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Abstract
Existing preference-based learning methods are restricted to low-dimensional spaces due
to computational limitations. However, many applications of preference-based learning,
such as optimizing parameters of robotic systems, are high-dimensional problems. To
address this issue, we present LineCoSpar, a human-in-the-loop framework that enables
preference-based optimization in high dimensions by iteratively exploring one-dimensional
subspaces. After verifying its performance and sample-efficiency in simulation, we apply the
algorithm to two studies with real human feedback. We use LineCoSpar to learn a stable
controller for the cartpole problem and optimize walking gaits in real-world exoskeleton
experiments.

1. Introduction

Human-in-the-loop learning techniques have demonstrated significant potential in human-
robot interaction tasks (Bajcsy et al., 2017; Christen et al., 2019; Cremer et al., 2019; Zhang
et al., 2017), such as improving robotic assistive devices and tailoring them to individual
users. To learn optimal parameters in these settings with subjective human feedback, we
rely on users’ relative preferences, which are more reliable than numerical scores (Basu
et al., 2017; Joachims et al., 2005; Chapelle et al., 2012). Existing online preference-based
learning methods are unfortunately limited to low-dimensional spaces due to computational
constraints. For example, previous real-world demonstrations of preference-based learning
are in two dimensions (Tucker et al., 2020b) or rely on domain knowledge to narrow the
search space before performing online learning (Thatte et al., 2018). However, many practical
human-robot interaction problems are in high-dimensional optimization spaces, while domain
knowledge is difficult to obtain.

To bridge the gap, we present LineCoSpar, a human preference-based learning approach
that integrates existing techniques for preference learning and high-dimensional optimiza-
tion into a unified framework. LineCoSpar relies on preference feedback to iteratively
explore one-dimensional subspaces. We demonstrate in simulation that LineCoSpar ex-
hibits sample-efficient convergence to user-preferred actions in high-dimensional spaces. We
deploy this algorithm in studies with human users, first demonstrating that it learns stable
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Algorithm 1 LineCoSpar
1: procedure LineCoSpar(Utility prior parameters; m = granularity of discretization; n = number

of actions per iteration)
2: D = ∅, W = ∅ . D: preference data, W: actions in D
3: Set p1 to uniformly-random action
4: for t = 1, 2, . . . , T do
5: Lt = random line through pt, discretized via m
6: Vt = Lt ∪W . Points over which to update posterior
7: (µt,Σt) = posterior over Vt given D
8: for j = 1, 2, . . . , n do
9: Sample utility function ftj ∼ N (µt,Σt)
10: Execute action atj = argmaxa∈Vtftj (a)

11: Add
(
n
2

)
pairwise preferences among a ∈ {atj}1≤j≤n to D

12: Add coactive feedback {a′t} to D
13: Set W =W ∪ {atj}1≤j≤n ∪ {a′t} . Update actions in D
14: Set pt+1 = argmaxa∈Vtµt(a)

controllers in the four-parameter cartpole environment via human preferences. Then, we
apply LineCoSpar to the real-world problem of exoskeleton gait optimization with six
parameters to learn individualized walking gaits that maximize the user’s comfort.

2. The Learning Algorithm

The LineCoSpar algorithm (Alg. 1) learns a Bayesian model over the user’s preferences in
a high-dimensional space. To learn from preferences, we adopt the dueling bandit setting
(Sui et al., 2017, 2018; Yue et al., 2012), in which the algorithm selects actions and receives
relative preferences between them. The procedure, which is based on Thompson sampling,
iterates through: 1) updating a Bayesian posterior over the actions’ utilities given the data,
2) sampling utility functions from the posterior, 3) executing the actions that maximize the
sampled utility functions, and 4) observing preferences among the executed actions.

Drawing inspiration from the LineBO algorithm (Kirschner et al., 2019), LineCoSpar ex-
ploits low-dimensional structure in the search space by sequentially considering one-dimensional
subspaces from which to sample actions. This allows the algorithm to maintain its Bayesian
preference relation function over a subset of the action space in each iteration.

