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Abstract

Active search is the process of identifying high-value data points in a large and often high-
dimensional parameter space that can be expensive to evaluate. Traditional active search
techniques like Bayesian optimization trade off exploration and exploitation over consecu-
tive evaluations, and have historically focused on single or small (<5) numbers of examples
evaluated per round. As modern data sets grow, so does the need to scale active search to
large data sets and batch sizes. In this paper, we present a general hierarchical framework
based on bandit algorithms to scale active search to large batch sizes by maximizing in-
formation derived from the unique structure of each dataset. Our hierarchical framework,
Hierarchical Batch Bandit Search (HBBS), strategically distributes batch selection across
a learned embedding space by facilitating wide exploration of different structural elements
within a dataset. We focus our application of HBBS on modern biology, where large batch
experimentation is often fundamental to the research process, and demonstrate batch de-
sign of biological sequences (protein and DNA). We also present a new Gym environment
to easily simulate diverse biological sequences and to enable more comprehensive evaluation
of active search methods across heterogeneous data sets. The HBBS framework improves
upon standard performance, wall-clock, and scalability benchmarks for batch search by
using a broad exploration strategy across coarse partitions and fine-grained exploitation
within each partition of structured data.
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1. Introduction

Active search is a canonical problem in machine learning that involves querying an often
unknown or “black-box” function which assigns labels to a set of unlabeled data points or
features. The goal of active search is to find examples that maximize this unknown func-
tion or that fulfill some necessary conditions. As modern datasets have grown, active search
methods are increasingly asked to search larger parameter spaces using batched queries. Our
insight is that these large data sets have emergent structure which is naturally conducive to
a hierarchical approach, where we broadly sample unexplored partitions while greedily opti-
mizing local search within a partition. We present a novel hierarchical framework for active
search that balances exploration and exploitation in batch search across structured data.
Our approach, Hierarchical Batch Bandit Search (HBBS), treats the search problem as one
of multi-arm bandit optimization, using a 2-hierarchical approach to balance exploration
across k different partitions. At the top level, the HBBS framework uses Thompson sam-
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pling to explore structurally different data partitions, and then at the lower level greedily
exploits by optimizing within clusters of structurally similar data points. We evaluate HBBS
by comparing it with standard baseline methods for active search and bandit optimization
on synthetic and real-world biological datasets, where there is an acute need to identify
sequences of research, diagnostic or therapeutic interest. We find that HBBS usually out-
performs baseline methods when a dataset has distinct structural features in its embedding.

2. Background

2.1 Active Search and Bandits

Active search has been traditionally addressed through techniques like Bayesian Optimiza-
tion where a surrogate model such as a Gaussian Process (GP) is used in conjunction with
an acquisition function such as Upper Confidence Bound (UCB) to intelligently sample new
points by balancing exploration and exploitation. GPs are popular but notoriously difficult
to scale to large data sets. Proposed solutions include altering the GP model, implementa-
tion or acquisition function (McIntire et al. (2016); Desautels et al. (2014); González et al.
(2016); Gardner et al. (2018)), non-GP Bayesian Optimization techniques (Kathuria et al.
(2016); Wang et al. (2017)), or more recent deep learning-based techniques (Damianou and
Lawrence (2013); Snoek et al. (2015)). Domain-specific approaches to active search have
used generative models to propose diverse inputs to maximize properties of interest (Brookes
and Listgarten (2018); Gómez-Bombarelli et al. (2018); Killoran et al. (2017); Gupta and
Zou (2019)) or surveyed an ensemble of models with strong domain-specific priors (Biswas
et al. (2018); Alley et al. (2019); Yang et al. (2019)). These methods either are not adaptable
or optimized for large batch settings, assume an oracle, or do not generalize.

