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Abstract
We consider a repeated sequential game between a learner, who plays first, and an opponent
who responds to the chosen action. We seek to design strategies for the learner to successfully
interact with the opponent. While most previous approaches consider known opponent
models, we focus on the setting in which the opponent’s model is unknown. To this end,
we use kernel-based regularity assumptions to capture and exploit the structure in the
opponent’s response. We propose a novel algorithm for the learner when playing against an
adversarial sequence of opponents. The algorithm combines ideas from bilevel optimization
and online learning to effectively balance between exploration (learning about the opponent’s
model) and exploitation (selecting highly rewarding actions for the learner). Our results
include algorithm’s regret guarantees that depend on the regularity of the opponent’s
response and scale sublinearly with the number of game rounds. Moreover, we specialize
our approach to repeated Stackelberg games, and empirically demonstrate its effectiveness
in a traffic routing and wildlife conservation task.
Keywords: Sequential Games, Online Learning, Gaussian Processes

1. Introduction
Several important real-world problems involve sequential interactions between two parties.
These problems can often be modeled as two-player games, where the first player chooses
a strategy and the second player responds to it. For example, in traffic networks, traffic
operators plan routes for a subset of network vehicles (e.g., public transport), while the
remaining vehicles (e.g., private cars) can choose their routes in response to that. The
goal of the first player in these games is to find the optimal strategy (e.g., traffic operators
seek the routing strategy that minimizes the overall network’s congestion, cf., Korilis et al.
(1997)). Several algorithms have been previously proposed, successfully deployed, and used in
domains such as urban roads (Jain et al., 2011b), airport security (Pita et al., 2009), wildlife
protection (Yang et al., 2014), and markets (He et al., 2007), to name a few.

In many applications, complete knowledge of the game is not available, and thus, finding
a good strategy for the first player becomes more challenging. The response function of the
second player, that is, how the second player responds to strategies of the first player, is
typically unknown and can only be inferred by repeatedly playing and observing the responses
and game outcomes (Letchford et al., 2009; Blum et al., 2014). Consequently, we refer to the
first and second players as learner and opponent, respectively. An additional challenge for
the learner in such repeated games lies in facing a potentially different type of opponent at
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every game round. In various domains (e.g., in security applications), the learner can even
face an adversarially chosen sequence of opponent/attacker types (Balcan et al., 2015).

Motivated by these important considerations, we study a repeated sequential game against
an unknown opponent with multiple types. We propose a novel algorithm for the learner
when facing an adversarially chosen sequence of types. No-regret guarantees of our algorithm
in these settings ensure that the learner’s performance converges to the optimal one in
hindsight (i.e., the idealized scenario in which the types’ sequence and opponent’s response
function are known ahead of time). To that end, our algorithm learns the opponent’s response
function online, and gradually improves the learner’s strategy throughout the game.

2. Problem Setup
We consider a sequential two-player repeated game between the learner and its opponent.
The set of actions that are available to the learner and opponent in every round of the game
are denoted by X and Y, respectively. The learner seeks to maximize its reward function
r(x, y) that depends on actions played by both players, x ∈ X and y ∈ Y . In every round of
the game, the learner can face an opponent of different type θt ∈ Θ that is unknown to the
learner at the decision time. As the sequence of opponent’s types can be chosen adversarially,
we focus on randomized strategies for the learner as explained below. We summarize the
protocol of the repeated sequential game as follows.
In every game round t:
1. The learner computes a randomized strategy pt, i.e., a probability distribution over X ,

and samples action xt ∼ pt.

2. The opponent observes xt and responds by selecting yt = b(xt, θt), where b : X ×Θ→ Y
represents the opponent’s response function.

3. The learner observes the opponent’s type θt and response yt, and receives reward r(xt, yt).
The opponent’s types {θi}Ti=1 can be chosen by an adaptive adversary, i.e., at round t, the
type θt can depend on the sequence of randomized strategies {pi}ti=1 of the learner and on
the previous realized actions x1, . . . , xt−1 (but not on the current action xt). The goal of
the learner is to maximize the cumulative reward

∑T
t=1 r(xt, yt) over T rounds of the game.

We assume that the learner knows its reward function r(·, ·), while the opponent’s response
function b(·, ·) is unknown. To achieve this goal, the learner has to repeatedly play the game
and learn about the opponent’s response function from the received feedback. After T game
rounds, the performance of the learner is measured via the cumulative regret:

R(T ) = max
x∈X

T∑
t=1

r(x, b(x, θt))−
T∑
t=1

r(xt, yt). (1)

The regret represents the difference between the cumulative reward of a single best action from
X and the sum of the obtained rewards. An algorithm is no-regret if R(T )/T → 0 as T →∞.