A related previous work is CoSpar, which finds user-preferred parameters across one
and two dimensions (Tucker et al., 2020b). Compared to CoSpar, LineCoSpar learns the
model posterior much more efficiently, and it can be scaled to high dimensions.

2.1 Modeling Utilities Using Pairwise Preference Data

LineCoSpar uses pairwise comparisons to learn a Bayesian posterior over the utilities of
different actions to the user. This is based on the Gaussian process preference model in Chu
and Ghahramani (2005). Let A ⊂ Rd be the set of all possible actions. We assume that
each action a ∈ A has a latent utility f(a) to the user. Throughout the learning process,
LineCoSpar maintains a dataset of all feedback from the user, D = {ak1 � ak2 | k =
1, . . . , N}, consisting of N preferences, where ak1 � ak2 indicates that the user prefers action
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ak1 to action ak2 . In iteration t of the algorithm, we consider a subset of the actions Vt ⊂ A
with cardinality Vt := |Vt| and use the preference data D to update the posterior utilities
of the actions in Vt (we define Vt in 2.2). Defining f = [f(at1), f(at2), . . . , f(atVt )]

T ∈ RVt ,
where ati is the ith action in Vt, the utilities f have posterior: P(f |D) ∝ P(D|f)P(f).

We place a Gaussian process prior over the utilities f of actions in Vt, P(f) =
1

(2π)Vt/2|Σpr
t |1/2

exp
(
−1

2f
T [Σpr

t ]−1f
)
, where Σpr

t ∈ RVt×Vt , [Σpr
t ]ij = K(ati ,atj ), and K is

a kernel. In practice, we use the squared exponential kernel. To compute the likeli-
hood P(D|f), we assume that the preferences may be corrupted by noise, such that:
P(ak1 � ak2 |f) = g

(
f(ak1

)−f(ak2
)

c

)
, where g(·) ∈ [0, 1] is a monotonically-increasing

link function, and c > 0 is a hyperparameter quantifying the amount of noise. While previous
work uses the standard normal cumulative distribution function for g (Tucker et al., 2020b;
Chu and Ghahramani, 2005), we empirically found that using the heavier-tailed sigmoid
distribution, gsig(x) := σ(x) = 1

1+e−x , as the link function improves performance. Thus, the

full likelihood expression is: P(D|f) =
∏N
k=1 gsig

(
f(ak1

)−f(ak2
)

c

)
. The posterior is estimated

via the Laplace approximation (Chu and Ghahramani, 2005), yielding a multivariate Gaussian
distribution, N (µt,Σt).

2.2 High-dimensional Optimization via Low-dimensional Subspaces

Existing preference-based approaches, including CoSpar, optimize over the action space A
by discretizing the entire space before beginning the learning process. This results in md

combinations from m uniformly-spaced points in each of the d dimensions of A. Thus, the
cardinality of this set is A := |A| = md; larger m enables finer-grained search at a higher
computational cost. The Bayesian preference model is jointly maintained and updated over all
A points during each iteration. This is intractable for higher d since computing the posterior
over A points involves expensive matrix operations, such as inverting Σpr

t ,Σt ∈ RA×A.
Inspired by Kirschner et al. (2019), LineCoSpar overcomes this intractibility by it-

eratively considering one-dimensional subspaces (lines), rather than the full discretized
action space. In each iteration t, LineCoSpar selects uniformly-spaced points along a new
random line Lt, which is determined by a uniformly-random direction and the action pt
that maximizes the posterior mean. Including pt in the subspace encourages exploration of
higher-utility areas. The posterior P(D|f) is calculated over Vt := Lt ∪ W , where W is the
set of actions for which D contains preference feedback. This approach reduces the model’s
covariance matrices Σpr

t ,Σt from size A×A to Vt × Vt. Rather than growing exponentially
in d, which is impractical for online learning, LineCoSpar’s complexity is constant in the
dimension d and linear in the number of iterations T . Since queries are expensive in many
human-in-the-loop robotics settings, T is typically low.