The exploration-exploitation trade-off is also handled in the multi-armed bandit context.
A multi-armed bandit consists of a set of “arms” A, each with some reward distribution. At
each time step, an agent selects an arm a ∈ A to pull, observing a single value drawn from
its reward distribution, with the end goal of maximizing the total reward of all samples. The
standard evaluation metric for bandit algorithms is cumulative regret, and to achieve low
regret, a bandit algorithm must balance exploration and exploitation. Thompson sampling
is a popular bandit algorithm that achieves this balance (Thompson (1933)).

2.2 Contribution

Our framework combines the structural embedding of deep learning-based methods with
Thompson sampling to guide a top-level search over partitions of data, while using exploita-
tive methods to search within each partition. By viewing the selection between different
clusters of data as a bandit problem, and then using a simpler exploitative policy within
each partition, we can scale to explore the diverse high-level structural features of complex
datasets. In principle, our hierarchical framework could apply any exploitative approach
within each partition, but for time and implementation ease we have often found good
results with greedy partition search.

One of the difficulties in assessing active search methods is the variability in their per-
formance across different tasks and data sets. This problem is particularly apparent in
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biology due to the large diversity of datasets available and experimental objectives that
are pursued. We make available an OpenAI Gym (Brockman et al. (2016)) environment,
ClusterEnv, as a public resource to enable assessing generalizability beyond the relatively
small number of currently publicly available data sets.

3. Methods

3.1 Problem statement

Algorithm 1 HBBS[k, (µ0, n0, α, β)]

1: procedure Act(f,D,M, S)
. Observations D, labels f
. Select M sequences in S to sample

2: Fit predictor f̂ and embedding ê to f,D
3: k-means cluster S into S1 . . . Sk

using `2 metric induced by ê
4: for i ∈ {1 . . . k} do
5: d1 . . . dm ← Si ∩ D
6: x1 . . . xm ← f(d1) . . . f(dm)
7: µ← mean {x1 . . . xm}
8: τ ← Γ

(
α+ m

2 , β + 1
2

∑
j(xj − µ)2

+mn0

(
(µ−µ0)2
2(m+n0)

))
9: NGi ← N

(
mµ+n0µ0
m+n0

, 1√
mτ+n0τ

)
10: end for
11: A← {}
12: for j ∈ {1 . . .M} do
13: ∀i, qi ∼ NGi
14: b← arg maxi qi . Thompson step
15: a← arg max

x∈(Sb\D)\A
f̂(x) . Greedy step

16: A← A ∪ {a}
17: end for
18: select A
19: end procedure

To formalize the problem, we model a bi-
ological sequence environment as a triple
E = (S, f,M), which includes a collec-
tion of unlabeled sequences S, a function f
which assigns a label (score) to a sequence,
and a batch size M . Each xi ∈ S is a
fixed-length string and each label f(xi) ∈
[0, 1]. Agents acting in E propose sets of
sequences (batches) to try to optimize the
label function over S; the value M is the
size of these batches. At each time step
t, an agent acting in E has a set of previ-
ously observed sequences Dt, with the abil-
ity to see f(x) for any x ∈ Dt. Based on
these observations, the agent selects M el-
ements z1 . . . zM ∈ S to observe the labels
of f(z1) . . . f(zM ). At the next time step,
these selections are added to the set of ob-
servations, so Dt+1 = Dt ∪ {zi}Mi=1.

3.2 Metrics

We use two main metrics to evaluate how
well agents find sequences with good labels.

Regret. First, we use the following cumulative regret metric: For each past selected batch
of size M , we compute the sum of the differences between the scores of the top bρMc of the
selected sequences’ scores and those of the top bρMc of the best possible batch of size M
that could be selected. Regret represents the distance between each agent and the optimal
agent. Formally, at each time step, we have regret rt =

∑t
n=1R

∗
n − Rn where Rn and R∗n

are the sum of the top bρMc of the labels in a batch drawn from the remaining sequences
at time step n, for the agent’s selections and the maximal selections respectively. We focus
on the value ρ = 0.2 in this paper, evaluating the top 20% of each agent’s selections.

