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Abstract
In this paper, we propose an active metric learning method for clustering large-scale data. The
key idea of the new active clustering is to choose the informative instance pairs actively in terms
of estimating the underlying metrics by incorporating unlabeled instance pairs, which leads to a
more accurate and efficient clustering process. Specifically, we formulate estimation and sampling
processes based on a unified framework to select a metric favoring the clustering task to incorporate
both within-cluster instance constraints and the implicit structure-level constraints. In addition,
the proposed method is designed to increase the robustness on uncertainty from human-machine
interaction at each step of active learning algorithm. Therefore we iteratively update a metric
to gradually refine a continuous cluster structure in the latent space. Numerical studies and
theoretical properties all indicate that the proposed method is especially advantageous when the
signal-to-noise ratio between relative features and irrelevant features is low, and the dimension of
total features is high.

Keywords: Semi-supervised clustering; Active learning; Metric Learning; Selective penalty

1. Introduction

The idea of incorporating experts’ domain knowledge or user’s feedback has been established in
several clustering methods Basu et al. (2004, 2006); Davidson et al. (2006). Specifically, a user
can specify a prior in that two instances must belong to the same cluster or different clusters.
Alternatively, instead of directly clustering the instances in the original feature space, metric learning
Hoi et al. (2010); Niu et al. (2011); Xing et al. (2003) seeks an appropriate distance metric from
labeled data in that similar instances have a closer metric distance compared to dissimilar objects,
to improve the performance of clustering.

However, the above learning process could be inefficient when only a limited number of con-
straints. Therefore, the idea of active learning has been adopted in clustering to query the most
informative unlabeled instance pairs sequentially in order to achieve efficient and effective clustering.
This includes sampling the instances either on boundary Basu et al. (2004); Grira et al. (2005); Mal-
lapragada et al. (2008) or the ones with higher uncertainty Xiong et al. (2014); Huang and Mitchell
(2006); Biswas and Jacobs (2014).

The existing active clustering methods have one major challenge in that when the metric space
changes, the neighborhood information or the clustering results from the previous step also change
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and thus the uncertainty criteria of unlabeled pairs may be ineffective or misleading. Another
limitation is that existing active clustering approaches do not pursue dimension reduction. However,
identifying and selecting significant features which are more relevant to user’s clustering principles
are crucial to enhance the similarity within a cluster. In the context of active clustering, pursuing
dimension reduction also leads to selecting more interpretable clustering criteria from the user. In
addition, most of active clustering approaches do not fully incorporate the history training results
in the final model. Nonetheless, the history training information can essentially improve the model
performance as shown in the sequential algorithms such as boosting Quinlan et al. (1996).

In this paper, we propose a novel active metric learning for large-scale clustering. We select
a metric enhancing the clustering performance by incorporating both within-cluster pairwise con-
straints and the implicit structure-level constraints. In addition, due to the intrinsic nature of active
learning and clustering as a greedy algorithm, we design a robust scheme through iteratively updat-
ing a metric to refine a continuous cluster structure in the latent space sequentially, which can lead
to a more accurate and interpretable clustering outcome. Moreover, we propose a new active query
strategy to select unlabeled pairs which have the highest impact on the distribution of instance pairs
over the entire dataset. This provides a more accurate measurement for obtaining the informative
unlabeled pairs compared to the existing criteria.

2. Notation and Background

Given n data points in a p-dimensional feature space, xi ∈ Rp, i = 1, ..., n, we assume there are
K clusters and denote the cluster label of xi’s as l = (`1, ..., `n), where `i = 1, ...,K, denotes the
index of the cluster that xi belongs to. We also denote the similarity matrix as Y ∈ {0, 1}n×n,
where yij = 1, if xi and xj fall into the same cluster, and 0 otherwise. The goal of clustering is
to estimate either Y or l, since yij = 1(`i = `j). In unsupervised clustering, no elements of Y are
known beforehand, while in semi-supervised clustering, some elements of Y are queried from the
oracle as pairwise constraints. These pairwise constraints are referred to as similar and dissimilar
pairs whose index sets are denoted as S = {(i, j)|yij = 1} and D = {(i, j)|yij = 0}, respectively,
while the unlabeled set is denoted as U = {(i, j) | (i, j) /∈ S ∪ D}.

