicitly optimizes for the trade-off. Finally,
fairlearn and Panda dominate in terms of the trade-off, with Panda achieving higher
accuracy, better error rate balance, but worth demographic disparity.

We also wish to consider the dynamic nature of these algorithms as they collect more
data. In Figure 2, we plot budget versus f-score and disparity for a fixed parity constraint
of 0.04. Unsurprisingly, we see that entropy sampling outperforms random sampling (in
F-score), though they perform essentially the same for disparity. We also see a clear trade-off
in FAL between F-score (goes up as the budget increases) and disparity (also goes up).

Here, we see that both fairlearn and Panda are able to keep the disparity low (after an
initial peak for Panda). There is a generalization gap between Panda’s training disparity
(which always exactly satisfies the 0.04 constraint) and its validation disparity, which is
somewhat higher, as anticipated by concentration bounds on disparity like those of Agarwal
et al. (2018). The initial peak in disparity (where it does not satisfy the constraint) for
Panda is not surprising: it is trained end-to-end to pick a good sample of 400 points; it is
not optimized for smaller budgets. Similarly, in terms of F-score, Panda achieves a very
high initial F-score, essentially a zero-shot learning type effect. However, as it lowers the
disparity, the F-score also drops slightly.

6

ICML 2020 Workshop on Real World Experiment Design and Active Learning

Metric Description & Mathematical Definition

Demographic
Parity

Predictions h(x) are statistically independent of the group g(x) (Feldman et al., 2015):
∆DP(h) , maxa | E[h(x) | g(x)=a]− E[h(x)] |

Equalized
Odds

Predictions h(x) are independent of the group g(x) given the true label y (Hardt et al.,
2016):

∆EO(h) , maxa,y | E[h(x) | g(x)=a, Y =y]− E[h(x) | Y =y] |

Error-rate
Balance

False positive and false negative error rates are equal across groups (Chouldechova,
2017):

∆EB(h) , maxa,a′,y | E[h(x) | g(x)=a, Y =y]− E[h(x) | g(x)=a′, Y =y] |

Table 1: Three common measures of disparity for binary classification (extensions to multi-
class are generally straightforward), expressed in terms of differences in expected
values of predictions (where we take h : X → {0, 1}). We denote by g(x) the group
to which the example x belongs. In some work, disparities are taken to be ratios of
expectations, rather than differences.

Acknowledgments

We would like to acknowledge Tom Goldstein for useful discussions and members of the
Computational Linguistics and Information Processing (CLIP) lab for reviewing earlier
versions of this work.

Appendix A. Contributions

Through exhaustive empirical experiments (§3), we show the following:
1. Panda is effective: it outperforms alternative active learning algorithms by a large

margin under the same setting while enforcing the desired behavior on fairness.
2. Panda is general-purpose: it learns the selection policy end-to-end and can handle

a wide set of non-differentiable and non-convex constraints on fairness parity using
Gumbel-Softmax reparameterization (Gumbel, 1948; Jang et al., 2016; Maddison et al.,
2016) and differentiable approximations.

3. Panda is powerful: it employs a Transformer model architecture (Vaswani et al., 2017)
to represent the learned selection policy. This architecture has achieved state-of-the-art
performance in many tasks including language modeling (Dai et al., 2019), machine
translation (Dehghani et al., 2018), and unsupervised pre-training (Devlin et al., 2018).

Appendix B. Background and Related Work

Concerns about biased or disparate treatment of groups or individuals by computer systems
has been raised since the 1990s Friedman and Nissenbaum (1996). Machine learning and
other statistical techniques provide ample opportunity for pre-existing societal bias to be
incorporated into computer systems through data, leading to a burgeoning of research
studying disparities in machine learning (Abdollahi and Nasraoui, 2018; Crawford and Calo,
2016, i.a.).

7

Workshop on Real World Experiment Design and Active Learning

Much technical machine learning research has gone into defining what disparate treatment
means formally, leading to a zoo of parity metrics (Narayanan, 2018) (see Table 1 for examples),
proofs of their incompatibilities (Chouldechova, 2017; Kleinberg et al., 2016), and analyses
of how they conform to normative notions of fairness (Srivastava et al., 2019). This has led
to machine learning algorithms that optimize not just for accuracy, but rather for accuracy
subject to a constraint on parity between known groups (Agarwal et al., 2018).