Time. One of the most common issues with GPs is their time to fit. As our second metric
for evaluating agents, we compare for each method the wall-clock time for a single run at
each time step, where a single run is defined as execution of a single hyper-parameter choice.
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3.3 Hierarchical Batch Bandit Search

We present a 2-level hierarchical model with a bandit component and greedy component.
The bandit component employs Thompson sampling with a Gaussian prior. Algorithm 1
presents the core HBBS algorithm. Our key insight is that using an embedding, we can
use clustering methods to create the arms of a bandit from structurally related sequences.
At each time step, we refit a predictive model and embedding function to the observed
data points Dt. We k-means cluster the observed and unobserved points in the embed-
ding to obtain clusters S1 . . . Sk. We then construct normal-gamma conjugate distributions
NG1 . . .NGk for the elements of Dt in each Si. Finally, M times, we sample from each NGi,
denoting the maximum NGb, and select the unobserved sequence in Sb that maximizes the
predictions of our predictive model.

Figure 1: Model architecture for
predictions and dimension
H embedding.

Architecture and Hyperparameters. We use
a deep neural network architecture as a predictive
model and for embeddings (as described in 3.5).
The Thompson sampling in HBBS requires priors
µ0, n0, α, β for conjugate distributions maintained
at each cluster and a parameter k for the number
of clusters at each time step. We found HBBS was
robust with respect to the prior hyperparameters,
and used µ0 = 0.5, n0 = 10, α = 1, β = 1.

3.4 Baselines

One baseline method is a greedy agent that selects
the batch of M sequences maximizing the predictive
model (Algorithm 3). We also compare against a
simple exploration technique that randomly selects

dεMe of the batch of sequences to sample, and samples the remaining b(1− ε)Mc of the
sequences greedily (Algorithm 4).

We further analyze a batch version of GP-UCB (Algorithm 5). We first fit a Gaussian
process model to the observed sequences Dt at each time step, which provides mean and
uncertainty predictions µ, σ for each sequence in S. Then, we greedily sample M sequences
from the upper confidence bound µ + σ

√
β for a hyperparameter β. Every m sequences

sampled, we can refit the σ predictions. The baseline algorithms are in Appendix E.

3.5 Architecture

All agents that require an embedding of prior observed sequences or a predictive model use
the same architecture (Figure 1). For predictions, we fit a model to Dt, the observed se-
quences with labels, at each time step using 1D convolutions. Further, many agents require
some metric representing the similarity of different sequences, which we construct by em-
bedding the output of the convolutional layers with an autoencoder. Since the convolutional
layers extract features, the embedding will result in sequences that are similar in label for
similar structural reasons clustering closely. The model has several hyperparameters (learn-
ing rate, epochs to train, embedding dimension, etc.) detailed in Appendix B, which were
selected for robust performance across protein and artificial cluster environments.
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4. Experiments

4.1 Environments

Figure 2: Cluster environment

Figure 3: MPRA environment

Figure 4: BRCA1 environment

We assessed our approach on one synthetic environ-
ment (ClusterEnv) as well as two real environments:
one with DNA sequences (MPRA) and one with pro-
tein sequences (BRCA1). Our synthetic environment,
made publicly available, simulates clusters of sequences
with related features and labels with clear structure.
See Appendix C for details.

4.2 Setup

We compared performance of HBBS agents against
greedy, ε-greedy, and GP-UCB baselines on the afore-
mentioned environments. We also generated TSNE
plots (Maaten and Hinton (2008)) of the embeddings
produced by our architecture when trained on half of
the sequences in each environment, plotting the em-
bedding colored by label on the other half. All agents
were run for 60 time steps. The artificial environment
was run with batch size M = 100 while all of the real
environments were run with M = 20. For computa-
tional reasons, the GP-UCB algorithm could not be
run on the artificial environment as doing so would re-
quire repeated GP evaluations on ∼3000 sequences. At
the end of each run, we recorded the final Regret(0.2)
obtained. For each environment, we randomly selected
batches of 32 agents to run concurrently with 32 CPUs
and 8 NVIDIA GeForce GTX 1080 Ti GPUs. We re-
peated this process until each agent had been run for
60 trials or a set amount of time had elapsed.

