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Abstract

Safe reinforcement learning has been a promising approach for optimizing the policy of an
agent that operates in safety-critical applications. In this paper, we propose an algorithm,
SNO-MDP, that explores and optimizes Markov decision processes under unknown safety
constraints. Specifically, we take a stepwise approach for optimizing safety and cumula-
tive reward. In our method, the agent first learns safety constraints by expanding the
safe region, and then optimizes the cumulative reward in the certified safe region. We
provide theoretical guarantees on both the satisfaction of the safety constraint and the
near-optimality of the cumulative reward under proper regularity assumptions. In our ex-
periments, we demonstrate the effectiveness of SNO-MDP through two experiments: one
uses a synthetic data in a new, openly-available environment named GP-SAFETY-GYM,
and the other simulates Mars surface exploration by using real observation data.®
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1. Introduction

In many real applications, environmental hazards are first detected in situ. For example,
a planetary rover exploring Mars does not obtain the high-resolution images at the time
of the launch. In usual cases, after landing on Mars, the rover takes close-up images or
observes terrain data. Leveraging the acquired data, ground operators identify whether
each position is safe. Hence, for the fully automated operation, an agent must autonomously
ezxplore the environment and guarantee safety. However, in most cases, guaranteeing safety
(i.e., surviving) is not the primary objective. The optimal policy for ensuring safety is often
extremely conservative (e.g., stay at the current position). Even though avoiding hazards
is an essential requirement, the primary objective is nonetheless to obtain rewards.

As a framework to solve this problem, safe reinforcement learning (safe RL, Garcia and
Fernéndez (2015)) has recently been noticed by the research community. The objective of
safe RL is to maximize the cumulative reward while guaranteeing or encouraging safety.
Especially in the problem settings in which the reward and safety functions are unknown a
priori, however, a great deal of previous work (e.g., Wachi et al. (2018)) theoretically guar-
antees the satisfaction of the safety constraint, but the acquired policy is not necessarily

1. This paper is a short version of Wachi and Sui (2020), which will be presented in ICML 2020.
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near-optimal in terms of the cumulative reward. In this paper, we propose a safe RL algo-
rithm that guarantees a near-optimal cumulative reward while guaranteeing the satisfaction
of the safety constraint as well.

Related work. As the research community tries to apply RL algorithms to real-world
systems, safety issues have been highlighted. RL algorithms inherently require an agent
to explore unknown state-action pairs, and algorithms that are agnostic with respect to
safety may execute unsafe actions without deliberateness. Hence, it is important to develop
algorithms that guarantee safety even during training, at least with high probability. A
notable approach is safe model-based RL (Berkenkamp et al., 2017; Fisac et al., 2018). In
this domain, safety is associated with a state constraint; thus, the resulting algorithm is
well suited for such contexts as a drone learning how to hover. On the other hand, safe
model-free RL has also been successful, especially in continuous control tasks. For example,
Achiam et al. (2017) proposed the constrained policy optimization (CPO) algorithm while
guaranteeing safety in terms of constraint satisfaction. Finally, several previous studies
have addressed how to explore a safe space in an environment that is unknown a priori (Sui
et al., 2015; Turchetta et al., 2016). This type of problem setting is well-suited for cases
such as a robot exploring an uncertain environment (e.g., a planetary surface).

Our contributions. We propose a safe near-optimal MDP, SNO-MDP algorithm, for
achieving a near-optimal cumulative reward while guaranteeing safety in a constrained MDP.
This algorithm first explores the safety function and then optimizes the cumulative reward
in the certified safe region. We further propose an algorithm called Early Stopping of
Exploration of Safety (ES?) to achieve faster convergence while maintaining probabilistic
guarantees with respect to both safety and reward. We examine SNO-MDP by applying
PAC-MDP analysis and prove that, with high probability, the acquired policy is near-
optimal with respect to the cumulative reward while guaranteeing safety. We build an
openly-available test-bed called GP-SAFETY-GyM for synthetic experiments. The safety
and efficiency of SNO-MDP were evaluated with our experiments.

