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Abstract

Obtaining unbiased, low-variance estimates of the mean of a ground set of points by sampling
a small subset of points is a crucial machine learning task, arising in stochastic learning
procedures, experimental design, and active learning. In the purely stochastic case, it is
well-known that importance sampling achieves unbiased estimates of minimal variance; but
finding optimal distributions over batches of size greater than 1 has proven difficult. For
batches of arbitrary size, we show a) that importance sampling achieves the lowest variance
when sampling with replacement, and b) that parametric distributions over batches can be
optimized via a quadratic form in the distribution’s first and second order marginals when
sampling without replacement. We verify that such learned distributions outperform other
batch selection methods, and achieve faster SGD convergence in downstream experiments.
As a side-effect of our analysis, we show that distributions over fixed-sized subsets cannot
be characterized by their first- and second- order marginals in polynomial time.

1. Introduction and related work

Most modern machine learning models that are learned using large quantities of data
rely on first-order gradient methods for training; typically, the gradient update rule is
computed using an estimate of the gradient, as computing the full-gradient would be too
computationally intensive. Most commonly, the estimated gradient is obtained using a
batched stochastic estimate, where the selected batch of training points is sampled uniformly
at random, without replacement, from the training set.1

Common improvements upon stochastic gradient methods leverage variance reduction
to reduce the variance E

[
‖∇f̄‖2

]
of the gradient estimate ∇f̄ [9, 20, 22, 6]. In the purely

stochastic setting (batch size k = 1), the estimated gradient variance is minimized by
sampling training points from the importance sampling distribution [18, 1, 3]; however,
extending this result to larger batch sizes is a non-trivial endeavor.

Subset-selection for unbiased and low-variance estimates is not limited to applications
to stochastic gradient methods: this question appears as a fundamental optimization
problem with crucial applications to a variety of machine learning problems, such as active
learning [7, 8] and, more generally, experimental design [5, 19, 11].

Experimental design and active learning applications typically focus on finding an optimal
set of points to evaluate; motivated by batched stochastic applications, we focus in this
paper on designing distributions over fixed-size subsets. In this paper we study the question:
how can you sample a minibatch giving a minimal variance and unbiased estimate?

1. This is commonly implemented by applying a random permutation of the training data, then sampling
batches of points sequentially from the permutation.
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For the purpose of our analysis and experiments, we make the strong assumption that we
can query the norms ‖xi‖ and inner products x>i xj of the ground set of points, as in [1, 3].
Standard tricks to amortize the cost of querying these values can be used downstream for
batched stochastic SGD applications, such as using stale computations and Lipschitz upper
bounds approximations [24, 15, 10].

Contributions. When sampling subsets to reconstruct unbiased mean estimates, we show:
– Distribution optimality can be characterized by first and second order marginals
– Constructing a distribution by first/second-order marginals is NP-hard in the general case
– When sampling points independently and sequentially, importance sampling (S) is optimal
– Under simplifying assumptions, IS generalizes to sampling without replacement
– Experimentally, using first and second-order marginals to learn a parametric distribution

improves variance reduction and faster SGD convergence in downstream experiments.

Notation. We consider sampling both with and without replacement. For a ground set Y
of n items, we write Pn,k the set of distributions over multisets S of Y of size k (where S
may contain repeated items). Similarly, we write Qn,k ⊂ Pn,k the set of distributions over
subsets S of Y with support on sets of size exactly k (where all elements of S are distinct).

2. Variance reduction and pairwise counts

We consider a ground set of n vectors Y = {x1, . . . , xn}, where each xi is an element of
Rd; we seek to approximate the mean vector µ = 1

n

∑
i xi. Unless mentioned otherwise,

batches are sampled with replacement, and so all sets should be understood to be multisets.
The standard stochastic approach to estimating x̄ simply samples a subset S of k points
uniformly at random; then, µ can be approximated as

µunif(S) =
1

k

∑
i∈S

xi. (1)

More generally, for any distribution p ∈ Pn,k, we can construct an unbiased estimate of µ by
reweighting sampled points by their expected sampling frequency. Let ci(S) represent the
number of times point i appears in a subset S; an unbiased estimate of µ can be obtained as

µp(S) =
1

n

∑
i∈S

1

Ep[ci]
xi =

1

n

∑n

i=1

ci(S)

Ep[ci]
xi. (2)

When sampling subsets uniformly (with or without replacement), we have Ep[ci] = k/n,
recovering estimate (1). Alternatively, when k = 1 and the probability of sampling element
i is given by pi = ‖xi‖/

∑
j ‖xj‖, we recover the importance sampling estimate.

