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Abstract
We propose a novel method for gradient-based optimization of black-box simulators using
differentiable local surrogate models. In fields such as physics and engineering, many
processes are modeled with non-differentiable simulators with intractable likelihoods. Opti-
mization of these forward models is particularly challenging, especially when the simulator
is stochastic. To address such cases, we introduce the use of deep generative models to
iteratively approximate the simulator in local neighborhoods of the parameter space. We
demonstrate that these local surrogates can be used to approximate the gradient of the
simulator, and thus enable gradient-based optimization of simulator parameters. In cases
where the dependence of the simulator on the parameter space is constrained to a low
dimensional submanifold, we observe that our method attains minima faster than baseline
methods, including Bayesian optimization, numerical optimization, and approaches using
score function gradient estimators.

1. Introduction

Computer simulation is a powerful method that allows for the modeling of complex real-
world systems and the estimation of a system’s parameters given conditions and constraints.
Simulators drive research in many fields of engineering and science [5] and are also used
for the generation of synthetic labeled data for various tasks in machine learning [18,
15, 16]. A common challenge is to find optimal parameters of a system in terms of a
given objective function, e.g., to optimize a real-world system’s design or efficiency using
the simulator as a proxy, or to calibrate a simulator to generate data that match a real-
data distribution. A typical simulator optimization problem can be defined as finding
ψ∗ = arg minψ

∑
xR(F (x,ψ)), where R is an objective we would like to minimize and F is

a simulator that we take as a black box with parameters ψ ∈ Rn and inputs x ∈ Rd.
In this work, we focus on cases where the simulator and its inputs are stochastic, so that

y = F (x,ψ) is a random variable y ∼ p(y|x;ψ), the inputs are x ∼ q(x), and the objective
is expressed as the expectation Ep(y|x;ψ)[R(y)]. The choice of modeling the simulator inputs
x as random reflects the situation common in scientific simulation settings, and our methods
are equally applicable for the case without stochastic inputs such that y ∼ p(y;ψ).
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In many settings the cost of running the simulator is high, and thus we aim to minimize
the number of simulator calls needed for optimization. Such stochastic simulator optimization
occurs in an array of scientific and engineering domains, especially in cases of simulation-based
optimization relying on Monte Carlo techniques.
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Figure 1: Simulation and surrogate training.
Black: forward propagation. Red: error back-
propagation.

Several methods exist for such optimiza-
tion, depending on the availability of gradi-
ents for the objective function [12]. In order
to utilize the strengths of gradient-based op-
timization while avoiding the high variance
often observed with score function gradient
estimators, our approach employs deep gener-
ative models as differentiable surrogate mod-
els to approximate non-differentiable simu-
lators, as described in Figure 1. In high-
dimensional parameter spaces, training such surrogates over the complete parameter space
becomes computationally expensive. Our technique, which we name local generative surro-
gate optimization (L-GSO), addresses this by using successive local neighborhoods of the
parameter space to train surrogates at each step of parameter optimization.

L-GSO relies primarily on two assumptions: (a) that the objective function is continuous
and differentiable, and (b) that the parameters ψ are continuous variables. The first
assumption may be relaxed for cases when the objective gradient is not accessible by
incorporating the objective into the surrogate.

2. Method

Problem Statement We target an optimization formulation applicable in domains where
a simulator characterized by parameters ψ takes stochastic inputs x ∼ q(x) and produces
outputs (observations) y ∼ p(y|x;ψ). For example in the case of designing the shape of
an experimental device, x may represent random inputs to an experimental apparatus, ψ
define the shape of the apparatus, and p(y|x;ψ) encodes the impact of the apparatus on the
input to produce observations y. A task-specific objective function R(y) encodes the quality
of observations and may be optimized over the parameters ψ of the observed distribution.
In cases when a simulator F can only draw samples from the distributions p(y|x;ψ) the
optimization problem can be approximated as

ψ∗ = arg min
ψ

E[R(y)] = arg min
ψ

∫
R(y)p(y|x;ψ)q(x)dxdy ≈ arg min

ψ

1

N

N∑
i=1

R(F (xi;ψ))

(1)
where yi = F (xi;ψ) ∼ p(y|x;ψ), xi ∼ q(x) and a Monte Carlo approximation to the
expected value of the objective function is computed using samples drawn from the simulator.
Here F represents a stochastic process, which may itself depend on latent random variables.

2.1 Deep generative models as differentiable surrogates

Given a non-differentiable simulator F , direct gradient-based optimization of Eq. 1 is not
possible. We propose to approximate F with a learned differentiable model, denoted a
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surrogate, ȳ = Sθ(z,x;ψ) that approximates F (x;ψ), where z ∼ p(z) are latent variables
accounting for the stochastic variation of the distribution p(y|x;ψ), θ are surrogate model
parameters, and ȳ are surrogate outputs. When the samples ȳ are differentiable with respect
to ψ, direct optimization of Eq. 1 can be done with the surrogate gradient estimator:

∇ψ E[R(y)] ≈ 1

N

N∑
i=1

∇ψR(Sθ(zi,xi;ψ)) . (2)

To obtain a differentiable surrogate capable of modeling a stochastic process, Sθ is
defined as a deep generative model whose parameters θ are learned. We present results using
conditional variants of two recently proposed models, Cramer GAN [4] and the FFJORD
flow model [6], to show the independence of L-GSO from the choice of generative model.