2. Problem Statement

A safety constrained MDP is defined as a tuple M = (S, A, f,r,g,7), where S is a finite
set of states {s}, A is a finite set of actions {a}, f : S x A — S is a deterministic state
transition function, r : § — (0, Rmax] is @ bounded reward function, g : S — R is a safety
function, and v € R is a discount factor. We assume that both the reward function r and
the safety function g are not known a priori. At every time step t € N, the agent must be
in a “safe” state. More concretely, for a state s;, the safety function value g(s;) must be
above a threshold h € R; that is, the safety constraint is represented as g(s;) > h.

A policy 7 : S — A maps a state to an action. The value of a policy is evaluated based
on the discounted cumulative reward under the safety constraint. Let V4 denote the value
function in the MDP, M. In summary, we represent our problem as follows:

max Vi (s;) =E [ Z’yTT(St+7)
7=0

st] st. g(si4r) > h, VY7 =][0,00].
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Difficulties. In conventional safety-constrained RL algorithms, the safety function is as-
sumed to be known a priori. The key difference lies in the fact that we need to explore a
safety function that is unknown a priori while guaranteeing satisfaction of the safety con-
straint. However, it is intractable to solve the above problem without further assumptions.
First of all, without prior information on the state-and-action pairs known to be safe, an
agent cannot take any viable action at the very beginning. Second, if the safety function
does not exhibit any regularity, then the agent cannot infer the safety of decisions.

Assumptions. To overcome the difficulties mentioned above, we adopt two assumptions
from Sui et al. (2015) and Turchetta et al. (2016). For the first difficulty, we simply assume
that the agent starts in an initial set of states, Sp, that is known a priori to be safe.
Second, we assume regularity for the safety function. Formally speaking, we assume that
the state space S is endowed with a positive definite kernel function, k9, and that the safety
function has a bounded norm in the associated reproducing kernel Hilbert space (RKHS,
Scholkopf and Smola (2001)). The kernel function, k9 is employed to capture the regularity
of the safety function. Finally, we further assume that the safety function ¢ is L-Lipschitz
continuous with respect to some distance metric d(-,-) on S. As with the safety function,
we also assume that the reward function has a bounded norm in the associated RKHS, and
that its regularity is captured by another positive definite kernel function, k".

The above assumptions allow us to characterize the reward and safety functions by using
Gaussian processes (GPs, see Rasmussen (2004)). By using the GP models, the values of r
and g at unobserved states are predicted according to previously observed functions’ values.
An advantage of leveraging GPs is that we can obtain both optimistic and pessimistic
measurements of the two functions by using the inferred means and variances. A GP is
specified by its mean, pu(s), and covariance, k(s,s’). The reward and safety functions are
thus modeled as r(s) = GP(u"(s),k"(s,s’)) and g(s) = GP(u9(s),k9(s,s’)). Without
loss of generality, let u(s) = 0 for all s € §. For the reward and safety functions, we
respectively model the observation noise as y" = r(s) + n” and y¢ = g(s) + nY, where
n" ~ N(0,07) and n9 ~ N(0,07). The posteriors over r and g are computed on the basis
of t observations at states {s1,...,s:}. Then, for both the reward and safety functions, the
posterior mean, variance, and covariance are respectively represented as p;(s) = k; (s)(K;+
o2y, 01(s) = ki(s, s), ki(s,s') = k(s,s') — k/ (s)(K; + 02T)"'ky(s'), where ki(s) =
[k(s1,8),...,k(s¢,8)]", and K; is the positive definite kernel matrix.

3. Background

We define two kinds of predicted safe spaces inferred by a GP as in Turchetta et al. (2019).
First, we consider a pessimistic safe space, which contains states identified as safe with a
greater probability than a pre-defined confidence level. Second, we derive an optimistic safe
space that includes all states that may be safe with even a small probability.

Predicted pessimistic safe space. We use the notion of a safe space in Turchetta et al.
(2016) as a predicted pessimistic safe space. For the probabilistic safety guarantee, two sets
are defined. The first set, S, , simply contains the states that satisfy the safety constraint
with high probability. The second one, &, , additionally considers the ability to reach states
in S, (i.e., reachability) and the ability to return to the previously identified safe set, X,_



WORKSHOP ON REAL WORLD EXPERIMENT DESIGN AND ACTIVE LEARNING

(i.e., returnability). The algorithm probabilistically guarantees safety by allowing the agent
to visit only states in X,.