2.3 Sampling from and Updating the Posterior

Utilities are learned using the SelfSparring (Sui et al., 2017) approach to Thompson
sampling. In each iteration, given the preferences in D, we calculate the posterior N (µt,Σt)
of the utilities f over the points in Vt = Lt ∪ W . The algorithm samples n utility functions
{ftj}1≤j≤n from the posterior, each of which assigns utilities to the actions in Vt, and then
executes the n actions {atj}1≤j≤n that maximize each ftj . The user provides

(
n
2

)
pairwise
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preferences (or indicates “no preference” between two actions) among the n actions, which
are added to D. (For n = 1, a preference is obtained between the actions at and at−1.)
In addition to pairwise preferences, the algorithm also uses coactive feedback (Shivaswamy
and Joachims, 2012, 2015), where after each time the algorithm selects an action, the user
can suggest an improved action. Specifically, for each action at, the user can suggest the
dimension, direction (higher or lower), and degree in which to change at. The resulting
suggested action a′t is added to W, and the feedback is added to D as a′t � at. The new
feedback data in D is used to update the posterior over Vt in subsequent iterations.

3. Empirical Evaluation of LineCoSpar
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Figure 1: Standard benchmarks. Mean objec-
tive value ± SD of sampled actions using H3 and
H6, averaged over 100 runs with n = 3. The sam-
pled actions quickly converge to higher objective
values with LineCoSpar. CoSpar is intractable in
a 6-dimensional space.
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Figure 2: Coactive feedback. Mean objective
value ± SD of sampled actions using random six-
dimensional functions, averaged over 1000 runs with
n = 1. Sampled actions reach high objective values
in relatively few iterations, and coactive feedback
accelerates this process.

3.1 Synthetic Functions

We validate the performance of LineCoSpar in simulation using both standard Bayesian
optimization benchmarks and randomly-generated polynomials.1 Preferences are generated
as ak1 � ak2 if f(ak1) > f(ak2), where f is the objective function. The true objective values
f are invisible to the algorithm, which observes only the preference dataset D. We show that
LineCoSpar is sample-efficient, converges to sampling high-valued actions, and learns from
both preference and coactive feedback.

First, we evaluate the performance of LineCoSpar on the standard Hartmann3 (H3)
and Hartmann6 (H6) benchmarks (three and six dimensions respectively). Compared to
CoSpar, LineCoSpar converges to sampling actions with higher objective values at a faster
rate (Fig. 1). Thus, LineCoSpar not only enables higher-dimensional optimization, but
also improves speed and accuracy of learning.

We also test LineCoSpar using randomly-generated d-dimensional polynomials (for d =
6) as objective functions: p(a) =

∑d
i=1 αi

∑d
j=1 βjaj , where aj denotes the j

th element of a,
and all αi, βi are sampled independently from the uniform distribution U(−1, 1).

Coactive feedback is simulated for each sampled action at by finding an action a′t, differing
from at along only one dimension, such that f(a′t) > f(at). The action a′t is determined
by randomly choosing a dimension i (1 ≤ i ≤ d) and direction (positive or negative), and

1. The code can be found at github.com/myracheng/linecospar. All experiments use a kernel with
lengthscale 0.15 in every dimension, signal variance 1e−4, noise variance 1e−5, and preference noise 0.005.
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taking a step from at along this vector. If the resulting action a′t has a higher objective value,
it is added to the dataset D as a′t � at. We demonstrate high sample efficiency, which is
critical for human-in-the-loop learning, in which each query can be expensive. In particular,
LineCoSpar consistently identifies high-valued actions in ≈ 20 iterations (Fig. 2).

