
ICML 2020 Workshop on Real World Experiment Design and Active Learning

Cost-Aware Bayesian Optimization via Information Directed
Sampling

Biswajit Paria bparia@cs.cmu.edu
Willie Neiswanger wdn@cs.cmu.edu
Ramina Ghods rghods@cs.cmu.edu
Jeff Schneider jeff4@cs.cmu.edu
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Abstract

In this paper we propose an efficient Bayesian Optimization (BO) algorithm for expensive
black-box optimization based on Information Direction Sampling (Russo and Van Roy,
2014a). We consider the setting where evaluations have varying but known costs. Our pro-
posed approach, known as CostIDS, is cost aware and balances evaluation cost vs informa-
tion gain, leading to a cost efficient algorithm. In contrast to other competing approaches,
our approach does not require a set predefined budget, does not require expensive entropy
computations, enjoys sub-linear regret bounds, and has the potential for much faster re-
gret rates in the presence of informative low cost evaluations. We empirically compare our
approach to various other cost aware BO baselines and show improved performance on a
synthetic function.

Keywords: Bayesian Optimization, Information Gain, Regret Bounds

1. Introduction

Black box optimization problems appear frequently in a wide variety of disciplines, from de-
signing molecules (Griffiths and Hernández-Lobato, 2017) and materials (Frazier and Wang,
2016) to optimizing hyperparameters for any model Snoek et al. (2012). Black box functions
are usually expensive to evaluate and provide only noisy zeroth order function evaluations.
As an example, discovering an optimal proportion of solvents to design an efficient battery
requires extensive experimentation. Each experiment is usually noisy, and expensive in
terms of time and resources. Thus one must follow an exploration-exploitation approach
to identify the best proportion in a small number of experiments. Bayesian optimization
is a popular approach for such noisy black box optimization problems. Typically, BO ap-
proaches focus on achieving a small regret in a small number of experiments, while ignoring
the cost of each individual experiment. In practice however, each experiment may utilize a
different amount of resources. Furthermore, often cheap (or low fidelity) experiments are
available that provide a significant amount of information about the location of the opti-
mum. Multi-Fidelity (Forrester et al., 2007; Kandasamy et al., 2017) and cost-aware (Lee
et al., 2020) BO approaches address this by aiming to minimize the total experimental cost
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rather than the number of experiments. The key idea behind such approaches is to utilize
low cost experiments for efficient exploration of the search space. In this paper, we paper
we propose a method for cost-aware BO using information directed sampling (IDS) (Russo
and Van Roy, 2014a).

There are various notions of regret in the literature (Bubeck and Cesa-Bianchi, 2012).
In this paper we aim to minimize the simple regret defined as the smallest regret among the
individual regrets of all the sampled points. This notion of simple regret however does fit
well in the multi-fidelity setting. In the multi-fidelity we are often provided with low fidelity
approximations of the true function. However, when measuring the simple regret, one must
ignore the low fidelity evaluations, as they provide an inaccurate value of the function at
that point, and hence cannot be used to make any practical decisions. Such a formulation
for the simple regret in the multi-fidelity setting is also followed by Song et al. (2018). The
main utility of the low-fidelity evaluations is exploration rather than exploitation.

The usual notion of simple regret holds in the cost-aware setting since there is no concept
of fidelity and approximate evaluations. Hence all evaluations can be considered in the
simple regret. This does not eliminate the need for cheap evaluations as they may still
be used to gain information about the unknown function. In this paper, we focus on the
cost-aware setting with the goal of minimizing the simple regret given some cost budget.

As a concrete example, consider the battery optimization problem described earlier.
One might have access to a simulator providing approximate evaluations. This is a multi-
fidelity setting, as the approximate results from the simulator cannot be relied on for making
decisions. One has to perform the highest fidelity evaluations eventually, in order to verify
the best found points. On the other hand, consider the setting where each experiment has a
different cost – the cost-aware setting. This is a realistic setting since different configurations
can utilize different amount of resources (battery chemicals in this example). All evaluations
being exact in this scenario, they can be considered as reliable estimates of function values
and hence included in the regret. While our proposed method can also be extended to the
multi-fidelity setting, we focus on the cost-aware setting for simplicity of analysis.

Balancing exploration and exploitation is the main idea behind BO and bandit algo-
rithms. In our setting, the cost must be factored in as well. At a high level, at each
step, the algorithm should incur a small regret (exploitation), gain information (explo-
ration) while using less resources (cost). Information Directed Sampling (IDS) (Russo and
Van Roy, 2014a) provides a principled strategy for balancing regret and information gain.
In this work, we follow a similar approach and propose CostIDS, a cost-aware acquisition
function that balances cost, regret, and information gain.