In addition, we consider the case that the clustering structure is determined on a linear subspace
Rm ⊂ Rp,m ≤ p, i.e., there exists a matrix M ∈ Rm×p with orthogonal columns such that P (yij =

1|xi,xj) = P (yij = 1|Mxi,Mxj). This setting induces a Mahalanobis distance ‖xi − xj‖2A =

(xi − xj)
>
A (xi − xj), where A = M>M is called the metric matrix. By correctly identifying M ,

or A equivalently, one can improve the clustering performance compared with using the original
distance metric. In general, the distance ‖xi − xj‖A is small if xi and xj belong to the same cluster
and is large if xi and xj belong to different clusters. One way Xing et al. (2003) to learn A is
through

min
A

∑
(i,j)∈S

‖xi − xj‖2A, s.t.
∑

(i,j)∈D

‖xi − xj‖A ≥ 1, and A � 0, (1)

where A � 0 denotes A is positive semi-definite. The above training process aims to minimize the
distance between similar pairs while separating the dissimilar pairs to avoid trivial zero solutions.

3. Methodology

3.1 Metric learning with augmented pairwise constraints

One problem of (1) and existing metric learning methods Wagstaff et al. (2001); Lu (2007); Grira
et al. (2005) is that only the violation on the queried pairwise constraints is penalized. However,
knowing one pairwise relation also provides additional prior information on other pairs implicitly
through the underlying cluster structure. This motivates us to generalize the queried pairwise
constraints S ∪ D to all yij ’s through inferring labels on unlabeled instance pairs, and train the
metric matrix A using both the queried pairwise constraints and the augmented ones.
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Specifically, we first solve for a fuzzy membership matrix H ∈ Rn×p by

Ĥ = argmin
H

∑
(i,j)∈S∪D

(yij − hT
i hj)

2, s.t. hij ≥ 0,

K∑
k=1

hik = 1, for all i, (2)

where hT
i is the i-th row of H. In contrast to the hard-thresholding labels `i, hik is continuous

between [0, 1] and represents the probability that sample i belongs to the cluster k. We only infer hi

with at least one elements of {yi·} observed, otherwise we let the elements of hi be all 1/K. Note the
solution purely uses the constraint information without involving the distance between data points
since the distance metric is inaccurate during training, which may lead to erroneous inference.

We utilize Ĥ to infer additional pairwise constraints. The idea is that xi and xj tend to be similar

if ĥi and ĥj are concordant in the sense that ĥ>i ĥj is close to 1; and dissimilar if ĥ>i ĥj is close to 0.

In the completely random case, we have ĥi = ĥj = (1/K, ..., 1/K) and ĥ>i ĥj = 1/K. Therefore, we
use 1/K as a threshold for the concordance between xi and xj , and define the augmented constraints

as S̃ = {(i, j)|ĥ>i ĥj > 1/K} and D̃ = {(i, j)|ĥ>i ĥj < 1/K}. Then we use the augmented pairwise
constraints to train metric matrix through

min
A

Loss(A) ,
1

|S|
∑

(i,j)∈S

‖xi − xj‖2A +
1

|S̃|

∑
(i,j)∈S̃

wij‖xi − xj‖2A,

s.t.
1

|D|
∑

(i,j)∈D

‖xi − xj‖A +
1

|D̃|

∑
(i,j)∈D̃

wij‖xi − xj‖A ≥ 1, A � 0,

(3)

where | · | denotes the set cardinality, and wij = K
K−1 max{ĥT

i ĥj − 1
K , 0} − K min{ĥT

i ĥj − 1
K , 0}.

Compared with (1), the second terms in the loss function and the constraint of (3) are the augmented
similar constraints and dissimilar constraints, respectively, with wij ∈ [0, 1] quantifying the certainty
of the inference. In particular, we impose less weight on the augmented constraints that are similar
to random guess.

3.2 Metric aggregation through selective penalty

Although the metric matrix is trained sequentially in most of the existing active clustering methods,
the history training result is not incorporated in the final model. However, the metric matrix
learned during the previous steps provides extra information for identifying the features related to
the user-specified clustering principles.

We propose to aggregate the metric matrices learned in each step to extract the underlying true
features by imposing an adaptive penalty. We denote the minimizer of (3) at tth step (t = 1, ..., T−1)
as At and the rank of eigenvalues of At in ascending order as rt, t = 1, ..., T − 1. Intuitively,
we aim to extract a clustering-oriented subspace by penalizing the unrelated features. Note that
imposing penalty on all features makes little effects since clustering is invariant to the scale change
of metric. Instead, we enlarge the relative scale between the true features and the unrelated features
by penalizing selectively. To determine which features are unrelated, we aggregate the training
results of the previous T − 1 steps and impose penalty adaptively according to the eigenvalues of
At, t = 1, ..., T − 1. In general, the features with smaller eigenvalues on average are less relevant in
clustering and thus are supposed to have less weight.