Regularity assumptions. Attaining sub-linear regret is not possible in general for
arbitrary response functions and domains, and hence, this requires further regularity as-
sumptions. We consider a finite set of actions X ⊂ Rd available to the learner, and a
finite set of opponent’s types Θ ⊂ Rp. We assume the unknown response function b(x, θ)
is a member of a reproducing kernel Hilbert space Hk (RKHS), induced by some known
positive-definite kernel function k(x, θ, x′, θ′). RKHS Hk is a Hilbert space of (typically
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non-linear) well-behaved functions b(·, ·) with inner product 〈·, ·〉k and norm ‖ · ‖k = 〈·, ·〉1/2k ,
such that b(x, θ) = 〈b, k(·, ·, x, θ)〉k for every x ∈ X , θ ∈ Θ and b ∈ Hk. The RKHS norm
measures smoothness of b with respect to the kernel function k (it holds ‖b‖k <∞ iff b ∈ Hk).
We assume a known bound B > 0 on the RKHS norm of the unknown response function,
i.e., ‖b‖k ≤ B. This assumption encodes the fact that similar opponent types and strategies
of the learner lead to similar responses, where the similarity is measured by the known
kernel function k. Most popularly used kernel functions that we also consider are linear,
squared-exponential (RBF) and Matérn kernels (Rasmussen, 2003).

Our second regularity assumption is regarding the learner’s reward function r : X ×Y →
[0, 1], which we assume is Lr-Lipschitz continuous with respect to ‖ · ‖1.

3. Proposed Approach

The observed opponent’s response can often contain some observational noise, e.g., in wildlife
protection (see Section 4), we only get to observe an imprecise/inexact poaching location.
Hence, instead of directly observing b(xt, θt) at every round t, the learner receives a noisy
response yt = b(xt, θt) + εt. For the sake of clarity, we consider the case of scalar responses,
i.e., yt ∈ R, but in our full paper we also consider the case of vector-valued responses.
We let Ht = {{(xi, θi, yi, )}t−1i=1, (xt, θt)}, and assume E[εt|Ht] = 0 and εt is conditionally
σ-sub-Gaussian, i.e., E

[
exp(ζεt)|Ht

]
≤ exp(ζ2σ2/2) for any ζ ∈ R.

At every round t, by using the previously collected data {(xi, θi, yi)}t−1i=1, we can compute
a mean estimate of the opponent’s response function via standard kernel ridge regression.
This can be obtained in closed-form as:

µt(x, θ) = kt(x, θ)
T
(
Kt + λIt

)−1
yt , (2)

where yt = [y1, . . . , yt]
T is the vector of observations, λ > 0 is a regularization parameter,

kt(x, θ) = [k(x, θ, x1, θ1), . . . , k(x, θ, xt, θt)]
T and [Kt]i,j = k(xi, θi, xj , θj) is the kernel matrix.

The variance of the proposed estimator can be obtained as:

σ2t (x, θ) = k(x, θ, x, θ)− kt(x, θ)T
(
Kt + λIt

)−1
kt(x, θ) . (3)

Moreover, we can use (2) and (3) to construct upper and lower confidence bound functions:

ucbt(x, θ) := µt(x, θ) + βtσt(x, θ), lcbt(x, θ) := µt(x, θ)− βtσt(x, θ) , (4)

respectively, for every x ∈ X , θ ∈ Θ, where βt is a confidence parameter. A standard result
from Abbasi-Yadkori (2013); Srinivas et al. (2010) shows that under our regularity assump-
tions, βt can be set such that, with high probability, response b(x, θ) ∈ [lcbt(x, θ), ucbt(x, θ)]
for every (x, θ) ∈ X ×Θ and t ≥ 1.

Before moving to our main results, we define a sample complexity parameter that quantifies
the maximum information gain about the unknown function from noisy observations:

γt := max
{(xi,θi)}ti=1

0.5 log det(It +Kt/λ). (5)

It has been introduced by Srinivas et al. (2010) and later on used in various theoretical works
on Bayesian optimization. Analytical bounds that are sublinear in t are known for popularly
used kernels (Srinivas et al., 2010), e.g., when X × Θ ⊂ Rd, we have γt ≤ O(log(t)d+1)
and γt ≤ O(d log(t)) for squared exponential and linear kernels, respectively. This quantity
characterizes the regret bounds obtained in the next sections.
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noend 1 The StackelUCB algorithm
Input: Finite action set X ⊂ Rd, kernel k(·, ·), param. λ, {βt}t≥1, η
1: Initialize: Uniform strategy p1 = 1

|X |1|X |
2: for t = 1, 2, . . . , T do
3: Sample action xt ∼ pt // Opponent θt observes xt and computes b(xt, θt)

