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Abstract

We introduce a method for efficiently optimizing an expensive black-box objective function
over a high-dimensional, structured input space. To this end, we perform the optimization
in the low-dimensional, continuous latent space learned by a deep generative model (DGM).
We actively steer this space to be highly useful for optimization, by periodically retrain-
ing the DGM on the inputs queried during the optimization, and weighting those inputs
according to their objective function value. This weighted retraining is easy to implement
on top of existing methods, yet significantly improves their efficiency and performance.

1. Introduction

Many important problems in science and engineering can be formulated as optimizing a
function f : X 7→ R over an input space X which is high-dimensional (i.e. 100+ effective
dimensions) and/or structured (i.e. discrete or non-Euclidean such as graphs, sequences,
and sets). Solving such problems becomes even more challenging if f(x) is black box (i.e. no
known analytic form or derivative information available) and is expensive to evaluate (e.g.
in terms of time or energy cost). A notable example of such a problem is drug design, where
X is the space of molecular graphs and f is evaluated using expensive wet-lab experiments.

A promising approach to tackle such problems is a two-stage procedure which we will
refer to as latent space optimization (LSO). In the first stage, a deep generative model
(DGM) g : Z 7→ X is trained to map tensors in a low-dimensional, continuous space Z onto
the data manifold in input space X , effectively constructing a low-dimensional, continuous
analog of the high-dimensional, structured optimization problem. In the second stage, the
objective function is optimized over this learned latent space using well-studied, sample-
efficient techniques such as Bayesian optimization (Shahriari et al., 2015). Despite showing
promise in fields such as chemical design (Gómez-Bombarelli et al., 2018; Kusner et al.,
2017), automatic machine learning (Lu et al., 2018; Luo et al., 2018), and conditional image
generation (Nguyen et al., 2016), previous instances of LSO use a general-purpose DGM,
rather than a DGM explicitly designed to be amenable to efficient optimization.

In this paper, we propose that the described shortcoming of current LSO methods can be
addressed with a combination of weighting of the data distribution and periodic retraining
of the DGM. We motivate and present this weighted retraining in Section 2, empirically
demonstrate its effectiveness in Section 3, and discuss its wider context in Section 4.
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Figure 1: Schematic of two iterations of LSO with and without our proposed extension
of weighted retraining of the generative model g : Z 7→ X . Symbols: Red/green regions
correspond to points with low/high objective function values, respectively. The yellow star
is the global optimum in X . Coloured circles are data points; their radius in Z corresponds
to their assigned weight. Crosses are queries made during optimization. The dashed line
surrounds the region of X modelled by g.

2. Weighted Retraining for Latent Space Optimization

2.1 Motivation

To understand the shortcomings of LSO, it is necessary to first examine in detail the role
of the DGM. State of the art DGMs such as variational autoencoders (VAEs) (Kingma and
Welling, 2013) and generative adversarial networks (GANs) (Goodfellow et al., 2014) are
trained with a prior p(z) over the latent space Z. This means that although the resulting
function g : Z 7→ X is defined over the entire latent space Z, it is effectively only trained on
points in regions of Z with high probability under p (the feasible region of Z).1 Therefore,
if optimization is performed outside of the feasible region, the resulting samples are usually
low quality or invalid (Gómez-Bombarelli et al., 2018; Kusner et al., 2017; Nguyen et al.,
2016; Griffiths and Miguel Hernández-Lobato, 2020; White, 2016).

Restricting the optimization to the feasible region solves this problem, but also creates
new ones. Although the points in the feasible region of Z typically correspond to valid
points in X , the training objective of g encourages these points to roughly match the
distribution of the training dataset D in aggregate. If most points x ∈ D in the training
dataset are low-scoring (i.e. have highly sub-optimal objective function values f(x)), one
therefore expects that most of the feasible region of Z also contains low-scoring points.
Not only does this make the optimization problem more difficult to solve (like finding the
proverbial “needle in a haystack”), but we conjecture that it may actually leave insufficient
space in the feasible region for a large number of novel, high-scoring points that lie outside
the training distribution modelled by the DGM.

1. For example, a d-dimensional Gaussian distribution has non-zero probability density everywhere, but
almost all the probability mass in in a spherical shell of radius

√
d. See this blog post for a visualization.
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Figure 2: Distribution of objective function values of the ZINC dataset (see Section 3),
weighted uniformly and with the rank weighting in equation (1). Large k approaches uni-
form weighting, while small k place most weight on the best (i.e. largest) function values.

The effect of this phenomenon on the optimization procedure is illustrated in Figure 1a.
Because most of the training data in X lies in the low-scoring (red) region, the DGM learns
a latent space Z which contains mostly low-scoring points. Although Z also contains high-
scoring points, there are very few of them, and they are clustered around the training data;
a good optimizer will find these points, as shown in Figure 1a, but will generally be unable
to find the global optimum if it lies far from the training data. Furthermore, because the
DGM is fixed during the optimization procedure, discovering new high-scoring points does
nothing to help the DGM model high-scoring regions better, keeping the global optimum
forever out of reach regardless of the success of optimization.