2.2 Local generative surrogates

Algorithm 1 Local Generative Surrogate Op-
timization (L-GSO) procedure
Require: number N of ψ, number M of x for

surrogate training, number K of x for ψ op-
timization step, trust region Uε, size of the
neighborhood ε, Euclidean distance d

1: Choose initial parameter ψ
2: while ψ has not converged do
3: Sample ψi in the region Uψε , i = 1, . . . , N
4: For each ψi, sample inputs {xij}Mj=1 ∼ q(x)
5: Sample M ×N training examples from

simulator yij = F (xij ;ψi)

6: Store yij ,xij ,ψi in history H
i = 1, . . . , N ; j = 1, . . . ,M

7: Extract all yl,xl,ψl from history H,
iff d(ψ,ψl) < ε

8: Train generative surrogate model
Sθ(zl,xl;ψl), where zl ∼ N (0, 1)

9: Fix weights of the surrogate model θ
10: Sample ȳk = Sθ(zk,xk;ψ), zk ∼ N (0, 1),

xk ∼ q(x), k = 1, . . . ,K

11: ∇ψ E[R(ȳ)]← 1
K

K∑
k=1

∂R
∂ȳk

∂Sθ(zk,xk;ψ)
∂ψ

12: ψ ← SGD(ψ,∇ψ E[R(ȳ)])
13: end while

The L-GSO optimization algorithm is
summarized in Algorithm 1.

For high-dimensional ψ, a large number
of parameter values ψ must be sampled to
accurately train a single surrogate model.
Otherwise the surrogate would not provide
sufficiently well estimated gradients over the
full parameter space that may be explored by
the optimization. Thus optimization using a
single upfront training of the surrogate model
over all ψ becomes unfeasible. As such, we
utilize a trust-region like approach [20] to
train a surrogate model locally in the proxim-
ity of the current parameter value ψ. Using
this local model, a gradient at the current
point ψ can be obtained and a step of SGD
performed. After each SGD update a new
local surrogate is trained. As a result, we do
not expect domain shift to impact L-GSO.

In local optimization there are several
hyperparameters that require tuning either
prior to or dynamically during optimization.
One must choose the sampling algorithm for
ψ values in the region Uψε in step 3 of Algorithm 1. In high-dimensional space, uniform
sampling is inefficient, thus we have adopted the Latin Hypercubes algorithm [10]. One must
also choose a proximity hyperparameter ε, that controls the size of the region of ψi in which
a set of ψ values is chosen to train a local surrogate. The number of ψ values sampled in
the neighborhood is another key hyperparameter. We expect the optimal value to be highly
correlated with the dimensionality and complexity of the problem.

Previously sampled data points can also be stored in history and later reused in our
local optimization procedure (Algorithm 1). This provides additional training points for
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the surrogate as the optimization progresses. This results in a better surrogate model and,
consequently, better gradient estimation.

The benefit of our approach, in comparison with numerical gradient estimation, is that a
deep generative surrogate can learn more complex approximations of the objective function
than a linear approximation, which can be beneficial to obtain gradients for surfaces with
high curvature. In addition, our method allows a reduction of the number of function calls
by reusing previously sampled points. Utilizing generative neural networks as surrogates also
provides potential benefits such as Hessian estimation, that may be used for second-order
optimization algorithms and/or uncertainty estimation, and possible automatic determination
of a low-dimensional parameter manifold.

3. Experiments

We evaluate L-GSO on five toy experiments in terms of the attained optima and the speed
of convergence, and present results in a physics experiment optimization. As simulation
is assumed to be the most time consuming operation during optimization, the speed of
convergence is measured by the number of simulator calls. The toy experiments, defined
below, were chosen to explore low- and high-dimensional optimization problems, and those
with parameters on submanifolds. Non-stochastic versions of the experiments are established
benchmark functions in the optimization literature [11].

Rosenbrock Problem In the N-dimensional Rosenbrock problem we aim to find ψ that
optimizes:

ψ∗ = arg min
ψ

E[R(y)] = arg min
ψ

E[y], s.t.

y ∼ N

(
y;

n−1∑
i=1

[
(ψi − ψi+1)

2 + (1− ψi)2
]

+ x, 1

)
, x ∼ N (x;µ, 1), µ ∼ U[−10, 10]

(3)

Submanifold Rosenbrock Problem To address problems where the parameters lie on
a low-dimension submanifold, we define the submanifold Rosenbrock problem, with a mixing
matrix A to project the parameters onto a submanifold. The orthogonal matrix A is generated
via a QR-decomposition of a random matrix sampled from the normal distribution. In our
experiments A ∈ R10×100 has full row rank. Prior knowledge of A or the submanifold
dimension is not used in the surrogate training. The optimization problem is thus defined as
above with ψ′ = A ·ψ.