Our Contributions. In this paper we propose a principled cost-aware acquisition func-
tion, which balances exploration, exploitation, and experimental cost. We show sub-linear
regret bounds on the cumulative regret, thus resulting in zero simple regret as the budget
is increased (no-regret property). Finally, we perform some preliminary experiments on a
synthetic function and show promising results.

Advantages. Compared to prior work, CostIDS enjoys a number of advantages. Our
approach is a theoretically motivated no-regret algorithm, while being much simpler con-
ceptually. Furthermore, our approach also does not require expensive entropy computations
as PES (Hernández-Lobato et al., 2014), MES (Wang and Jegelka, 2017), and Multi-Fidelity
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MES (Takeno et al., 2019). Consequently, CostIDS is applicable to models beyond Gaussian
processes where such entropy computations are prohibitive. Additionally, CostIDS does not
require a pre-defined budget as assumed by Song et al. (2018).

2. Related Work

Bayesian optimization of black-box functions is a well explored topic. A number of ac-
quisition functions have been proposed in the literature including GP-UCB (Srinivas et al.,
2009), Thompson sampling (Russo and Van Roy, 2014b), expected improvement (EI) (Jones
et al., 1998) and entropy based methods (Hernández-Lobato et al., 2014; Wang and Jegelka,
2017). Multi-objective BO has also been well explored. We refer to (Paria et al., 2019), for
a discussion on multi-objective BO.

Experimental costs have been previously considered in BO in a variety of contexts.
Kandasamy et al. (2017); Song et al. (2018) consider the multi-fidelity setting, where ap-
proximations of the true function are available as cheap low fidelity evaluations. On the
other hand, Lee et al. (2020); Takeno et al. (2019) consider the cost-aware setting.

Information directed sampling (IDS) is a cumulative regret minimization approach that
aims to balance regret incurred and information gained. IDS has been shown to perform
well in cases where an action can provide information about other actions, also known
as the complex information scenario (Russo and Van Roy, 2016). IDS has been used for
reinforcement learning (Nikolov et al., 2018), bandits with heteroscedastic noise (Kirschner
and Krause, 2018), and linear partial monitoring (Kirschner et al., 2020).

3. Background

Gaussian Processes. Gaussian processes (GP) (Rasmussen and Williams, 2006) are used
to model the unknown function f in many BO algorithms. GPs define a prior distribu-
tion over functions defined on some input space X . For any function f drawn from a
GP, f ∼ GP(·), and some finite set of points xi ∈ X (1 ≤ i ≤ n), the function values
f(x1), . . . , f(xn) follow a multivariate Gaussian distribution. The posterior distribution
conditioned on observations can be efficiently computed due to the tractability of the Gaus-
sian distribution. Further details can be found in Appendix A.

Information Directed Sampling. Information Directed Sampling (IDS) is an informa-
tion theoretic approach for cumulative regret minimization (Russo and Van Roy, 2014a).
IDS uses the concept of information ratio which emerged in a related paper (Russo and
Van Roy, 2016) on an information theoretic analysis of Thompson sampling. For a finite
domain X , a policy π is computed from which the next action x with will be sampled. IDS
stipulates choosing the policy that minimizes the information ratio as defined below.

πt = argmin
π

(
Ex∼π [f(x∗)− f(x) | Dt−1]

)2

Ex∼πIG (x∗,x | Dt−1)︸ ︷︷ ︸
Information Ratio

, (1)

where x∗ denotes the optimal action, IG denotes the information gain, andDt = {(xi, yi)}ti=1

denotes the set of observations till step t. The next candidate is chosen as xt ∼ πt. The
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optimal policy πt can potentially be a randomized policy, that is, πt can be supported on
more than one point in X . At a high level, IDS minimizes the regret per information-gain.
The key to bounding the regret of IDS is to bound the information ratio for the chosen pol-
icy πt. Denote such an upper bound at step t by Γt. The regret at step t is upper bounded
an increasing function of Γt. Further details and derivations can be found in Russo and
Van Roy (2014a).

4. Cost-aware Information Directed Sampling

We define a modified version of the information ratio for Gaussian processes.

xt = argmin
x∈X

E [f∗ − f(x) | Dt−1]2

IG (f,x | Dt−1)
(2)

This formulation differs from the original in quite a few aspects. The next candidate xt is
no longer randomized. While Russo and Van Roy (2014a) argue for randomized policies as
necessary for certain problems, GPs are nice in that randomized policies are not necessary
for optimization. GP-UCB (Srinivas et al., 2009) is an example of such a non-randomized
policy. The other difference is that information gain on the maximizer IG (x∗,x | Dt−1) is
replaced by an upper bound IG (f,x | Dt−1), and consequently a smaller information ratio.
The resulting regret bound is in terms of the maximum information gain of the function f
rather than the maximizer x∗.