2.2 Weighting and Retraining Individually

Conceptually, the optimization in Figure 1a can be improved by 1) training g to model more
of the high-scoring (green) region, and 2) using new points acquired during optimization to
improve g’s coverage of the high-scoring region. Retraining the DGM on points acquired
during optimization would address point 2, and has been previously mentioned in Eismann
et al. (2018). While it is unclear how to address point 1 in general, we propose that one
approach would be to train the DGM on a data distribution that systematically assigns
more probability mass on high-scoring points and less mass on low-scoring points, which
would cause a larger fraction of Z to consist of high-scoring points.

Given only a limited amount of training data D = {xi}Ni=1, a simple way to achieve
this effect is to reweight the training dataset. Recall that the training objective of common
DGMs involves the expected value of a loss function L with respect to the data distribution,2

which is typically estimated using the empirical distribution over the training dataset, i.e.
Ep(x)[L(x)] ≈ 1

N

∑N
i=1 L(xi). This can be viewed as a special case of the weighted objective∑N

i=1wiL(xi) with wi = 1
N ,∀i. By assigning an explicit weight wi to each data point

(normalized such that
∑N

i=1wi = 1), an arbitrary weighting of the data can be achieved.

We propose choosing wi in a way that systematically assigns higher values to high-
scoring points, and lower values to low-scoring points. While there are many reasonable

2. For a VAE, the loss L is the per-datapoint evidence lower bound (ELBO) (Kingma and Welling, 2013);
for a GAN, the loss L is the discriminator score (Goodfellow et al., 2014).
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Algorithm 1 Latent Space Optimization with Weighted Retraining (changes in blue)

1: Input: Data D = {(xi, f(xi))}Ni=1, evaluation budget M , objective function f(x),
generative model g(z), inverse model q(x), retrain budget R, weighting function w(x)

2: for 1, . . . , R do
3: Train generative model g and inverse model q on data D weighted byW = {w(x)}x∈D
4: for 1, . . . ,M/R do
5: Compute latent variables Z = {z = q(x)}x∈D
6: Fit objective model h to Z and D, and suggest new latent z̃ based on h
7: Obtain corresponding input x̃ = g(z̃), evaluate f(x̃) and set D ← D ∪ {(x̃, f(x̃))}
8: end for
9: end for

10: Output: Augmented dataset D

ways to do this, we decide to use a rank-based weight function,

w(x;D, k) ∝ 1

kN + rankf,D(x)
, rankf,D(x) =

∣∣ {xi : f(xi) > f(x), xi ∈ D}
∣∣ (1)

which assigns a weight roughly proportional to the reciprocal (zero-based) rank of each data
point. We choose equation (1) because it yields positive weights, is resilient to outliers, and
has a hyperparameter k controlling the degree of weighting. If k = ∞, equation (1) corre-
sponds to uniform weighting, i.e. wi = 1

N , ∀i, and as k → 0 the weights place progressively
more mass on the highest-scoring points, with the limit of k = 0 placing all mass on the
single point with the highest objective function value. This is illustrated in Figure 2.

2.3 Weighted Retraining Together

In addition to individually improving LSO, we also propose that data weighting and re-
training have a synergistic effect when applied together because data weighting improves
the effectiveness of the retraining. As a DGM usually requires at least 104 data points for
training, augmenting this dataset with ≈ 101 points is unlikely to significantly impact the
DGM training.3 However, if these new points are assigned a large weight because they are
high-scoring, then they will have a disproportionate impact on the DGM during retraining,
causing the DGM to change much more significantly than it would under uniform weighting.

Figure 1b illustrates the combined effect of data weighting and DGM retraining. Com-
pared to Figure 1a, in the first iteration in Figure 1b the high-scoring pink point is given
a higher weight, causing the feasible region to extend farther into the green region at the
expense of the red region. This allows a better first point (orange) to be chosen. In the
second iteration in Figure 1b, weighted retraining on that point reshapes the latent space
again, bringing the global optimum into the feasible region, where it is ultimately reached.

We refer to the combination of these techniques as weighted retraining. Algorithm 1
shows pseudocode for LSO with weighted retraining, highlighting our proposed changes.