We seek the data-dependent distribution p ∈ Pk,n for which the estimate (2) achieves
the lowest variance; our work thus focuses on solving the following problem:

Find p∗ ∈ argminp∈Pn,k E
[
‖µp(S)‖2

]
.

Proposition 1. Let p ∈ Pk,n be a distribution over multisets of fixed size k of {1, . . . , n}.
Let ci(S) count the number of occurrences of i in a subset S. We write c̄i = ES∼p[ci(S)]
and c̄ij = ES∼p[ci(S)cj(S)]. Let µp(S) be defined as in (2). Then, for S ∼ p, µp(S) is an
unbiased estimate of the mean of vectors xi, and satisfies the equality

E
[
‖µp(S)‖2

]
=

1

n2

n∑
i=1

n∑
j=1

c̄ij
c̄ic̄j

x>i xj . (3)
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Proposition 1 follows from a straightforward expansion of E[‖µp(S)‖2] using equation (2),
and guides our search for optimal distribution to sample unbiased, low-variance estimates of
the mean of a large set of high-dimensional points.

2.1 Characterizing a distribution by its 1st- and 2nd-order counts is NP-hard

One might be tempted to directly optimize the right-hand side of equality (3) to define an
optimal distribution p. To do so, one must first identify the set of constraints on the first-
and second-order counts c̄i and c̄ij so that they define a valid distribution p ∈ Pn,k. Such
constraints include, for example,

(i) ∀i, 0 ≤ c̄i ≤ k (ii)
∑

i
c̄i = k, (iii) ∀i,

∑
j 6=i

c̄ij = kc̄i − c̄ii.

Unfortunately, our first result is negative. Given [c̄i]i∈[n] and [c̄ij ]i,j∈[n], determining if the c̄i
and c̄ij correspond to counts of a distribution p ∈ Pn,k is NP-hard in the general case: even
enumerating the constraints required to optimize (3) is, in practice, impossible.

We show this by reduction from the unconstrained marginal decision problem — deciding
whether an assignment of first- and second-order counts correspond to a distribution over
subsets of [n] of unconstrained size — which was shown to be NP-hard in [21].

For the unconstrained problem, Sontag and Jaakkola [21] showed the NP-hardness result
on distributions over sets sampled without replacement; for clarity purposes, we make the
same assumptions in the proof below, although we note that distributions that sample
with replacement can be represented by sampling without replacement over a larger set of
duplicated items. When sampling without replacement, first order counts c̄i correspond
to the marginal probability p(i ∈ S) of item i being sampled, and second-order counts c̄ij
correspond to the marginal probabilityp({i, j} ⊆ S) of i 6= j being sampled together.

Lemma 2. Let c̄i, c̄ij be a set of possible counts on [n]. There exists a distribution p over
subsets of any size of [n] such that p(i ∈ S) = ci and p({i, j} ⊆ S) = c̄ij if and only if there
exists a distribution q ∈ Q2n,n that realizes the following marginals on [2n], which we identify
to {−n, . . . ,−1, 1, . . . , n}:

(i) q(i ∈ S) = c̄i (iv) q({i,−i} ⊆ S) = 0

(ii) q(−i ∈ S) = 1− c̄i (v) q({i,−j} ⊆ S) = c̄i − c̄ij
(iii) q({i, j} ⊆ S) = c̄ij (vi) q({−i,−j} ⊆ S) = 1− c̄i − c̄j + c̄ij .

Corollary 3. The following problem is NP-hard: given [c̄i]i∈[2n] and [c̄ij ]i,j∈[2n], decide if
there exists a distribution p ∈ Q2n,n with first-order counts c̄i and second-order counts c̄ij.

Corollary 3 shows that directly optimizing the counts c̄i and c̄ij , then seeking to find a
distribution p with such first- and second-order counts, cannot be done without additional
assumptions on the shape of the distribution. The rest of this paper focuses on finding
distributions with unbiased, low-variance gradients when optimizing (3) under additional
constraints that render the problem tractable.