4: Observe θt and noisy response yt = b(xt, θt) + εt
5: Compute optimistic reward estimates:

∀x ∈ X : r̃t(x, θt) := maxy r(x, y), s.t. y ∈
[
lcbt(x, θt), ucbt(x, θt)

]
6: Perform strategy update: ∀x ∈ X : pt+1[x] ∝ pt[x] · exp

(
η · r̃t(x, θt)

)
7: Update: µt+1, σt+1 with {(xt, θt, yt)} (via (2), (3)), and ucbt+1, lcbt+1 (via (4))

3.1 The StackelUCB Algorithm
The considered problem (Section 2) can be seen as an instance of adversarial online learn-
ing (Cesa-Bianchi and Lugosi, 2006) in which an adversary chooses a reward function rt(·)
in every round t, while the learner (without knowing the reward function) selects action xt
and subsequently receives reward rt(xt). To achieve no-regret, the learner needs to maintain
a probability distribution pt over the set X of available actions and play randomly according
to it. Multiplicative Weights (MW) (Littlestone and Warmuth, 1994) algorithms such as
Exp3 (Auer et al., 2003) and Hedge (Freund and Schapire, 1997) are popular no-regret meth-
ods for updating pt, depending on the feedback available to the learner in every round. The
former only needs observing reward of the played action rt(xt) (bandit feedback), while the
latter requires access to the entire reward function rt(·) at every t (full-information feedback).

The considered game setup corresponds (from the learner’s perspective) to the particular
online learning problem in which rt(·) := r(·, b(·, θt)), type θt is revealed, and the bandit
observation yt is observed by the learner. Full-information feedback, however, is not available
as b(·, θt) is unknown. To alleviate this, similarly to Sessa et al. (2019), we compute
"optimistic" reward estimates to emulate the full-information feedback. Based on previously
observed data, we establish upper and lower confidence bounds ucbt(·) and lcbt(·), of the
opponent’s response function via (4). These are then used to estimate the optimistic rewards
of the learner for any x ∈ X at round t as:

r̃t(x, θt) := max
y

r(x, y) s.t. y ∈
[
lcbt(x, θt), ucbt(x, θt)

]
. (6)

Optimistic rewards allow the learner to control the maximum incurred regret, while Lip-
schitness of r(.) ensures that learning the opponent’s response function (via (2) and (3))
translates to more accurate reward estimates. The proposed approach is summarized in our
novel StackelUCB algorithm (see Algorithm 1) which provides the following guarantee.

Theorem 1 For any δ ∈ (0, 1), the regret of StackelUCB when used with λ ≥ 1, βt =

σλ−1
√

2 log (1δ ) + log(det(It +Kt/λ)) + λ−1/2B, and learning step η =
√

8 log(|X |)/T , is
bounded, with probability at least 1− 2δ, by

R(T ) ≤
√

1
2T log |X |+

√
1
2T log (1δ ) + 4LrβT

√
TλγT ,

where B ≥ ‖b‖Hk
and γT is the maximum information gain defined in (5).

The obtained regret bound scales sublinearly with T , and depends on the regret obtained
from playing Hedge (first two terms) and learning of the opponent’s response function (last
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Shortest route 0% routed StackelUCB
Avg. congestion 15.97 1.03 3.51
Cumul. reward 21’645.4 -813.5 25’330.5

Figure 1: Left: Time-averaged regret of the operator using different routing strategies. StackelUCB
(polynomial kernels of degree 3 or 4) leads to a smaller regret compared to the considered baselines and
performs comparably to the idealized Hedge algorithm. Right: Edges’ congestion (color intensity
proportional to the time-averaged congestion) when the operator at each round: (left) Routes 100%
of the units via the shortest route, (middle) Routes 0% of units, and (right) Uses StackelUCB.

term in the regret bound). We note that Exp3 attains O(
√
T |X | log |X |) while Hedge

attains improved O(
√
T log |X |) regret bound which scales favourably with the number of

available actions |X |. The same holds for our algorithm, but crucially – unlike Hedge – our
algorithm uses the bandit feedback only.

3.2 Single Opponent Type
In case the learner is playing against an opponent of a single type θ̄, in our full paper we show
that a simpler version of StackelUCB achieves an improved regret bound of 4LrβT

√
TλγT .