We let r̄ = 1
T−1

∑T−1
t=1 r

t be the average rank of the features. To shrink the irrelevant features,
we penalize the top q features with the smallest entries in terms of r̄ and denote the index set of the
penalized features as GT , where q is the predetermined number. For T th step, we train the metric
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matrix by adding selective penalty on A through

min
A

Loss(A) + γ
∑
p∈GT

|σp(A)|,

s.t.
1

|DT |
∑

(i,j)∈DT

‖xi − xj‖A +
1

|D̃T |

∑
i,j

wij‖xi − xj‖A ≥ 1, A � 0,
(4)

where λ and γ are two tuning parameters and σp(A) denotes the pth eigenvalue of A.

After acquiring Â through (4), we solve for the cluster membership by performing pairwise
constrained Kmeans (PCKmeans) Basu et al. (2004).

3.3 Active query with minimum expected pairwise uncertainty

We propose a new query strategy by selecting the instance pair that has the largest impact on the
uncertainty of all the instance pairs. To start with, we introduce the neighborhood structure of
instances Xiong et al. (2014) which increases the number of constraints one can obtain through one
query. A neighborhood Nm contains the instances that are confirmed to belong to the same cluster,
i.e. (i, j) ∈ S for any xi,xj ∈ Nm and (i, j) ∈ D for any xi ∈ Nm, xj ∈ Nm′ ,m 6= m′. We denote
the collection of neighborhoods as N = {Nm}Lm=1, where L is the number of neighborhood at the
current step, L ≤ K. Then by identifying the neighborhood of an instance, we can generate its
pairwise relationship with all other instances in the existing neighborhoods.

During the sequential query procedure, the unlabeled pair is queried based on certain uncertainty
criteria. We propose to utilize the expected decrease of uncertainty measured by cross-instance
entropy. Specifically, we let R ∈ Rn×L be the neighborhood membership matrix, where rim =
P (xi ∈ Nm). If the data is sampled independently, then the probability that xi and xj belong to

the same neighborhood can be computed as pij =
∑L

m=1 P (xi ∈ Nm,xj ∈ Nm) =
∑L

m=1 rimrjm.
We measure the uncertainty of the entire dataset by summation of the entropy of each pair,

Q(R) = −
∑
i,j

{pij log2 pij + (1− pij) log2(1− pij)} .

With more pairwise constraints queried, Q(R) decreases monotonically. In particular, Q(R) drops
to 0 when the membership of each instance is known. Consequently, the most informative instance
at the tth step minimizes the expected uncertainty of the (t+1)th step conditioning on the tth step,
i.e., E(Q(R(t+1))|R(t)), which can be estimated by

ut(xi) =
Lt∑

m=1

rtimQ(R̃
(t+1)
−im ), (5)

where R̃
(t+1)
−im ∈ Rn×Lt+1

is defined elementwise by r̃
(t+1)
ij = rtkj , if k 6= i; 0, if k = i, j 6= m; and 1, if k =

i, j = m. In other words, R̃
(t+1)
−i,m denotes the neighborhood membership matrix assuming knowing

xi belongs to the mth neighborhood, and ut(xi) estimates the expected uncertainty after obtaining
the neighborhood membership of xi. Then we select the instance whose neighborhood membership
is unknown to minimize (5), x∗ = argminxi /∈N t ut(xi). The complete algorithm combining Section
3.1, 3.2 and 3.3 is summarized in Algorithm 1.

4. Numerical studies

Simulation data The simulated data consists of two parts, x =
(
(x1)>, (x2)>

)>
, where x1 ∈ Rp1

are true features which determine the cluster memberships, and x2 ∈ Rp2 are the irrelevant features.
Specifically, x1 is sampled from a Gaussian mixture model, i.e., x1|z1 ∼ N (µ1

z1 , Ip1
), where z1 is
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Algorithm 1 Query-augmented active clustering with metric aggregation

Input: Data {xi}, budget T , number of clusters K.
Output: Cluster label l.
Initialization: Single neighborhood N = {N1}, N1 = {x1}, where x1 is randomly selected. Let
S = D = ∅ and t = 0.
while t ≤ T , repeat:

1. (Active query) Select the most informative instance x∗ to minimize (5). Sort Ni ∈ N in
decreasing order of p(x∗ ∈ Ni), query x∗ against an instance x1 ∈ N1, update S or D according
to the feedback, t← t+ 1.

2. (Metric Learning) Train metric At with augmented queries (3).

3. Repeat step 1 and 2 for the rest of the neighborhood until t > T or a similar link between x∗

and xi is found. Let Ni = N∪{x∗}. If no similar link is found, treat x∗ as a new neighborhood.
Let N∗ = {x∗}, and N = N ∪N∗.

(Metric aggregation) Compute GT based on {At}Tt=1, solve for Â with selective penalty (4).