2.2 Sampling sequentially with replacement

A natural simplifying assumption on the sampling distribution is that the k points are
sampled sequentially and independently from each other; note that independence between
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subsequent draws requires sampling with replacement. Hence, we begin our analysis by
focusing on sampling k vectors sequentially from a fixed categorical distribution.

Proposition 4. Let p be the distribution that samples a subset S of size k by sampling k
points sequentially, each time from the categorical distribution such that point i is sampled
with probability pi. Then, setting pi = ‖xi‖/

∑
j ‖xj‖ minimizes E

[
‖fp(S)‖2

]
.

Proposition 4 shows that importance sampling remains optimal in the batch setting
(k > 1) when points are sampled via k sequential and independent draws. This is a crucial
result for implementation purposes that rely on efficiency, as importance sampling only
depends on the norm of the points xi, and not on their pairwise inner products x>i xj .

For example, batch stochastic gradient descent can take advantage of methods that
approximate the norm of the gradients, either by using stale gradients, or more prosaically
by upper bounding the norm by the loss function’s Lipschitz constant [16, 10], without
relying on pairwise interactions between different training points.

2.3 Sampling without replacement

The analysis of batch sampling without replacement requires more careful analysis since two
consecutive point samples are no longer independent events. Instead, as mentioned earlier,
item counts in the without replacement setting now correspond to marginal probabilities:
c̄i = c̄ii = Pr(i ∈ S), and, similarly, c̄ij = Pr({i, j} ⊆ S). Hence, we reformulate our
optimization problem in the following way:

min
p∈Pn,k

f(p) ,
1

n2

∑n

i=1

1

pi
‖xi‖2 +

1

n2

∑
i 6=j

pij
pipj

x>i xj . (4)

Equation (4) once again surfaces the importance sampling distribution: when the batch size
is equal to one, the second order interactions disappear, and the optimal distribution over
(single) points is the unique categorical distribution that minimizes

∑
i ‖xi‖2/pi.

As identifying the set of constraints required for (4) is NP-hard, we must seek approximate
solutions. A natural approach is to seek to only find the optimal values for the first order
marginals pi = Pr(i ∈ S), under a relaxed set of constraints. This discards the second term
all-together, but significant insight can be gathered from just the marginal probabilities of
singleton subsets. We therefore consider the problem:

min
0≤pi≤1,

∑n
i=1 pi=k

∑n

i=1
‖xi‖2/pi, (5)

where the constraints sufficiently characterize marginal probabilities p1, . . . , pn ∈ [0, 1]
corresponding to an expected final set size of k.

Proposition 5. Let x1, . . . , xn be n vectors in Rd; without loss of generality, we assume
that the xi are ordered such that ‖xi‖i forms an increasing sequence. Let κ ≤ k be the largest
index such that ‖xi‖ ≤ 1

κ

∑n−k+κ
j=1 ‖xj‖ for all ∈ [n]. The unique global minimum of (5) is

achieved for pi = κ ‖xi‖∑n−k+κ
j=1 ‖xj‖

for i ∈ {1, . . . , n− k + κ}, and pi = 1 otherwise.

To summarize, the optimal first order-marginals are proportional to the norm ‖xi‖ (as in
importance sampling), unless there exists at least one point i such that ‖xi‖/

∑
j ‖xj‖ > 1/k.
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Any such point is assigned a marginal sampling probability pi = 1, guaranteeing that it
will always be sampled. In the case where k � n, such points will occur only when the
distribution of vector norms ‖xi‖ is highly skewed.

2.4 Learning a parametric distribution to sample without replacement

Importance sampling has the drawback of ignoring the potentially significant variance
information contained in the second order marginals. As a result, importance sampling has
no control over redundancy between items. To improve upon this defect we propose a simple
alternative approach by learning the sample from a parameterized class F = {p(·; θ) | θ} of
distributions over subsets of size k, we can instead to find the best parameterization,

θ∗ ∈ argmin
θ

Ep(·;θ)
[
‖µp(·;θ)(S)‖2‖

]
. (6)

Among distributions over fixed-sized subsets of a ground set, k-determinantal point pro-
cesses [12] (k-Dpps) are among the best known. Dpps and k-Dpps are known to be
distributions that favor subsets of high-quality yet diverse items [13]; thus, Dpps have found
many applications to variance reduction problems, including experimental design [4] and
minibatch sampling [23]. Under a k-Dpp parameterized by a kernel matrix L ∈ Rn×n � 0,
any subset of size k has probability