The strategy consists, at each time t, of selecting xt = arg maxx∈X r̃t
(
x, θ̄
)
and is reminiscent

of the GP-UCB algorithm used in standard Bayesian optimization (Srinivas et al., 2010).

3.3 Learning in Repeated Stackelberg Games
Repeated Stackelberg games (von Stackelberg, 1934) are sequential games between a leader
(learner) and a follower (opponent). They can be mapped to our setup of Section 2 by letting
X = ∆nl be the leader decision set, where ∆nl stands for nl-dimensional simplex. Moreover,
the opponent’s response function in a Stackelberg game assumes the specific best-response
form b(xt, θt) = arg maxy∈Y Uθt(xt, y), where Uθt(x, y) represents the expected utility of the
follower of type θt under the leader’s strategy x. Balcan et al. (2015) shows that a regret
bound of O

(√
T · poly(nl, nf , kf )

)
(nf and kf are the numbers of actions available to the

follower and possible follower types, respectively) can be achieved assuming a finite set of
followers with known utilities. In this work, we show that StackelUCB leads to a regret of
O
(√

Tnl log(LrLb
√
nlT ) +LrβT

√
TλγT

)
in the more challenging setting where such utilities

are unknown (also, potentially with an infinite number of types).

4. Experiments
We evaluate the proposed algorithms in traffic routing and wildlife conservation tasks.
Routing Vehicles in Congested Traffic Networks. We consider a traffic routing task
in the network of Sioux-Falls (LeBlanc et al., 1975), in which the goal of the network operator
is to route 300 units (e.g., a fleet of autonomous vehicles) between the two nodes of the
network (depicted as blue and green nodes in Figure 1). At the same time, the goal of the
operator is to avoid the network becoming overly congested. We model this problem as a
repeated sequential game (as defined in Section 2) between the network operator (learner)
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Figure 2: Left: Obtained rewards when the rangers know the poachers’ model (OPT), or use different
patrol strategies. Our algorithm discovers the optimal strategy in ∼60 rounds and outperforms
the considered baselines. Right: Park animal density (left plot) and rangers’ patrol strategy (right
plot, where probabilities are proportional to the green color intensity) computed with our algorithm.
The poachers’ model and starting location (red square) are not known by the rangers ahead of time.

and the rest of the users present in the network (opponent), where users’ preferences and the
network’s congestion model are unknown to the operator.

In Figure 1 we compare the performance of the network operator when using Stack-
elUCB to select routes with 1) routing 100% of the units via the shortest route at every round,
2) routing 0% of the units at every round, 3) the Exp3 algorithm and 4) the Hedge algorithm.
StackelUCB leads to a significantly smaller regret compared to the considered baselines
(the regret of baseline 2 is above the y-axis limit), and its performance is comparable to the
full-information Hedge algorithm. Moreover, we report the cumulative reward obtained by
the operator when using StackelUCB and other two baselines, together with the resulting
time-averaged congestion levels. The network’s average congestion is very low when 0% of
the units are routed, while the central edges become extremely congested when 100% of the
units are routed via the shortest route. Instead, the proposed game model and StackelUCB
algorithm allow the operator to select alternative routes depending on the users’ demands,
leading to improved congestion and a larger cumulative reward compared to the baselines.

Wildlife Protection against Poaching Activity. We consider a wildlife conservation
task where the goal of park rangers is to protect animals from poaching activities. We model
this problem as a sequential game between the rangers, who commit to a patrol strategy x (i.e.,
covering each park area with some probability), and the poachers that observe the rangers’
strategy to decide upon a poaching location y = b(x). We use the game model of Kar et al.
(2015) to define poachers’ model b(·) and rangers’ reward function r(·). We study the repeated
version of this game in which the rangers start with no information about the poachers’ model
and use the algorithm discussed in Section 3.2 to discover the best patrol strategy online.

In Figure 2 (left plot), we compare the performance of our algorithm with the ones
achieved by: 1) Optimal strategy (OPT) x? = arg maxx∈X r(x, b(x)) with known poachers’
model, 2) Max-Min, i.e, xm = arg maxx∈X miny r(x, y), which assumes the worst possible
poaching location, and 3) Best-offline, that is, xo = arg maxx∈X r(x, µo(x)), where µo(·) is
the mean estimate of b(·) computed offline as in (2) by using 1’000 random data points. Our
algorithm outperforms the considered baselines and discovers the optimal patrol strategy after
∼ 60 rounds. We depict the discovered strategy in Figure 2 (rightmost plot). We observe
that the cells covered with higher probabilities are the ones with a high animal density near
to the poachers’ starting location (despite the latter is unknown to the algorithm).
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