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Abstract

High throughput screening is extensively used to discover potential drugs in the early drug
development process. However, screening is typically used to find compounds that have a
desired effect but not to identify potential undesirable side effects because of the large size of
the search space. Active machine learning has been proposed as a solution to this problem.
In this article, we describe an improved imputation method for modeling the effects of many
compounds on many targets using latent correlations between compounds and conditions.
Using this to drive active learning in well-characterized settings resulted in a reduction of
almost 40% in the number of experiments needed to reach a perfect predictive accuracy
compared to random selection of experiments. The results were a significant improvement
over previous reports and the new algorithm represents the current state-of-the-art for this
problem.
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1. Background

Drug development is an expensive and lengthy process. The effects of a potential drug
can be learned by screening on a specific biological target. However, drugs often have un-
favorable side effects due to the complex network of interactions within cells and tissues,
and these are difficult to discover given the number of other targets that could be affected
(Lounkine et al. (2012)). A potential approach is to use active learning, which provides
dramatic reductions in the number of required experiments for the larger problem of many
drugs and many targets (Naik et al. (2013); Kangas et al. (2014)), and for cases in which
the possible phenotypes are not known in advance (Naik et al. (2016)).
The underlying computational problem is matrix completion, the prediction of unmeasured
elements in a matrix of drugs and targets. There are two settings in which this may take
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place. In the first, numerical features are available that are believed to be accurate descrip-
tors of the properties of both the drugs and the targets (the setting explored by Kangas et al.
(2014)). There are a number of approaches for this setting (Chiang et al. (2015); Huang
et al. (2017); Wang and Elhamifar (2018)). The second, more difficult setting, is when such
features are not available. In this case, imputation must be based upon similarities in the
observations among drugs or targets. Within this setting, the observations may either be
numerical or categorical. For numerical values, a number of methods have been described
(Mazumder et al. (2010); Candes and Plan (2010); Candes and Tao (2010)). For categorical
values, alternative methods are needed since there are no mathematical relationships be-
tween the categorical variables (Davenport et al. (2014); Cao and Xie (2015)). For the drug-
target (or condition-target) problem, Naik et al. (2013, 2016) introduced a clustering-based
method which groups independent variables to predict consistent categorical phenotypes.
Chen et al. (2020) map the categorical matrix to a corresponding real valued-matrix and
solve the real valued-matrix by the SOFT-IMPUTE approach (Mazumder et al. (2010)).
In the current work, we introduce an alternative clustering-based, ”lazy learning” method.
Rather than using the inductive bias that drugs or targets can be grouped to make pre-
dictions for each entire group, our algorithm makes distinct imputations from the relevant
measured data for each unmeasured experiment. We compare the performance of the new
algorithm on both synthetic and experimental datasets with that of prior algorithms and
demonstrate significantly improved performance.

2. Methods

2.1 Problem Definition

Following the problem description in Naik et al. (2013), we use a finite categorical set T
that includes all targets under investigation in a particular study, T = {ti, i = 1, 2, . . . ,m},
where m is the total number of targets being considered; similarly, C is a finite categorical
set C = {cj , j = 1, 2, . . . , n}, where n is the total number of conditions being considered.
We define the collection of all the phenotypes possible from any combination of condition
and target as P = {pi,j}, for condition j and target i. Condition and target are independent
variables, and phenotype is the dependent variable. The experimental space is E = T ×C,
E = {ei,j} which includes all possible experiments. Here, ei,j refers to the experiment on ti
under cj . We define a function P (e) = p which maps an element in E to its phenotype.
The problem is to iteratively improve the predictive model for unmeasured experiments in
E by using active learning to choose experiments to measure. We use O to describe the
set of measured experiments. The premise of the imputation model, as with all matrix
completion methods, is that latent correlations exist in the matrix (in our case, within
the experimental space). That is, we assume that there is similarity between targets in T
and similarity between conditions in C. The similarity between conditions themselves or
targets themselves can be estimated if they have co-observed experiments under the same
target or condition. That is, we consider two targets to be similar if the phenotypes of
the experiments of these two targets under the same condition are the same. The more
co-observed experiments have the same phenotype, the higher the similarity between these
two targets. Similarly, we can estimate the similarity of two conditions from co-observed
experiments on the same target.
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2.2 Imputation Model

Here we introduce a committee voting imputation method for making predictions of unob-
served e in E. The committee can be interpreted as a partition of E. With the help of lazy
learning, a full use of the observed information is achieved and the model is allowed to be
robust to the noise in the observed data.
We use the term ”condition vector” to refer to the series of experiments under one particular
condition, that is ĉj = {e1,j , · · · , em,j}. Similarly, we define ”target vector” as the series of
experiments for one particular target, v̂i = {ei,1, · · · , ei,n}. Here, we define the conflict ζ
and consistency ρ between 2 vectors v̂1, v̂2 as:

{
ζ(v̂1, v̂2) =

∑
i I( ˆv1,i ∈ O)I( ˆv2,i ∈ O)I(P ( ˆv1,i) 6= P ( ˆv2,i))

ρ(v̂1, v̂2) =
∑

i I( ˆv1,i ∈ O)I( ˆv2,i ∈ O)I(P ( ˆv1,i) = P ( ˆv2,i))
(1)

Here, I(∗) is the indicate function.
The algorithms are shown in Algorithm 1 and 2. First, we consider imputation from condi-
tions by calling impute missing values( ˆconditions), returning predictions from condition.
Here, ˆconditions is the set of condition vectors. For a given vector v̂, we define the collec-
tion of vectors v̂ that have n conflicts to be committee Cv̂(n). Imputation for a given vector
is done by constructing a committee with similar vectors and then the prediction for each
unobserved element in the given vector is chosen by voting among the observed elements
in the corresponding position (elements with the same index) of the member vectors m̂ in
the committee. We define a function to evaluate the similarity of two given vectors that
penalizes predictions that are derived from conflicts

score(v̂1, v̂2) = ρ(v̂1, v̂2)− pnl × φ× ζ(v̂1, v̂2) (2)

where φ is the fraction of experimental space that has been observed. As this penalty
increases, we expect the behavior to approach the Greedy Merge algorithms described by
Naik et al. (2013). We explored values of this penalty from 0.5 to 5 and observed only small
changes (typically differences of only 1 or 2 rounds required to achieve 90% accuracy). We
therefore set it to 2.5 for all studies reported here.