A parallel line of research has considered the human side of analyzing disparities in
machine learning systems, including visualization (Cabrera et al., 2019), debugging (Chen
et al., 2018), and needs-finding (Veale and Binns, 2017; Holstein et al., 2019). One finding
of the latter is that machine learning practitioners and data scientists often have control
over training data, which is not taken into account in most technical machine learning
research. For instance, Holstein et al. (2019)’s results show that 78% of practitioners who
had attempted to address disparities did so by trying to collect more data, despite the lack
of tools that support this.

Curating more data is not a foreign concept in the machine learning research: active
learning—the learning paradigm in which the learner itself chooses which examples to have
labeled next—has been studied extensively over the past five decades (Settles, 2009; Fedorov,
2013; Angluin, 1988; Cohn et al., 1994; Jiang and Ip, 2008). Most active learning approaches
select samples to label based on some notion of uncertainty (e.g., entropy of predictions).
Most relevant to our work are recent active learning approaches based on meta-learning
(Bachman et al., 2017; Fang et al., 2017): here, instead of designing the selection strategy by
hand, the selection strategy is learned based on offline, simulated active learning problems.
So long as those offline problems are sufficiently similar to the target, real, active learning
problem, there is hope that the learned strategy will generalize well.

We are aware of only one paper that considers active learning in the context of fairness:
Fair Active Learning (FAL) by Anahideh and Asudeh (2020). FAL uses a handselection
strategy that interpolates between an uncertainty-based selection criteria, and a “fairness”
criteria that estimates the impact on disparity if the label of a given point were queried (by
computing expected disparity over all possible labels). FAL selects data points to be labeled
to balance a convex combination of model accuracy and parity, with the trade-off specified by
a hyperparameter. Empirically, Anahideh and Asudeh (2020) showed a significant reduction
in disparity while maintaining accuracy. Our setting is slightly different than FAL—we
assume pre-existing data—but we compare extensively to this approach experimentally under
similar conditions (§3).

B.1 Network Structure of Selection Policy

The selection policy π takes as input the current classifier h and unlabeled dataset U , and
produces a distribution Q over elements of U . We explore policies that are agnostic to
changes in h, meaning that Q at round b is identical for all b. This introduces a limitation
that π cannot directly adapt to changes in h; however, since π is optimized end-to-end, we
empirically found this to be a minor limitation. A significant advantage of this choice is
that it means that ActiveLearnSim can be unrolled much more easily: the simple Gumbel
softmax can be replaced with Gumbel-top-B (Vieira, 2014; Kool et al., 2019) and unrolled in
a single step, rather than a sequence of B-many steps.

8

ICML 2020 Workshop on Real World Experiment Design and Active Learning

Because π must effectively make all selections in a single step, it is important that π
consider each x in the context of all other items in U , and not consider each x individually.
We implement this using a Transformer architecture (Vaswani et al., 2017), in which a self-
attention mechanism essentially combines information across different xs in U . Specifically, we
treat the examples in U as an unordered sequence as input to the Transformer encoder3. The
Transformer architecture employs several layers of self-attention across U with independent
feed-forward networks for each position. The final layer of the Transformer can be interpreted
as a contextual representation for each x ∈ U , where the context is “the rest of U .” We
use a final linear softmax layer to map these contextual representations to the probability
distribution Q.

Because this model architecture is flexible, it is also data-hungry, and training all of
its parameters based just on a small set of B examples is unlikely to be sufficient. This is
where the initial dataset D0 comes in: we pretrain the parameters of the Transformer on D0

and use the B-many actively selected samples to fine-tune the final layer, thus keeping the
required sample complexity small.

Appendix C. Datasets

Picking a good dataset for parity-constrained active learning is challenging: it needs to
contain a protected attribute, be sufficiently large that an active sample from unlabeled
portion is representative (i.e., as the size of the sample approaches the size of the unlabeled
data, all algorithms will appear to perform identically), and be sufficiently rich that learning
does not happen “too quickly.”

We considered three standard datasets: COMPAS (Angwin et al., 2016), Adult In-
come (Dua and Graff, 2017), and Law School (Wightman, 1998). Law School has only two
features and we found only a few examples are needed to learn; and COMPAS we found to
be too small4. This left only the Adult Income dataset for experiments. This dataset consists
of 48, 842 examples and 251 features (with one-hot encodings of categorical variables) and
the binary prediction task is whether someone makes more than 50k per year, with binary
gender as the group attribute (the dataset does not contain information about gender beyond
male/female).