Predicted optimistic safe space. As defined in Wachi et al. (2018) and Turchetta et al.
(2019), an optimistic safe space has rich information for inferring the safety function. Let
Xt denote the predicted optimistic safe space. Intuitively, X;" contains all states that may
turn out to be safe even if the probability is low. In other words, S \ X;" contains states
that are unsafe with high probability.

4. Algorithm

We now introduce our proposed algorithm, SNO-MDP, for achieving a near-optimal policy
while guaranteeing safety. We first give an overview of SNO-MDP. We extend a stepwise
approach in Sui et al. (2018) from state-less to stateful settings. Basically, our algorithm
consists of two steps. In the first step, the agent expands the pessimistic safe region while
guaranteeing safety). Next, it explores and exploits the reward in the safe region certified
in the first step. The reason for this stepwise approach is that we can neglect uncertainty
related to the a priori unknown safety function once the safe region is fixed. However, a
pure stepwise approach does not stop exploring the safe region until the convergence of
the GP confidence interval). This formulation often requires the agent to execute a great
number of actions for exploring safety. Hence, to achieve near-optimality while executing a
smaller number of actions, we also propose the ES? algorithm.

4.1 Exploration of Safety (Step 1)

First, we consider how to explore the safety function. As a scheme to expand the safe region,
we consider “expanders” as in Sui et al. (2015) and Turchetta et al. (2016). Expanders are
states that may expand the predicted safe region, which is defined as G; = {s € A |
ei(s) > 0}, where e;(s) = |s' € S\ S, | u(s) — Ld(s,s’) > hl.

The efficiency of expanding the safe region is measured by the width of the safety func-
tion’s confidence interval, defined as wy(s) = us(s) — l¢(s). The agent safely and efficiently
expands the safe region by sampling the state with the maximum value of w among the
expanders, G;. Hence, the agent sets the temporal goal according to §{ = arg max,, w¢(s).
Then, within the predicted safe space X, , it chooses a path to get to ¢ from the current
state s;—1 so as to minimize the cost (e.g., the path length). In our experiment, we simply
minimize the path length. By defining the cost as related to w (e.g., 1/w), however, the
agent could explore safety more actively on the way to &.

The previous work Sui et al. (2015); Turchetta et al. (2016); Sui et al. (2018) terminated
safety exploration when the desired accuracy was achieved for every state in Gy; that is,

<e,. 1
géégfwt(S) <€ (1)

Unfortunately, this termination condition often requires a great number of iterations. For
the purpose of maximizing the cumulative reward, it often leads to the loss of reward.
Therefore, in Section 4.3, we propose the ES? algorithm to improve this point.
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4.2 Exploration and Exploitation of Reward (Step 2)

Once expansion of the safe region is completed, the agent guarantees safety as long as it
is in X~ and does not have to expand the safe region anymore. Hence, all we have to
do is optimize the cumulative reward in X~. As such, a simple approach is to follow the
optimism in the face of uncertainty principle as in Strehl and Littman (2008) and Auer and
Ortner (2007), then to consider the “exploration bonus” represented by R-MAX (Brafman
and Tennenholtz, 2002) and Bayesian Exploration Bonus (BEB, Kolter and Ng (2009)).

Specifically, we optimize the policy by optimistically measuring the reward with the
(probabilistic) upper confidence bound, U(s) := uj(s) —|—O¢L} 4/31 -0} (8). In this reward setting,
the second term on the right-hand side corresponds to the exploration bonus. For balancing
the exploration and exploitation in terms of reward, we solve the following Bellman equation:

Jx(st,b],b]) = max [Up(se1) +vJ%(se11, b7, b7)],
St+1€X

where b" = (u",0") and b9 = (u9,09) are the beliefs over reward and safety, respectively.
Also, t* is the time step when the termination condition (1) is satisfied. Note that b" and
b9 are not updated; hence, we can solve the above equation with standard algorithms.