3. While one could also retrain the DGM on only the new data points, this might lead to the well-known
phenomenon of catastrophic forgetting (McCloskey and Cohen, 1989).
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3. Empirical Evaluation

3.1 Experimental Setup

We demonstrate the effectiveness of weighted retraining on three high-dimensional, struc-
tured optimization problems. On each problem, we perform an ablation study, comparing
the effects of 1) neither retraining nor weighting (i.e., the default for current methods), 2)
retraining but no weighting, 3) weighting but no retraining (i.e., using a fixed model initially
trained on a weighted dataset), and 4) both weighting and retraining. When retraining is
performed, it is done after every 50th function evaluation. We study the following problems:

2D Shape Area Maximization Task. We optimize for the image with the shape of
largest area (i.e. the largest number of pixels with value 1) in the space of 64 × 64 binary
images. Data: All 245, 760 images of squares from the dSprites dataset of binary shapes
(Matthey et al., 2017), which have a maximum area of ≈ 400. Model: A standard con-
volutional VAE, with Z = R5. Optimizer: We enumerate a grid in latent space Z with
‖z‖2 ≤ 5, to emulate a perfect optimizer (this is only feasible since Z is low-dimensional).

Arithmetic Expression Fitting Task. We optimize in the space of single-variable arith-
metic expressions generated by a formal grammar, using an identical setup to Kusner et al.
(2017). The objective is to find an expression with minimal mean squared error to the tar-
get expression x∗ = 1/3 * v * sin(v*v), computed over 1000 values of v evenly-spaced
between−10 and +10. Data: 50,000 univariate arithmetic expressions generated by the for-
mal grammar from (Kusner et al., 2017). Model: A grammar VAE (Kusner et al., 2017).
Optimizer: Bayesian optimization with the expected improvement acquisition function
(Jones et al., 1998) and a sparse Gaussian process with 500 inducing points (Titsias, 2009).

Chemical Design Task. We aim to produce drug-like molecules by optimizing the pe-
nalized logP score, following previous works (Kusner et al., 2017; Jin et al., 2019; Dai et al.,
2018; You et al., 2018; Zhou et al., 2019). Data: The ZINC250k molecule dataset (Irwin
et al., 2012). Model: A junction tree VAE with the same parameters as in Jin et al. (2019),
which is the state of the art on this task. Optimizer: Same as for the expression task.

We use equation (1) with k = 10−5 for the 2D shape task to exaggerate the effect of
weighted retraining, and a more moderate value of k = 10−3 for the other tasks.

3.2 Results

Rather than simply reporting the best score achieved after a fixed number of objective
function evaluations, we instead plot the expected best score as a function of the number
function evaluations in order to show the behaviour of the various algorithms over time.
The expectation is calculated using three identical runs with different random seeds (ex-
cept for the 2D shape task, where the optimization procedure used is deterministic). The
results are shown in Figure 3. Firstly, it can be seen that weighting and retraining help
individually, with the effect of weighting being individually more pronounced. However,
weighted retraining together significantly outperforms all other methods on all three tasks.
Notice in particular that the performance often sharply increases following retraining (gray
dashed lines), while weighting without retraining tends to perform well but then plateau:
this directly supports the improvement mechanism described in Section 2.3.
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Figure 3: Mean ± one standard error (over three random seeds) of the best scores on the
shape task (left), arithmetic expression task (center), and chemical design task (right).
Weighted retraining achieves significantly better optimization performance and higher sam-
ple efficiency than the baselines on all three tasks. The purple line labelled “original” (right)
shows the results from Jin et al. (2019), extracted from their GitHub repository. The grey
dashed vertical lines indicate the iterations in which the DGM is retrained.

The performance on the chemical design task (Figure 3, right) is particularly noteworthy:
the best previously achieved score was 11.84 and was obtained after ≈ 5000 objective
function evaluations (Zhou et al., 2019). By contrast, our best score is 22.55, and was
achieved after only 500 evaluations. The scores achieved with weighted retraining thus not
only beat the results of all previous methods, but do so using far fewer samples.

4. Discussion and Conclusion

We proposed a method for efficient black-box optimization over high-dimensional, struc-
tured spaces, combining latent space optimization with weighted retraining. While being
conceptually simple and easy to implement on top of previous methods, weighted retraining
significantly boosts their efficiency and performance on challenging optimization problems.

In the context of optimization more generally, the main advantage of LSO with weighted
retraining is its sample efficiency. Many previous works have addressed similar problems
such as chemical design with reinforcement learning, which is known to be very sample
inefficient (Li, 2018; You et al., 2018; Zhou et al., 2019; Guimaraes et al., 2018; Olivecrona
et al., 2017; Popova et al., 2018; Simm et al., 2020), but has the advantage of being able
to explore beyond the distribution of the training data to a degree that standard LSO is
incapable of. Weighted retraining directly addresses this issue, which may possibly lead to
LSO becoming a more widely-used general optimization method.

There are many avenues for future work. Firstly, we observed that weighted retraining
was less beneficial when used with poorly-performing optimization algorithms. The latent
space of DGMs can be challenging to optimize over, motivating further research to optimize
more effectively and/or make the space more amenable to optimization. Another promising
idea is the use of a weighting schedule instead of a fixed weighting, which may allow balanc-
ing exploration vs. exploitation similar to simulated annealing (Van Laarhoven and Aarts,
1987). Finally, we are eager to apply our approach to more real-world problems, further
establishing machine learning as a critical tool for advancing science and engineering.
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