3. Recall that although Transformers are typically used for ordered problems like language modeling (Dai
et al., 2019) and machine translation (Dehghani et al., 2018), this is not how they “naturally” work:
ordered inputs to Transformers require additional “position” tags.

4. COMPAS consists of just under 8k samples, so after two splits, each set contains only 2k samples. We
anticipated that this would be too small for three reasons. First, with a budget B = 400, many algorithms
will end up sampling very similar sets, resulting in difficulties telling approaches apart. Second, we found
that after pre-training, 15–20 completely random samples suffice to learn a classifier that is as good
as one trained on all the remaining data. Nonetheless, we performed experiments on COMPAS for all
baselines and found that while Panda can fit the meta-training data well, and this generalizes well with
respect to loss, it has poor generalization with respect to disparity. We also ran Fairlearn (described
below) on this dataset randomly sampled subsets of the training data, and found that, while it eventually
is able to achieve a target disparity level of 0.04 once B = 400, at any point with B < 300 the test-time
disparity is significantly larger. We therefore drop COMPAS from consideration; it seems ill-suited to a
warm-start active learning paradigm.

9

Workshop on Real World Experiment Design and Active Learning

C.1 Baseline Active Learning Approaches

Our experiments aim to determine how Panda compares to alternative active learning
strategies, including those that explicitly take disparity into account as well as those that do
not. Among those that do not consider disparity, we compare to:
Random Sampling – select examples to label uniformly at random.
Margin Sampling – uncertainty-based active learning that selects the example closest to

the current decision boundary (Roth and Small, 2006).
Entropy Sampling – uncertainty-based active learning that selects the example with

highest entropy of predicted label (Shannon, 1948; Settles, 2009).
We also consider alternate approaches that take groups and/or disparity into account

explicitly.
Group Aware Random Sampling – select examples to label uniformly at random, re-

stricted to the group on which worse performance is achieved by h0.5

Fair Active Learning – the fair active learning approach described in §B that optimizes
an interpolation between Entropy Sampling and expected disparity.

Fairlearn – select examples to label uniformly at random, and the run fairlearn to train a
classifier to optimize accuracy subject to a parity constraint (Agarwal et al., 2018).

C.2 Implementation Details and Hyperparameter Tuning

We use the Transformer Model (Vaswani et al., 2017) implemented in PyTorch (Paszke et al.,
2019). We use the standard transformer encoder with successive encoder layers. Each layer
contains a self-attention layer, followed by a fully connected feed-forward layer. We use the
feed-forward layer for decoding, where we sample B items from the predicted probability
distribution in a single decoding step. To ensure a fair-comparison among all approaches,
we use the same Transformer architecture as a feature extractor for all approaches. This
ensures that Panda has no additional advantage by observing more training data.

The model is optimized with Adam (Kingma and Ba, 2014). We optimize all hyper-
parameters with the Bayes search algorithm implemented in comet.ml using an adaptive
Parzen-Rosenblatt estimator. We search for the best parameters for learning rate (10−2

to 10−7), number of layers in the transformer encoder (1, 3, 5), embedding dimensions for
the encoder hidden-layer (16, 32, 64), as well as the initial value for the Gumbel-Softmax
temperature parameter (1 to 10−6) which is then learned adaptively as meta-training
progresses. The sampled examples are used to train a linear classifier, again we optimize
the hyper-parameters for the learning rate and batch size using Bayes search. For active
learning model selection, we sweep over parameters using the random sampling active learning
method. We found that hyper-parameters for random sampling work well for other alternative
approaches too. We scale all the features to have a mean zero and unit standard deviation.