4.3 Early Stopping of Exploration of Safety (ES?)

The existing safe exploration algorithms (Sui et al., 2015; Turchetta et al., 2016) continue
exploring the state space until convergence of the confidence interval, w, which generally
leads to a large number of iterations. Our primary objective is to maximize the cumula-
tive reward; hence, we should stop exploring safety if further exploration will not lead to
maximizing the cumulative reward.

While exploring the safety function, we check whether migration of the step can be
conducted. As such, we consider the following additional MDP, M, = (XT, A, f,r’, g,7).
The differences from the original MDP, M, lie in the state space and the reward function.
The state space of M, is defined as the optimistic safe space (i.e., XT), while the reward
function is defined as follows:

N BT 2o i se X\ A, @)
T if se€X; .

This definition of the reward function encourages the agent to explore outside the pre-
dicted safe space, &, . Using the new MDP above, we consider the set of states that
the agent will visit at the next time step, defined as }; = {s' € ST | Vs € X : ¢ =
f(s,my(a | s))}, where m; is the optimal policy for My, obtained by maximizing the
Vm,(st) = maxStHeX;r[ '(8¢41) + YV, (8t41) . Finally, we stop exploring the safety
function if Yy € &, holds. Intuitively, we stop expanding the safe space if the direction of
the optimal policy for M, heads for the inside of &;. If the agent tries to stay in X, even
under the condition that the reward is defined as in (2), then we do not have to expand
the safe region anymore. When the ES? algorithm confirms satisfaction of the above con-
dition, we move on to the next step and then optimize the cumulative reward in ); that
is, ij}(stv by, btg) = MaXs, e, [Ut(st-i-l) + ’YJ)*)(St-‘rla by, bg)] :

We also developed P-ES? algorithm, which empirically works better than ES? algorithm
by modeling a probability of a state being safe.
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(a) GP-SAFETY-GYM. (b) Performance comparison. (c) Effects of ES? and P-ES?.

Figure 1: Experiment with synthetic data. (a) An example screen capture from the GP-SAFETY-
GYM environment. (b) Average reward over the episodes, comparing the performance
of SNO-MDP with ES? and the other baselines. (c¢) Average reward over the episodes,
showing the effects of ES? and P-ES2. The colored circles represent when the transition
from safe exploration to reward optimization happens for each method.

5. Experiment
In this section, we evaluate the performance of SNO-MDP in two experiments.

Settings. We constructed a new open-source environment for safe RL simulations named
GP-SAFETY-GYM. This environment was built based on OpenAl Safety-Gym Ray et al.
(2019). As shown in Figure 1(a), GP-SAFETY-GYM represents the reward by a color (yellow:
high; green: medium; blue: low), and the safety by height. We considered a 20 x 20 square
grid in which the reward and safety functions were randomly generated. At every time
step, an agent chose an action from stay, up, right, down, and left. The agent predicted the
reward and safety functions by using different kernels on the basis of previous observations.
In this simulation, we allowed the agent to observe the reward and safety function values
of the current state and neighboring states.

Results. Figure 1(b) compares the performance of SNO-MDP and the baselines in terms
of the reward. SNO-MDP achieved the optimal reward after shifting to the stage of reward
optimization, which outperforms SAFEMDP (Turchetta et al. (2016)) and SAFEEXPOPT-
MDP (Wachi et al. (2018)) in terms of reward after sufficiently large number of time
steps. The SAFEMDP agent did not aim to maximize the cumulative reward, and the
SAFEEXPOPT-MDP agent was sometimes stucked in a local optimum when the expansion
of the safe region was insufficient. Figure 1(c) shows the empirical performance of the ES?
algorithm. Also, all methods, including the baselines, did not take any unsafe actions.

6. Conclusion

We have proposed SNO-MDP, a stepwise approach for exploring and optimizing a safety-
constrained MDP. Theoretically, we proved a bound of the sample complexity to achieve
ey-closeness to the optimal policy while guaranteeing safety, with high probability. We also
proposed the ES? algorithm for improving the efficiency in obtaining rewards. We developed
an open-source environment, GP-SAFETY-GYM, to test the effectiveness of SNO-MDP . We
also demonstrated the advantages of SNO-MDP using the real Mars terrain data.
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