Due to some environments taking significantly
longer to run than others, we varied this set amount
between environments so there would be sufficient runs of each agent. We ran agents on the
MPRA, BRCA1, and cluster environments with the aforementioned setup for approximately
50, 30, 20, and 10 hours respectively. Final Regret(0.2) values at the last time step for each
agent and environment are presented with 90% confidence intervals. We also compare the
wall-clock time of agents on the MPRA environment, averaged across all trials with one
representative for each class of agents with the same time complexity.

4.3 Results

We present sequence embeddings, colored by label (blue high) in Figures 2, 3, and 4. We
also compare the final regret of HBBS, ε-greedy, and greedy agents in Figures 5, 6, and 7.
See Appendix D for efficiency experiment results.
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4.4 Discussion

Figure 5: Cluster environment

Figure 6: MPRA environment

Figure 7: BRCA1 environment

ClusterEnv. The clear separation of the em-
bedding into multiple clusters indicates that
HBBS may perform well on this environment.

Indeed, HBBS performs optimally near the
number of actual clusters in the environment.

MPRA. In the embedding there are multiple
overlapping regions of good and bad sequences.

The HBBS agents with k between 5 and 15,
as well as k = 25 perform best.

BRCA1. The embedding exhibits complex
structure, with numerous high scoring clusters.

The HBBS agent with k = 25 performs
statistically significantly better than all other
agents.

5. Conclusion

We found HBBS to perform the best on all
the environments presented with obvious non-
linear structure to their embedding—its primary
shortcoming in performance is often achiev-
ing similar or slightly improved results to ε-
greedy. The overall trends we observe in wall-
clock time demonstrate HBBS can effectively
search across tens of thousands of sequences
with easy scalability to larger datasets. ε-greedy
has been documented as a reliable baseline for
similar active search tasks, though its perfor-
mance is highly dependent on the parameter ε
(Hernández-Lobato et al. (2017)). Most surpris-
ing is the relatively poor performance of GPs,
but this can be explained by our observation
that methods that can take advantage of the
neural network’s predictive capacity consistently
outperform those that do not.

In execution time, HBBS can cause methods
which are superlinear in time-complexity with
respect to the number of sequences in the dataset to run faster. For instance, if HBBS is
used with GP-UCB within each partition, by making the partitions arbitrarily small, the
O(n3) time complexity of GP-UCB can be mitigated. This key insight that HBBS is a
general framework that can improve speed or performance and can be used hierarchically
with any method per partition allows its extension to both increasingly large datasets and
increasingly specialized search methods.
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Appendix A. Code

Our Gym environment and our code for all experiments is publicly available at
https://github.com/StanfordAI4HI/HBBS.

Appendix B. Model Details

We use a learning rate of α = 5 · 10−4 with MSE loss at each of the green nodes in Figure 1
for both the autoencoder and prediction portions of the model, and a minibatch size of 100.
We also use an embedding dimension of H = 5.

The gray nodes in Figure 1 represent inputs and the red nodes represent output. Input
values are one-hot encoded sequences.

Appendix C. Environments

C.1 ClusterEnv Synthetic Environment

Algorithm 2 ClusterEnv[N,n, σ, c, `]

1: procedure Generate
. Produces sequences S labeled by f

2: S ← {}
3: for i ∈ {1 . . . N} do
4: µ ∼ U(−12 ,

1
2)

5: ξ ∼ σU(0, 1)
6: for j ∈ {1 . . . `} do
7: x1, x2, x3, x4 ∼ N (0, 1)
8: vj ← [|x1|1/c, |x2|1/c, |x3|1/c, |x4|1/c]
9: vj ← vj/