P (S) ∝ det(LS),

where LS = [Lij ]i,j∈S is the principal submatrix of L indexed by items in S. k-Dpps are
particularly well suited to being learned to optimize sampling variance, as their first- and
second-order marginals admit a closed-form expression: under a k-DPP with kernel L � 0,

pi =
Z
{i}
k−1

Zk
Lii pij =

Z
{i,j}
k−2 Zk

Z
{i}
k−1Z

{j}
k−1

(
LiiLjj − L2

ij

)
,

where for any subset A, the normalization coefficient ZAk−|A| is defined as [13, Section 5.2.3]

ZAk−|A| = Ek−|A|

(([
(L+ IĀ)−1

]
Ā

)−1
− I
)
,

where Ek is the kth elementary symmetric polynomial on the eigenvalues of matrices, and
we denote by Ā the complement of A in [n].

3. Experiments

We verify our proposed variance reduction method by learning a determinantal point process
(Dpp) to sample a batch. We begin by verifying empirically that when minimizing (3), the
resulting samples achieve lower variance. Given Y = {x1, . . . , xn} a ground set of n vectors
in Rd, we evaluate against the following baselines:

– Unif: the uniform distribution over subsets of size k
– IS: sampling k times without replacement from the importance sampling distribution
– Dpp-Zhang: The k-Dpp with radial kernel Lij = e−‖xi−xj‖

2
, as indicated in [23].

As seen in Figures 1a and 1b, the Dpp that minimizes the cost function (3) by optimizing
its first and second order marginals consistently achieves a significantly smaller variance
than other baseline methods.

5



Workshop on Real World Experiment Design and Active Learning

2 5 10 20 30 40
Features

0.0

0.2

0.4

0.6

0.8

1.0

1.2
V

ar
ia

n
ce

DPP (ours) Importance Zhang et al. Uniform

(a) Vectors xi are obtained by drawing n times
from a mixture of Gaussians
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(b) Vectors xi are per-element gradients of a logis-
tic regression model after 100 training iterations.

Figure 1: Batch variance under different distributions, as a function of vector dimension d. Learned
Dpp that explicitly optimize for their first and second-order marginals outperform all other methods,
consistently across data distribution types and dimensionality.
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Figure 2: Training loss of a logistic model trained
using batched-SGD, using different batch samplers.

We also investigate the optimization of
a logistic model using different batch sam-
pling methods.2 As comparing loss curves of
learning methods is notoriously difficult, for
each stochastic gradient step we select the
optimal learning rate η by line-search with
increments of 0.001. This is important, as it
has been observed that batches with lower
variances can accommodate larger learning
rates [9]. Fig. 2 shows the learned Dpp
method converges in around 4 times fewer
iterations than importance sampling, and
significantly faster than uniform sampling, and the Dpp based method of Zhang et al. [23].

4. Conclusion and future work

Approximating the mean of sets of vectors via subset-selection is a crucial machine learning
task; most importantly, it arises in batched stochastic estimates of full gradients when
training on large datasets. We show that a distribution over batches of points that achieves
unbiased estimates of minimal variance can be characterized by marginal element counts.

Although it is in general NP-hard to use optimal marginal counts to define a distribution,
when sampling points sequentially with replacement, this characterization can be used
to prove that importance sampling remains optimal. Without replacement, importance
sampling optimality is recovered under strong simplifying assumptions. Without those
assumptions, we use the marginal characterization of optimality to learn a parametric
distribution over batches. Experimentally, when learning a Dpp in such a way, we obtain
improved low-variance estimates over various vector sets; in a downstream SGD experiment,
we show that learning approximately optimal Dpps achieves a faster convergence rate.

In this paper, we made the standard assumption that we have access to oracles that
provide vector norms and inner products; extensions of this work will require using inexpensive
approximations in lieu of these oracles, as has been done for example in [24, 15, 10].
Furthermore, although Dpps are a natural choice of distribution over fixed sized sets, other
choices are possible; in particular, dual volume sampling distributions [2, 14, 17] also provide
closed-form marginals and enjoy similar negative-depndence properties as Dpps.