(Semi-supervised clustering) Cluster the instances with the learned metric Â using PCKmeans.

uniformly distributed over 1, · · · , p1, and the elements of µ1
z1 are all zero except the z1th element

equals c. Here c denotes the distance between the center of the clusters and the origin. The larger
c is, the easier the data can be clustered. We let the cluster label ` = z1 and the number of clusters
K = p1, so the cluster memberships are fully determined by the first p1 features. For the irrelevant
features, we let x2|z2 ∼ N (µ2

z2 , Ip2
), where z2 is uniform over 1, · · · , p2, and the elements of µ1

z1 are
all zero except the z1th element equals c. An illustration of the simulation data with p1 = p2 = 3
is shown in Figure 1. In this experiment, we select p1 = 6, p2 = 3 , c = 5 and K = 6. We

Figure 1: Simulated data with p1 = p2 = 3 and
K = 3, showing the first three features (left) and
the last three features (right). Each color shows
the cluster label of data points, determined by
the first three features.

Figure 2: The ARI comparisons of the simula-
tion setting with p1 = 6, p2 = 3 and c = 5 using
the proposed method with (green), and with-
out (yellow) augmented constraints, based on
30 replications for each number of constraints.

compare cases with or without augmented constraints S̃ and D̃. Their performances are evaluated
using the adjusted random index (ARI) , where a higher ARI indicates more consistent clustering
result with the truth. Figure 2 demonstrate that incorporating the augmented constraints improves
the clustering performance under variant numbers of queried constraints. The advantage is more
obvious when the number of constraints increases since the similarity matrix Y is less sparse and
the augmented constraints are more accurate.

Real data We apply the proposed method on three real datasets with high dimensional features.
The first dataset is the breast cancer diagnostic data which contains 569 samples with 30 features
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and 2 clusters. The second dataset is MEU-Mobile dataset which records 71 keystroke features of 9
users with 459 samples in total. The third dataset is the urban land cover dataset which contains
675 multi-scale remote sensing images. Figure 3 shows the proposed method performs the best
compared to other semi-supervised clustering approaches based on the average ARI with different
number of constraints, including COP-Kmeans Wagstaff et al. (2001), pairwise constrained Kmeans
(PCKmeans) Basu et al. (2004), metric pairwise constrained Kmeans (MPCKmeans) Bilenko et al.
(2004) and constraint-based repeated aggregation (COBRA) Van Craenendonck et al. (2018).

Furthermore, we investigate the interpretability of the selected features of urban land cover data.
We compare the weights of each feature in a decreasing order as shown in Figure 4. The top three
features extracted by the proposed method correspond to the normalized difference vegetation index
(NDVI) on three different resolution scales, respectively. With all the features, the Kmeans results
an ARI of 0.03, however, with the extracted three features, the ARI increases to 0.29 without
imposing any pairwise constraints. This further implies that the proposed method is able to identify
the underlying feature space which is highly interpretable.

(a) breast cancer (b) MEU-Mobile (c) Urban land cover

Figure 3: Performance comparison on real data. Competing methods integrate NPU strategy.

Figure 4: Estimated weights of 147 features against the feature index of the urban land cover dataset,
showing the group structure using the proposed method compared with MPCKmeans.

5. Discussion

In this paper, we propose to impute the membership matrix based on the information given pairwise
constraints. The augmented pairwise relationships provide extra information to the clustering, which
may be typically ignored in the existing methods. In addition, we present a novel method to integrate
the history training information during the active clustering procedure. We add penalty selectively
to the potentially unrelated features, and utilize the trained metric matrix to recover the underlying
feature space. The proposed method is able to recover the true features and outperforms the existing
methods under the high-dimension setting with a limited number of pairwise constraints. The
proposed framework is also suitable for online training. Both constraint augmentation and metric
aggregation can be adapted into an incremental way without retraining each time new constraints
are added to improve the computation efficiency, which are worth future investigation.
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background knowledge. In ICML, 2001.

Eric P. Xing, Michael I. Jordan, Stuart J. Russell, and Andrew Y. Ng. Distance metric learning
with application to clustering with side-information. In Advances in neural information processing
systems, pages 521–528, 2003.

S. Xiong, J. Azimi, and X. Z. Fern. Active Learning of Constraints for Semi-Supervised Clustering.
IEEE Transactions on Knowledge and Data Engineering, 26(1):43–54, January 2014. ISSN 1041-
4347. doi: 10.1109/TKDE.2013.22.

8

http://arxiv.org/abs/1801.09955

	Introduction
	Notation and Background
	Methodology
	Metric learning with augmented pairwise constraints
	Metric aggregation through selective penalty
	Active query with minimum expected pairwise uncertainty

	Numerical studies
	Discussion