3.2 User Studies

Figure 3: Cartpole setup. In each iteration, the
subject indicates a preference between the cartpole
behaviors resulting from different actions (controller
parameters). Above, Action 1 (left) has higher re-
ward than Action 2 (right).
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Figure 4: Simulated versus human feedback
in the cartpole environment. Mean reward ±
SD, averaged over 100 runs in simulation (green)
and over three human subjects (blue). The sampled
actions converge to similar reward values despite
inconsistencies in the preferences.

3.2.1 Cartpole Environment

The cartpole environment, an instance of the classic inverted pendulum problem, features a
pole attached to a cart moving along a horizontal axis (Brockman et al., 2016). The system
can be stabilized by a proportional-derivative (PD) controller with four tunable parameters,
which are the proportional and derivative gains for position and velocity. To learn an optimal
controller, LineCoSpar searches over the action space consisting of these four parameters.
We define the reward ri as the number of timesteps that the cartpole stays upright within a
certain angle and position with the controller parameters ai. In simulation, at iteration t of
LineCoSpar, the algorithm receives preference at1 � at2 if rt1 > rt2 .

We also use LineCoSpar to learn the cartpole controller from preference feedback given
by humans. In this setting, the subject is instructed that the cartpole should be stable,
upright, and centered. In iteration t, after observing the different behaviors of the cartpole
resulting from at1 and at2 , the subject indicates a pairwise preference between the two actions
(Fig. 3). Across the three subjects evaluated, 25% of their preferences are inconsistent with
the synthetic reward function defined above (i.e., the human’s preference is at1 � at2 but
rt1 < rt2). The inconsistency rates are 32%, 24%, and 17% for each subject respectively. One
possible reason for these deviations is that it is challenging to distinguish between actions
with similar utilities; the normalized average difference in reward |rt1 − rt2 | is 0.3 across all
presented pairs and 0.1 across the inconsistent pairs. Also, the reward function may not fully
capture the human’s notion of stability. Despite these inconsistencies between human and
simulated feedback, LineCoSpar learns to sample high-reward actions at comparable rates
(Fig. 4). This suggests that the algorithm is robust to noisy user preferences.

The cartpole environment enables us to quantitatively validate the performance of the
algorithm as it learns from human feedback, using the reward r as a ground-truth metric.
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This evidence that LineCoSpar learns to sample high-utility actions based on human
preferences motivates the next section of human trials with an exoskeleton.

Figure 5: Lower-body exoskeleton. We use
LineCoSpar to optimize over the six parameters
(labeled above) of exoskeleton walking gaits.
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Figure 6: Gait validation. The x-axis is the per-
cent of validation trials in which the subject prefers
amax over a random action. Five of six subjects
predominantly (≥ 75%) prefer amax.

3.2.2 Lower-Body Exoskeleton

We deploy LineCoSpar with humans wearing a lower-body exoskeleton. The exoskeleton is
placed around existing limbs and helps those with mobility impairments regain their ability to
walk. Knowledge about user-preferred walking gaits is limited due to the high cost of clinical
trials, a barrier which this algorithm helps to lower by improving learning efficiency. Toward
the goal of maximizing user comfort, LineCoSpar learns an individualized walking gait by
optimizing six parameters (Fig. 5). Each iteration takes only a few seconds of computational
time. At each iteration, the algorithm prompts the exoskeleton user to test a gait, indicate a
preference compared to the previously-tested gait, and give coactive feedback. See Tucker
et al. (2020a) for details on the experimental setup.2

Let amax be the action maximizing the final posterior mean after T iterations, i.e.,
amax := argmaxa∈VTµT (a). As there is no objective function to quantify gait comfort for
each individual, we validate that the subjects predominantly prefer the predicted optimal
gait amax over four other randomly-selected gaits (Fig. 6). For four of the six subjects, all
validation preferences match the posterior, while the other subjects match three and one of
the four preferences, respectively.

4. Future Directions

We demonstrate that LineCoSpar performs sample-efficient optimization in a variety of
high-dimensional settings. This enables finding optima personalized to individual users, and
more broadly, understanding the underlying human utility functions. For example, in the
exoskeleton setting, LineCoSpar can give insight into the similarities and differences among
different users’ gait preferences; such knowledge paves the way for developing universally-
preferred gaits.