2. This serves as a proof of concept, as learning a logistic model is a convex optimization problem.
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Appendix A. Proofs

A.1 NP-hardness

Lemma 2. Let c̄i, c̄ij be a set of possible counts on [n]. There exists a distribution p over
subsets of any size of [n] such that p(i ∈ S) = ci and p({i, j} ⊆ S) = c̄ij if and only if
there exists a distribution q ∈ Q2n,n that realizes the following marginals on [2n], which we
identify to {−n, . . . ,−1, 1, . . . , n}:

(i) q(i ∈ S) = c̄i (iv) q({i,−i} ⊆ S) = 0

(ii) q(−i ∈ S) = 1− c̄i (v) q({i,−j} ⊆ S) = c̄i − c̄ij
(iii) q({i, j} ⊆ S) = c̄ij (vi) q({−i,−j} ⊆ S) = 1− c̄i − c̄j + c̄ij .

Proof. We identify each subset of S of [n] with a k-subset Ŝ of [2n] ≡ {−n, . . . ,−1, 1, . . . , n}:

Ŝ = S ∪ {−i | i 6∈ S}.

This induces a bijection between distributions q ∈ P2n,n that realize marginals (i) – (vi)
and distributions p ∈ Qn that realize c̄ij ; for S ⊆ [n], q(Ŝ) = q(S); q is zero on all sets of
size n′ 6= n.

If there exists a distribution q ∈ P2n,n realizing the c̄ij , then the existence of P ∈ Pn is
trivial by (iii). Now, assume there exists a distribution p ∈ Pn realizing the counts c̄ij . The
distribution q defined by q(Ŝ) = p(S) realizes marginals qij as defined by (i) – (vi).

qij =
∑
Ŝ3i,j

q(Ŝ) =
∑
S3i,j

p(S) = c̄ij

qi,−i =
∑
Ŝ3i,−i

q(Ŝ) =
∑

S3i,S 63i
p(S) = 0

qi,−j =
∑

Ŝ3i,−j

q(Ŝ) =
∑
S3i
S 63j

p(S) = c̄i − c̄ij

q−i,−j =
∑

Ŝ3−i,−j

q(Ŝ) =
∑
S 63i,j

p(S) = 1− c̄i − c̄j + c̄ij

Corollary 3. The following problem is NP-hard: given [c̄i]i∈[2n] and [c̄ij ]i,j∈[2n], decide if
there exists a distribution p ∈ Q2n,n with first-order counts c̄i and second-order counts c̄ij .

Proof. By Lemma 2 we reduce the problem of deciding whether an assignment of first- and
second-order counts corresponds to a distribution over subsets of [n] to deciding whether a
corresponding distribution exists over subsets of size n from a ground set of 2n items. As
the first problem is NP-hard, its reduction is also NP-hard.

A.2 Optimality of importance sampling

Proposition 4. Let p be the distribution that samples a subset S of size k by sampling k
points sequentially, each time from the categorical distribution such that point i is sampled
with probability pi. Then, setting pi = ‖xi‖/

∑
j ‖xj‖ minimizes E

[
‖fp(S)‖2

]
.

9
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This result depends upon the following equalities:

Lemma 6. Under the conditions of Prop. 4,

c̄ii = kpi(1− pi + kpi) and c̄ij = k(k − 1)pipj .

Proof. We begin by obtaining two equalities similar to the first and second moments of the
binomial distribution. Let p, q ∈ [0, 1], and let f(t) be the generalized moment-generating
function for the binomial distribution:

f(t) =

n∑
i=0

eit
(
i

n

)
piqn−i = (pet + q)n.

By differentiating this equality on both sides and evaluating it at t = 0, we obtain

n∑
i=0

(
n

i

)
ipiqn−i = np(p+ q)n−1. (7)

Similarly, by another differentiation, we obtain

n∑
i=0

(
n

i

)
i2piqn−i = np(p+ q)n−2(np+ q). (8)

Setting q = 1− p, we recover the first and second (non-central) moments of the binomial
distribution. With (7) and (8) in hand, we can now prove Lemma 6.

Let p be the distribution over subsets of size k that samples k times, independently, from
the categorical distribution over [n] parameterized by p1, . . . , pn ∈ [0, 1] (where pi indicates
the probability of sampling point i at any step).