Appendix D. Discussion, Limitations and Conclusion

We presented Panda, a meta-learning approach for learning to active learn under parity
constraints, motivated by the desire to build an algorithm to mitigate unfairness in ma-

5. Closely related to active learning in domain adaptation (Shi et al., 2008; Rai et al., 2010; Wang et al.,
2014).

10

ICML 2020 Workshop on Real World Experiment Design and Active Learning

chine learning by collecting more data. We have seen that empirically Panda is effective
experimentally, even in a setting in which it essentially has to choose all 400 points to label
at once, rather than one at a time. An obvious direction of future work is to incorporate
features of the underlying classifier into the selection policy; the major challenge here is
the computational expense of unrolling the corresponding computational graph. One major
advantage of Panda over all other alternatives is that in principle it does not need access to
group information at test time. So long as it can be trained with group information available
(for measuring disparities on the meta-test data), there is nothing in the algorithm that
requires this information at test time. The only other setting in which this is possible is
FAL with demographic disparity (precisely because demographic disparity does not need
access to labels). Exploring this experimentally is a potential next step. Finally, there is the
broader question of: how does one know what is the right intervention to mitigate disparities?
Should we constrain our classifier? Should we collect more data? More features? Change the
architecture? These are all important questions that are only beginning to be explored (Chen
et al., 2018; Galhotra et al., 2017; Udeshi et al., 2018; Angell et al., 2018).

Appendix E. Illustrative Figures

Pre-existing data
D = (U,)

Transformer
Selection Policy π

PANDA Test Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
!Vũ(hB) / Δv(hB)

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

wa
rd

 D
ec

od
er

U

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

Figure 3: Test time behavior of Panda. The figure shows the model of interaction in the
parity-constrained active learning setting. Given a budget B, our goal is to train a
parity-constrained classifier hB. To do so, a training dataset of size B of labeled
examples is selected by the policy π from the unlabeled pool U . The classifier hB

is trained on the B labeled examples sampled from the distribution Q generated
by π and the parity (∆) / efficacy (`) behavior of hB is evaluated on a held-out
dataset V .

11

Workshop on Real World Experiment Design and Active Learning

Pre-existing data
D = (U, Y)

Transformer
Selection Policy π

PANDA Train Time Behavior

Train Classifier
hB = A(DB)

 on B Samples

Evaluate Meta-Loss
on held-out data V

on accuracy / parity:
!Vũ(hB) / Δv(hB)

Compute Gradients w.r.t
 parameters of π

update π to minimize
performance/parity loss

Distribution Q Over U, Y

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Fe
ed

 F
or

wa
rd

 D
ec

od
er

UY

Gumbel(0)

+

Q=π(h0,D)

x B sampled items

Figure 4: Train time behavior of Panda. The figure shows a training step of Panda. The
model of interaction is similar to Figure 3, however, at training time, we also
have access to the labels Y for simulating the parity-constrained active learning
setting. We model the selection policy π using a transformer encoder followed
by a feed-forward decoder. Each layer in the transformer encoder has two sub-
layers. The first is a multi-head self-attention mechanism, and the second is a
simple, positionwise fully connected feed-forward network. The model is trained
end-to-end where a Gumbel-Softmax reparameterization trick is used to avoid
back-propagating through the sampling procedure from the distribution Q.

References

Behnoush Abdollahi and Olfa Nasraoui. Transparency in fair machine learning: The case
of explainable recommender systems. In Human and Machine Learning, pages 21–35.
Springer, 2018.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A
reductions approach to fair classification. arXiv preprint arXiv:1803.02453, 2018.

Hadis Anahideh and Abolfazl Asudeh. Fair active learning. arXiv preprint arXiv:2001.01796,
2020.

R. Angell, B. Johnson, Y. Brun, and A. Meliou. Themis: Automatically testing software for
discrimination. In Joint Meeting on European Software Engineering, 2018.

12

ICML 2020 Workshop on Real World Experiment Design and Active Learning

Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, April 1988.
ISSN 0885-6125. doi: 10.1023/A:1022821128753. URL https://doi.org/10.1023/A:
1022821128753.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. propublica. See
https://www. propublica. org/article/machine-bias-risk-assessments-in-criminal-sentencing,
2016.

Philip Bachman, Alessandro Sordoni, and Adam Trischler. Learning algorithms for active
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 301–310. JMLR. org, 2017.

Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern,
and Duen Horng Chau. Fairvis: Visual analytics for discovering intersectional bias in
machine learning. arXiv preprint arXiv:1904.05419, 2019.

Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory?
In Advances in Neural Information Processing Systems, pages 3539–3550, 2018.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.
Machine learning, 15(2):201–221, 1994.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

Kate Crawford and Ryan Calo. There is a blind spot in ai research. Nature, 538(7625):
311–313, 2016.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Meng Fang, Yuan Li, and Trevor Cohn. Learning how to active learn: A deep reinforcement
learning approach. arXiv preprint arXiv:1708.02383, 2017.

Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier, 2013.

13

https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022821128753
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Workshop on Real World Experiment Design and Active Learning

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. 2015.

Batya Friedman and Helen Nissenbaum. Bias in computer systems. ACM Transactions on
Information Systems (TOIS), 14(3):330–347, 1996.

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: Testing software for
discrimination. In Joint Meeting on Foundations of Software Engineering, 2017.

Vivian Giang. The potential hidden bias in automated hiring systems. Fast Company, 2018.

Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-backward
splitting with a fasta implementation. arXiv preprint arXiv:1411.3406, 2014.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a
series of lectures, volume 33. US Government Printing Office, 1948.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Advances in neural information processing systems, pages 3315–3323, 2016.

Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna
Wallach. Improving fairness in machine learning systems: What do industry practitioners
need? In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pages 1–16, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

Jun Jiang and Horace Ho-Shing Ip. Active learning for the prediction of phosphorylation
sites. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), pages 3158–3165. IEEE, 2008.

Nathan Kallus and Angela Zhou. Residual unfairness in fair machine learning from prejudiced
data. arXiv preprint arXiv:1806.02887, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from
data. In Advances in Neural Information Processing Systems, pages 4225–4235, 2017.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find
them: The gumbel-top-k trick for sampling sequences without replacement. arXiv preprint
arXiv:1903.06059, 2019.

Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

14

ICML 2020 Workshop on Real World Experiment Design and Active Learning

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Arvind Narayanan. Translation tutorial: 21 fairness definitions and their politics. In Proc.
Conf. Fairness Accountability Transp., New York, USA, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Piyush Rai, Avishek Saha, Hal Daumé III, and Suresh Venkatasubramanian. Domain adap-
tation meets active learning. In Proceedings of the NAACL HLT 2010 Workshop on Active
Learning for Natural Language Processing, pages 27–32. Association for Computational
Linguistics, 2010.

Dan Roth and Kevin Small. Margin-based active learning for structured output spaces. In
European Conference on Machine Learning, pages 413–424. Springer, 2006.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

Claude E Shannon. A note on the concept of entropy. Bell System Tech. J, 27(3):379–423,
1948.

Xiaoxiao Shi, Wei Fan, and Jiangtao Ren. Actively transfer domain knowledge. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pages
342–357. Springer, 2008.

Megha Srivastava, Hoda Heidari, and Andreas Krause. Mathematical notions vs. human
perception of fairness: A descriptive approach to fairness for machine learning. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 2459–2468, 2019.

Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. Automated directed fairness
testing. In International Conference on Automated Software Engineering, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

Michael Veale and Reuben Binns. Fairer machine learning in the real world: Mitigating dis-
crimination without collecting sensitive data. Big Data & Society, 4(2):2053951717743530,
2017.

15

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Workshop on Real World Experiment Design and Active Learning

Tim Vieira. Gumbel-max trick and weighted reservoir sapling. https://timvieira.github.
io/blog/post/2014/08/01/gumbel-max-trick-and-weightedreservoir-sampling/, 2014.

Sara Wachter-Boettcher. Ai recruiting tools do not eliminate bias. Time Magazine, 2017.

Xuezhi Wang, Tzu-Kuo Huang, and Jeff Schneider. Active transfer learning under model
shift. In International Conference on Machine Learning, pages 1305–1313, 2014.

L. Wightman. LSAC national longitudinal bar passage study. 1998.

Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern. Predictive inequity in object
detection. arXiv preprint arXiv:1902.11097, 2019.

Tal Zarsky. The trouble with algorithmic decisions: An analytic road map to examine
efficiency and fairness in automated and opaque decision making. Science, Technology, &
Human Values, 41(1):118–132, 2016.

16

https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weightedreservoir-sampling/
https://timvieira.github.io/blog/post/2014/08/01/gumbel-max-trick-and-weightedreservoir-sampling/

	Introduction
	Problem Definition and Proposed Approach
	Problem Definition: Parity-Constrained Active Learning
	Panda: Learning to Actively Learn under Parity Constraints
	Experiments
	Evaluation Metrics and Results
	Contributions
	Background and Related Work
	Network Structure of Selection Policy
	Datasets
	Baseline Active Learning Approaches
	Implementation Details and Hyperparameter Tuning
	Discussion, Limitations and Conclusion

	Illustrative Figures