In the future, we hope to explore the noise in human preferences and its influence on the
learning process, as well as to gain a theoretical understanding of how factors like preference
quantity affect the convergence rate. Modeling how users give coactive feedback is also an
interesting open problem.

2. A video of the experimental results can be found at vimeo.com/394608113.

6

vimeo.com/394608113


References

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning robot
objectives from physical human interaction. In Conf. on Robot Learning, pages 217–226,
2017.

Chandrayee Basu, Qian Yang, David Hungerman, Mukesh Sinahal, and Anca D Dragan.
Do you want your autonomous car to drive like you? In Int. Conf. on Human-Robot
Interaction, pages 417–425. IEEE, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. Large-scale validation
and analysis of interleaved search evaluation. ACM Transactions on Information Systems,
30(1):6, 2012.

Sammy Christen, Stefan Stevšić, and Otmar Hilliges. Guided deep reinforcement learning of
control policies for dexterous human-robot interaction. In IEEE Int. Conf. on Robotics
and Automation, pages 2161–2167, 2019.

Wei Chu and Zoubin Ghahramani. Preference learning with Gaussian processes. In Int.
Conf. on Machine Learning, pages 137–144. ACM, 2005.

Sven Cremer, Sumit Kumar Das, Indika B Wijayasinghe, Dan O Popa, and Frank L Lewis.
Model-free online neuroadaptive controller with intent estimation for physical human–robot
interaction. IEEE Trans. on Robotics, 2019.

Thorsten Joachims, L.A. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In SIGIR, volume 5, pages 154–161, 2005.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause.
Adaptive and safe Bayesian optimization in high dimensions via one-dimensional subspaces.
In Int. Conf. on Machine Learning, pages 3429–3438, 2019.

Pannaga Shivaswamy and Thorsten Joachims. Online structured prediction via coactive
learning. In Int. Conf. on Machine Learning, pages 59–66. Omnipress, 2012.

Pannaga Shivaswamy and Thorsten Joachims. Coactive learning. Journal of Artificial
Intelligence Research, 53:1–40, 2015.

Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Multi-dueling bandits with
dependent arms. In Conf. on Uncertainty in Artificial Intelligence, 2017.

Yanan Sui, Masrour Zoghi, Katja Hofmann, and Yisong Yue. Advancements in dueling
bandits. In IJCAI, pages 5502–5510, 2018.

Nitish Thatte, Helei Duan, and Hartmut Geyer. A method for online optimization of lower
limb assistive devices with high dimensional parameter spaces. In Int. Conf. on Robotics
and Automation, pages 1–6. IEEE, 2018.

7



Maegan Tucker, Myra Cheng, Ellen Novoseller, Richard Cheng, Yisong Yue, Joel W. Burdick,
and Aaron D. Ames. Human preference-based learning for high-dimensional optimization
of exoskeleton walking gaits, 2020a.

Maegan Tucker, Ellen Novoseller, Claudia Kann, Yanan Sui, Yisong Yue, Joel Burdick, and
Aaron D Ames. Preference-based learning for exoskeleton gait optimization. In Int. Conf.
on Robotics and Automation. IEEE, 2020b.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

Juanjuan Zhang, Pieter Fiers, Kirby A Witte, Rachel W Jackson, Katherine L Poggensee,
Christopher G Atkeson, and Steven H Collins. Human-in-the-loop optimization of ex-
oskeleton assistance during walking. Science, 356(6344):1280–1284, 2017.

8


	Introduction
	The Learning Algorithm
	Modeling Utilities Using Pairwise Preference Data
	High-dimensional Optimization via Low-dimensional Subspaces
	Sampling from and Updating the Posterior

	Empirical Evaluation of LineCoSpar
	Synthetic Functions
	User Studies
	Cartpole Environment
	Lower-Body Exoskeleton


	Future Directions