By definition, we have

c̄ii = ES∼p[c2
i ]

=
k∑

m=0

Pr(ci = m)m2

=

k∑
m=0

(
k

m

)
pmi (1− pi)k−mm2

= kp(kpi + 1− pi),

where the last equality follows from (8).
Similarly, for i 6= j, we have

c̄ij =ES∼p[cicj ]

=

k∑
m=0

m

(
k

m

)
pmi ×

k−m∑
m′=0

(
k −m
m′

)
m′pm

′
j (1− pi − pj)k−m−m

′

(a)
=

k∑
m=0

m

(
k

m

)
pmi
[
(k −m)pj(1− pi)k−m−1

]
10
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=
kpj

1− pi

k∑
m=0

m

(
k

m

)
pmi (1− pi)k−m −

pj
1− pi

k∑
m=0

m2

(
k

m

)
pmi (1− pi)k−m

(b)
=k2 pipj

1− pi
− pj

1− pi
[
kpi(kpi + 1− pi)

]
=k(k − 1)pipj ,

where equality (a) follows from (7) and (b) follows from (7) and (8), concluding the proof.

Proof (Prop. 4). After replacing the counts c̄ij in equation (3) with the identities in Lemma 6,
it appears that the only term of E

[
‖µp(S)‖2

]
that depends on the pi is of the form

1

n2

n∑
i=1

1

kpi
‖xi‖2,

which is known to be minimized by importance sampling, i.e., pi ∝ ‖xi‖.

A.3 Importance sampling without replacement

min
p∈Pn,k

T1(p) = min
0≤pi≤1,

∑n
i=1 pi=k

n∑
i=1

1

pi
‖xi‖2. (9)

Note that this objective function is a sum of strictly convex functions, and hence strictly
convex, and the feasible set is also convex. Therefore there exists a unique global minimum.
We shall assume without loss of generality for the rest of this section that the gradients are
ordered so that {‖xi‖}ni=1 is a non-decreasing sequence.

Proposition 7. Let κ ∈ [k] be the largest element of [k] such that ‖xi‖ ≤ 1
κ

∑n−k+κ
j=1 ‖xj‖

for all j ∈ [n]. The unique global minimum of (9) is pi = 1 for all i ∈ [n] \ [n− k + κ] and

pi = κ ‖xi‖∑n−k+κ
j=1 ‖xj‖

for i ∈ [n− k + κ].

Note that in the case k � n, it is likely that ‖xj‖ ≤ 1
k

∑n
i=1 ‖xi‖ for all j ∈ [n]. In this

case the optimal solution is simply

pi = k
‖xi‖∑n
j=1 ‖xj‖

for all i ∈ [n]. This proposition follows as a corollary of the following two lemmas.

Lemma 8. Let ‖xi‖ ≤ 1
k

∑n
j=1 ‖xj‖ for all i ∈ [n]. Then the optimal solution of

min
0≤pi≤1,

∑n
i=1 pi=k

n∑
i=1

1

pi
‖xi‖2 (10)

is pi = k ‖xi‖∑n
j=1 ‖xj‖

for all i ∈ [n].

11
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Proof. We note first that the claimed solution is clearly feasible. Now we will show that the
given pi’s solve

min
0≤pi,

∑n
i=1 pi=k

n∑
i=1

1

pi
‖xi‖2. (11)

The Lagrangian for this problem is

L =
n∑
i=1

1

pi
‖xi‖2 + µ

( n∑
i=1

pi − k
)
−

n∑
i=1

λipi

At optimality, the KKT stationarity conditions imply 0 = ∂piL = −(‖xi‖pi )2 + µ − λi and

feasibility implies 0 = ∂µL =
∑n

i=1 pi − k. Furthermore, the KKT complementary slackness
condition implies that λipi = 0. Since the objective cannot be optimal if pi = 0 for any i,
we conclude that λi = 0 for all i. Inserting this result into the stationarity condition for pi
we find that (‖xi‖pi )2 = µ, finally yielding

pi =
‖xi‖√
µ

Finally, combining this with the stationarity condition for µ, we conclude that

pi = k
‖xi‖∑n
j=1 ‖xj‖

is an optimal solution to problem 11. Since this solution also satisfies pi ≤ 1 for all i it
must also be an optimal solution to problem 10.