∑
i |xi|1/c

10: end for
11: u← distribution over {A,C, T,G}`

with each component one of the vj
12: for j ∈ {1 . . . n} do
13: s ∼ u
14: S ← S ∪ {s}
15: y ∼ N (µ, ξ)
16: f(s)← 1

1+e−y

17: end for
18: end for
19: end procedure

We present a simple artificial environment
that mimics the traditional bandit setting
with artificial DNA sequences. This en-
vironment consists of a set of sequences
{A, T,C,G}` in N clusters each contain-
ing n sequences. Each cluster is generated
by first selecting a probability mass func-
tion over {A, T,C,G}` as well as a Gaus-
sian label distribution, then sampling n
sequences (Algorithm 2). To ensure la-
bels are within [0, 1], they are clamped
with the sigmoid function. Because labels
depend only on the cluster of a sequence,
each cluster can be viewed as an arm in
a bandit problem, with a reward distri-
bution determined by the labels it con-
tains. Since the distributions are Gaus-
sian, an optimal agent for Gaussian ban-
dits with N arms will also perform well
on ClusterEnv if it views the clusters as
the N arms. We used the parameters
N = 10, n = 30000, σ = 0.1, c = 0.2 for our experiments as this setup yielded a small
number of clusters with highly distinct structure and reward distribution.
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C.2 Real Environments

We also evaluate the agents described in Section 3 on real biological sequence environments.

DNA Sequences. DNA environments consist of sequences of the form {A,C, T,G}l, with
an optional additional strand direction identifier, + or −. We test on Massively Parallel Re-
porter Assay (MPRA) sequences of length 150 base pairs (Urtecho et al. (2020)) designed
to promote gene expression to higher levels. The MPRA dataset has exponentially dis-
tributed scores, so to avoid creating an environment putting undue focus on any particular
sequences, we renormalize it to have labels uniformly distributed on [0, 1].

Protein Sequences. Protein sequence environments consist of sequences of 20 different
amino acids of the same length representing mutated versions of a protein, along with
labels corresponding to the effects of their mutations on their function. We focus on the
the protein BRCA1 in this paper by evaluating data from a parallel assay to measure the
effects of missense substitutions in the RING domain of BRCA1 on its activity and binding
functions (Starita et al. (2015)).

Appendix D. Efficiency

Figure 8: Total wall-clock time used at each timestep.

Discussion. Using HBBS adds overhead which is linear with respect to time step. GP-
UCB achieves by far the worst performance, especially at larger time steps. This perfor-
mance is consistent with the O(n3) GP-fitting step which GP-UCB must perform multiple
times per action.
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Appendix E. Baseline Algorithms

Algorithm 3 Greedy

1: procedure Act(f,D,M, S)
. Observations D, labels f ; select M sequences in S to sample.

2: Fit predictor f̂ to f,D
3: A← {}
4: for i ∈ {1 . . .M} do
5: a← arg max

x∈(S\(D∪A))
f̂(x)

6: A← A ∪ {a}
7: end for
8: select A
9: end procedure

Algorithm 4 ε-Greedy[ε]

1: procedure Act(f,D,M, S)
. Observations D, labels f ; select M sequences in S to sample.

2: Fit predictor f̂ to f,D
3: A← random sample of dεMe sequences in S −D
4: for i ∈ {1 . . . b(1− ε)Mc} do
5: a← arg max

x∈(S\(D∪A))
f̂(x)

6: A← A ∪ {a}
7: end for
8: select A
9: end procedure

Algorithm 5 GP-UCB[β,m]

1: procedure Act(f,D,M, S)
. Observations D, labels f ; select M sequences in S to sample.

2: Fit embedding to f,D, use to fit GP µ, σ to f,D
3: A← {}
4: for i ∈ {1 . . .M} do
5: a← arg max

x∈(S\(D∪A))
µ(x) + σ(x)

√
β

6: A← A ∪ {a}
7: if m divides i then
8: Refit σ with D ∪A
9: end if

10: end for
11: select A
12: end procedure
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