The information ratio is dependent on the expected maximum of the posterior E[f∗ | Dt−1].
We bound it using a discretization technique similar to Kandasamy et al. (2018, lemma 12),
as summarized in the following lemma.

Proposition 1 At any iteration t,

E[f∗ | Dt−1] ≤ 1

t2
+ max

x∈X
µt(x) +

√
βσt(x)︸ ︷︷ ︸

Ut: max UCB at iteration t

, (3)

where βt = C1d log t+C2, where C1, C2 are constants depending on the kernel κ of the GP.

Note that the upper bound is approximately the maximum UCB at iteration t, as 1/t2

tends to zero as t → ∞. We denote the maximum UCB by Ut and the maximizer by
xUCB
t . The remaining term E[f(x) | Dt−1] is a simply the posterior mean µt(x). Finally,

for GPs the information gain can be expressed in closed form as IG (f,x | Dt−1) = 1
2 log(1+

σ−2σt(x)2). However, in order to bound the information ratio we use σt(x)2 instead, which
is an increasing function of IG (f,x | Dt−1). As discussed earlier in Section 3, bounding the
information ratio is essential to bound the regret.

CostIDS. With all the above substitutions and modifications, the information ratio, and
the cost-aware information ratio are defined as,

Rt(x) =
(Ut − µt(x))2

σt(x)2
, Rcost

t (x) = λ(x)
(Ut − µt(x))2

σt(x)2
. (4)
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The cost λ(x) is integrated as a multiplicative factor in Rt(x). The cost integrated ac-
quisition function is then optimized to yield the next candidate. In practice, optimizing
this directly can present some degenerate cases where extremely cheap points are chosen
repeatedly which provide little information. To avoid such a pathology, we propose the
following strategy.

xt = argmin
x∈X

Rcost
t (x) s.t. Rt(x) ≤ ρR∗t where R∗t = min

x∈X
Rt(x). (5)

The constant ρ > 1 is a user-defined tolerance factor. The constraint that Rt(x) is not
too far from the optimal R∗t ensures that there is some progress in each iteration.

5. Regret Bounds

A key step in bounding the regret for IDS based algorithms is bounding the information
ratio. We first assume the existence of upper bounds Γt and Γcost

t on Rt(xt) and Rcost
t (xt)

respectively. Thereafter, we define the simple and cumulative regrets both wrt the step t
and budget used Λ. Finally, we will also provide exact expressions for the upper bounds on
the information ratio.

Assumption 1 Assume that for all t > 0, the information ratios can be upper bounded as

Rt(xt) ≤ Γt, Rcost
t (xt) ≤ Γcost

t almost surely, (6)

where Γt and Γcost
t are independent of the observations Dt−1 and non-decreasing in t.

Definition 2 (Regrets wrt. to t) Define the instantaneous, cumulative, and simple re-
grets respectively, at step t as,

rt = f∗ − f(xt), Rt =
t∑
i=1

ri, st =
t

min
i=1

rt. (7)

Next, we will propose a notion of the simple regret wrt. the total budget Λ.

Definition 3 (Regrets wrt. to Λ) Denote by Λ the total budget used. We define tΛ as
a random variable denoting largest time step such that the budget does exceed Λ.

tΛ = max

{
t

∣∣∣∣∣
t∑
i=1

λ(xi) ≤ Λ

}
(8)

Define the simple and (cost-weighted) cumulative regret random variables for budget Λ as,

sΛ =
tΛ

min
i=1

ri, RΛ =

tΛ∑
i=1

λ(xi)ri (9)

Theorem 4 The cumulative and simple regrets wrt. the budget is upper bounded as,

E[RΛ] ≤
√

ΛC1E[Γcost
tΛ

γtΛ ] + C2, E[sΛ] ≤ C3

√
E[Γcost

tΛ
γtΛ ]/Λ + C4, (10)

for all Λ > λmax, where C1 = 2(1 + σ−2)−1, C2 = λmaxπ
2/6, C3 =

√
C1(1 − λmax/Λ)−1,

C4 = π2/6(Λ/λmax − 1)−1, and γt denotes the maximum information gain.
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Figure 1: Cost vs. Simple regret plot for the modified Branin function

Next we provide explicit expressions for the information ratio upper bounds, Γcost
t and

Γt. Consider the information ratio for xUCB
t , the maximizer of the UCB. This leads to

R∗t ≤ Rt(xUCB
t ) = βt. Therefore, Γt = βt is a valid upper bound. Consequently we have

Rcost
t (xt+1) ≤ λmaxρβt, leading to Γcost

t = λmaxρβt. Substituting them above, we get a
simple regret bound of E[sΛ] ≤ O(

√
E[βtΛγtΛ ]λmax/Λ).