Lemma 9. Suppose that ‖xn‖ > 1
k

∑n
j=1 ‖xj‖. Then,

min
0≤pi≤1,

∑n
i=1 pi=k

n∑
i=1

1

pi
‖xi‖2 = ‖xn‖2 + min

0≤pi≤1,
∑n−1
i=1 pi=k−1

n−1∑
i=1

1

pi
‖xi‖2

Proof. Let {p∗i }i∈[n−1] be an optimal solution to the right hand problem. Then pn = 1 and
pi = p∗i for i ∈ [n − 1] defines a feasible solution to the left hand problem with the same
objective value as the right hand problem. This implies that LHS ≤ RHS. To prove the
lemma it therefore suffices to show that any optimal solution to the LHS has pn = 1. The
Lagrangian for the LHS problem is

L =
n∑
i=1

1

pi
‖xi‖2 + µ

( n∑
i=1

pi − k
)
−

n∑
i=1

λipi +
n∑
i=1

ηi(pi − 1)

The KKT stationarity conditions imply 0 = ∂piL = −(‖xi‖pi )2 + µ− λi + ηi and feasibility

implies 0 = ∂µL =
∑n

i=1 pi − k. Furthermore, the KKT complementary slackness condition
implies that λipi = 0 and ηi(pi − 1) = 0. Again we know that pi > 0 for any optimal
solution, so λi = 0 for all i. Furthermore, suppose pi < 1 for all i. Then ηi = 0 and the
stationary condition and feasibility condition imply that pi = k ‖xi‖∑n

j=1 ‖xj‖
for all i. However

12
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since ‖xn‖ > 1
k

∑n
j=1 ‖xj‖ this solution is not feasible. Therefore for an optimal solution

{pi}ni=1 there must exist an i∗ such that pi∗ = 1. If i∗ = n then we are done, so suppose
i∗ 6= n. We shall now construct a feasible solution p̃ which is at least as good as p and for
which p̃n = 1. Define p̃n = pi∗ = 1, p̃i∗ = pn and p̃i = pi for all i 6= i∗, n. Since p is feasible,
so too is p̃. Furthermore,

n∑
i=1

1

p̃i
‖xi‖2 =

∑
i 6=i∗,n

1

p̃i
‖xi‖2 +

1

p̃n
‖xi∗‖2 +

1

p̃i∗
‖xn‖2

≤
∑
i 6=i∗,n

1

pi
‖xi‖2 +

1

pi∗
‖xi∗‖2 +

1

pn
‖xn‖2

=

n∑
i=1

1

pi
‖xi‖2

where the inequality holds since pi∗ ≥ pn and ‖xn‖ ≥ ‖xi∗‖ by assumption.

Proof of Proposition 7. We describe an iterative procedure that yields the claimed solution
upon completion.

1. Initialize κ← k.

2. Check if the hypothesis of Lemma 8 hold for {‖xi‖}n−k+κ
i=1 . If they do, set pi =

κ ‖xi‖∑n−k+κ
j=1 ‖xj‖

for i ∈ [n− k + κ], and return {pi}ni=1 and κ.

3. Otherwise, by Lemma 9, set pn−k+κ = 1, then update κ ← κ − 1, and loop back to
step 2.

Note that this process must terminate, at the latest, when κ = 1. By repeated applications
of Lemmas 8 and 9, the returned solution is optimal. Further, by consulting the definition
of κ in Proposition 7, one observes that it coincides with the value of κ returned by this
iterative procedure.

Appendix B. Experimental details

Optimizing Dpp We minimize the variance objective as a function of Φ where L = Φ>Φ
is the Dpp kernel. We initialize Φ such that the kernel is the kernel Lij = e−‖xi−xj‖

2

proposed by Zhang et al. [23]. To optimize Φ we use Adam with learning rate 0.2, and
(β1, β2) = (0.9, 0.999). We train for 150 steps, reducing the learning rate by a factor of 0.3
after 100 steps.

Synthetic Data For figure 2 we sample 1000 data points from a mixture of four 10-
dimensional Gaussians, where two clusters correspond to class +1 and the other two clusters
correspond to class −1.

Logistic Regression Optimization Batches of size 5 are selected from a uniformly at
random sub-sampled set of 30 data points. The learning rate is decided at each iteration
by line search with increment 0.001. For reproducibiliy we initialize the random seed of
PyTorch and Numpy to be 325.
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