Neural Network Weights Optimization Problem In this problem, we optimize neural
network weights for regressing the Boston house prices dataset [9]. In this experiment we
explore the optimization capability of L-GSO over the number of parameter space points
needed per surrogate training, and, indirectly, the intrinsic dimensionality of the problem.

Baselines We compare L-GSO to: Bayesian optimization using Gaussian processes with
cylindrical kernels [14], which we denote “BOCK ”, numerical differentiation with gradient
descent (referred to as numerical optimization), and guided evolutionary strategies [13]. We
also compare with score function-based optimization approaches. We use methods developed
in [18] which we denote “LTS “ and LAX estimator from [7] which we denote “Void “.
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Figure 2: The objective function value on the toy problems for baselines and our method.
(a) Rosenbrock problem [17] in 10 dimensions, initial point is ~2 ∈ R10. (b) Submanifold
Rosenbrock Problem in 100 dimensions, initial point is ~2 ∈ R100. True gradients are shown
in gray dashed curves when available. Shaded region corresponds to 1σ confidence intervals.
(c) Neural Network Weights Optimization problem ψ ∈ R91
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Figure 3: The bias (solid line) and
one standard deviation (shaded re-
gion) of the GAN based L-GSO gra-
dient averaged over all ψ dimensions
in the 10D Rosenbrock problem ver-
sus training step. Gray histogram
shows the empirical bias distribution
over all training iterations.

Results Our primary metrics for comparison are
the final objective function value and the number of
simulator function calls needed to find a minimum.
The latter metric assumes that the simulator calls are
driving the computation time of the optimization.

The objective value as a function of the number of
simulator calls in three experiments is seen in Figure 2.
L-GSO outperforms score function based algorithms
in speed of convergence by approximately an order
of magnitude. L-GSO also attains the same optima
as other methods and the speed of convergence is
comparable to numerical optimization. In Figure 2a
BO struggles to find the optimum due to the high
curvature of the objective function, whereas the con-
vergence speed of L-GSO is on par with numerical
optimization. In general, L-GSO has several advan-
tages over BO: (a) it is able to perform optimization
without specification of the search space [8, 19], (b)
the algorithm is parallelizable, though we note that
BO parallelization is an active area of research [21].

The bias and variance of the GAN based L-GSO gradient estimate averaged over all
parameters for the 10D Rosenbrock problem for each training step can be seen in Figure 3.
The bias is close to, and within one standard deviation of, zero across the entire training.

The benefits of L-GSO can further be seen in problems with parameter submanifolds,
i.e., the Submanifold Rosenbrock and Neural Network Weights Optimization problems where
the relevant ψ parameters live on a latent low-dimensional manifold. No prior knowledge

5



Workshop on Real World Experiment Design and Active Learning

of the submanifold is used in the training and all dimensions of ψ are treated equally for
all algorithms. The objective value versus the number of simulator calls can be seen in
Figures 2b and 2c where we observe that L-GSO outperforms all baseline methods.

Figure 2c compares L-GSO with differing numbers of parameter space points used per
surrogate training. In the submanifold problems, L-GSO converges fastest with far fewer
parameter points than the full dimension of the parameter space. This indicates that the
surrogate is learning about the latent manifold of the data, rather than needing to fully
sample the volume around a current parameter point.

3.1 Physics experiment example
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Figure 4: Magnet objective function
(top) and six ψ parameters (bottom)
during optimization.

We apply L-GSO to optimize the parameters of an
apparatus in a physics experiment setting that uses
the physics simulation software GEANT4 [1] and Fair-
Root [2]. In this example, muon particles pass through
a multi-stage steel magnet and their coordinates are
recorded when muons leave the magnet volume if they
pass through the sensitive area of a detection appa-
ratus. As muons are unwanted in the experiment, the
objective is to minimize number of recorded muons
by varying the geometry (ψ ∈ R42) of the magnet.

Results of the optimization using L-GSO with a
Cramer GAN [4] surrogate are presented in Figure 4.
A previous optimization of this magnet system was
performed using BO with Gaussian processes with
RBF kernels [3]. The L-GSO optima has an objective
function value approximately 25% smaller than the
BO solution, while using approximately the same
budget of O(5, 000) simulator calls. The L-GSO solution is shorter and has lower mass than
the BO solution, which can both improve efficacy of the experiment and reduce cost.

4. Conclusions

We present a novel approach for the optimization of stochastic non-differentiable simulators.
Our proposed algorithm is based on deep generative surrogates successively trained in local
neighborhoods of parameter space during parameter optimization. We compare against
baselines including methods based on score function gradient estimators [18, 7], numerical
differentiation, and Bayesian optimization with Gaussian processes [14]. Our method, L-GSO,
is generally comparable to baselines in terms of speed of convergence, but is observed to
excel in performance where simulator parameters lie on a latent low-dimensional submanifold
of the whole parameter space. L-GSO is parallelizable, and has a range of advantages
including low variance of gradient estimates, scalability to high dimensions, and applicability
for optimization on high curvature objective function surfaces. We performed experiments
on a range of toy problems and a real high-energy physics simulator. Our results improved
on previous optimizations obtained with Bayesian optimization, thus showing the successful
optimization of a complex stochastic system with a user-defined objective function.
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