6. Experiments

We perform experiments on the Branin (2-dim) function denoted by b(x1, x2). We modify
it to simulate a hyper-parameter optimization problem for a ML model by adding a 3rd
dimension as B(x1, x2, l). The modified function denotes the validation error of hypothetical
ML model, l denotes the log of number of iterations the model is trained and x1, x2 denote
the hyper-parameters of the model. We define the modified function as B(x1, x2, l) =
b(x1, x2)− l to model the decrease in error with more training iterations. Furthermore, the
decrease in error diminishes with more training iterations, which is a standard phenomenon
in practice. The training cost for the tuple (x1, x2, l) is exp(l). We compare our algorithm
with MES, Multi-Fidelity MES, EI, and CostEI. Figure 1 shows the simple regret vs. the
cost incurred. We observe that CostIDS achieves a better cost vs. simple regret tradeoff
compared to the other baselines, early in the optimization. CostIDS is out-performed when
the optimum has been reasonably located and remains to be fine tuned.

7. Conclusion

In this paper we proposed a cost aware BO approach based on Information Directed Sam-
pling. We showed that our algorithm is provably no-regret, while being conceptually simple.
We also showed promising results on a synthetic function. We leave further experiments on
real functions to future work.
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José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in
neural information processing systems, pages 918–926, 2014.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
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Appendix A. Gaussian Processes

Gaussian processes (GP) (Rasmussen and Williams, 2006) are used to model the unknown
function f in many BO algorithms due to their ability to provided well calibrated uncertainty
estimates, which are also straightforward to compute.

GPs are used to define a prior distribution over functions defined on some input space X .
GPs are characterized by a mean function µ : X → R and a covariance (kernel) function κ :
X×X → R. For any function f drawn from a GP, f ∼ GP(µ, κ), and some finite set of points
xi ∈ X (1 ≤ i ≤ n), the function values f(x1), . . . , f(xn) follow a multivariate Gaussian
distribution with mean µ and covariance K given by µi = µ(xi), Kij = κ(xi,xj) ∀1 ≤
i, j ≤ n. Examples of popular kernel functions κ include the squared exponential and
Matern kernels.

Given observations Dt−1 = {(xi, yi)}t−1
i=1, and assuming the generative process yi =

f(xi) + εi ∈ R, εi ∼ N (µ, σ2) (for some specified noise variance σ2), the posterior process
is also a GP with the mean and kernel function given by

µt(x) = kT (K + σ2I)−1Y,

κt(x,x
′) = κ(x,x′)− kT (K + σ2I)−1k′.

(11)

where Y = {yi}ti=1 is the vector of observed values, K = {κ(xi,xj)}ti,j=1 is the Gram
matrix, with k = {κ(x,xi)}ti=1, and k′ = {κ(x′,xi)}ti=1. The posterior variance at x is
given by σt(x)2 = κt(x,x). Additional details on GPs can be found in (Rasmussen and
Williams, 2006).

Appendix B. Missing Proofs

Here we provide a brief outline of the proofs.

Proof (Theorem 4) We first show that E[sΛ] ≤ 1
Λ−λmax

E[RΛ].

E[sΛ] ≤ E

[∑tΛ
i=1 λ(xi)ri∑tΛ
i=1 λ(xi)

]
≤ E

[
RΛ

Λ− λmax

]
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It remains to prove the upper bound on the cumulative regret.

E [RΛ] = E

[
tΛ∑
i=1

λ(xi)ri

]
= E

[
tΛ∑
i=1

λ(xi)(f
∗ − f(xi))

]

≤ E

[
tΛ∑
i=1

λ(xi)(Ui − f(xi))

]
+ E

[
tΛ∑
i=1

λmax

t2

]
(by definition of Ut)

≤ E

√√√√( tΛ∑
i=1

λ(xi)

)(
tΛ∑
i=1

λ(xi)(Ui − f(xi))2

)
+ λmax

π2

6

(by Cauchy Schwartz inequality)

≤

√√√√ΛE

[
tΛ∑
i=1

Γcost
i σi(xi)2

]
+ λmax

π2

6

(by concavity of the square root function)

≤
√

ΛC1E
[
Γcost
tΛ

γtΛ
]

+ λmax
π2

6
(follows from Srinivas et al. (2009))
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