Algorithm 1 impute missing values(vector set)

1: predictions← ∅
2: for v̂ in vector set do # vector set can be the set of target vectors or condition vectors in E
3: nconflict ← 0
4: U = {e|e ∈ v̂, e /∈ O}
5: while O 6= ∅ do
6: C(nconflict)← {m̂1, m̂2, · · ·}
7: predeF ← infer(e, v̂, C(nconflict))
8: if prede 6= ∅ then
9: remove e out of U

10: predictions ∪ prede
11: end if
12: nconflict ← nconflict + 1
13: end while
14: end for
15: return predictions
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Algorithm 2 infer(e,v̂, C)
1: prede ← ∅
2: for m̂ in C do
3: if m∗ ∈ O then # here, m∗is the element in m̂ with the same index as e in v̂
4: if ((P (m∗),anyscore)/∈ prede then #

P(*) is the function mapping e to its phenotype
5: prede ∪ {(P (m∗), score(v̂, m̂))} # ”anyscore” can be any value, we only care about P (m∗)
6: else
7: replace (P (m∗),anyscore) with (P (m∗), anyscore + score(v̂, m̂))
8: end if
9: end if

10: end for
11: return prede

Symmetrically, imputation can also be done by predicting unobserved experiments from the
targets by calling imputation missing values( ˆtargets), to yield predictions from target.
Here, ˆtargets is the set of target vectors. We then merge the set predictions from condition
and the set predictions from target; the predictive candidate phenotypes for some experi-
ments may appear in both imputation sets, the predictive score for these phenotypes is the
sum of the corresponding scores from the two sets. We define Pse as the set of all resulting
candidate phenotypes for e. For each possible phenotype for each unobserved e, we assign
a predictive confidence as

probe,pi =
scoree(pi) + (1− scoree(pe∗))∑

p∈Pse
(scoree(p) + (1− scoree(pe∗)))

(3)

where pe∗ = arg minp∈Pse scoree(p). For each unobserved e, we choose the predicted phe-
notype to be the candidate phenotype with the highest score.

2.3 Active Learning

For choosing experiments, we used uncertainty sampling. Each predicted phenotype is
accompanied by a confidence score. We define two criteria for ranking predictions for
unobserved e by their confidence: ranking by the predictive confidence score itself or by the
information entropy of the prediction score. We used three uncertainty querying strategies:
querying by lowest confidence score, querying by highest entropy, and querying by a hybrid
of 50% of selections by uncertainty and 50% by entropy.

3. Results and Discussion

3.1 Numerical Simulation

We performed testing with simulated data following the approach in Naik et al. (2013). This
involves using two variables to control the generation process for E. One, ”uniqueness” (u),
refers to the fraction of unique combinations of phenotypes for a given target or condition;
the other, ”responsiveness” (r), describes the probability that the phenotype for a given
target under a given condition is changed from its unperturbed phenotype. We tested the
performance of the model on simulated E with a range of u and r for 100 targets × 100
conditions and 60 possible phenotypes. We measured differences in the percentage of E
need to reach 90% and 100% accuracy between active and random learning. As shown in
Figure 1A, the active learning strategy reaches 100% more rapidly than random learning
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across most combinations of uniqueness and responsiveness. The same behavior is seen for
90% predictive accuracy. Our new algorithm also performs better than previous algorithms
when comparing the number of rounds to reach 90% predictive accuracy (Figure 1C).

Figure 1: Comparisons of active learning performance. The number and color in the heat-
maps indicate the difference between active and random learners in the percentage
of experiments needed to reach 90% (A) or 100% (B) predictive accuracy. Both
learners used the imputation model described above, and the active leaner used
the hybrid query strategy. (C) A comparison of number of rounds to reach 90%
accuracy for algorithms from Chen et al. (2020), Naik et al. (2013), and our
algorithm on various combinations of uniqueness (u) and responsiveness (r) and
32 phenotypes.

3.2 Protein Subcellular Patterns Screening Experiment

We also evaluated the performance of the various model designs on a high throughput
screening image dataset which contains features from fluorescent microscopy images. The
experimental setting consists of 47 sub-cellular targets and 46 different conditions. For every
unique experiment, we silently make 3 replications to introduce at least some similarities
between targets themselves and conditions themselves. The final size of E is therefore
94 × 92. The experimental procedure is shown in Figure 2A. In order to determine the
phenotypes, we use hierarchical clustering with a stop distance threshold of 10 to group
the measured experiments, and assign those phenotypes to unmeasured experiments by
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a 5-nearest neighbor classifier. After each round of data collection, we first compare the
predictions of the model made for unobserved experiments with the ground truth of the
E generated for that round (this is necessary because we cannot penalize a learner for
not predicting a phenotype that has not yet been observed in any experiment.) Learning
curves are shown in Figure 2 for our improved imputation method and the imputation
method used by Naik et al. (2016). It is important to note however that our tests were
done with only the average feature values for each combination of target and condition, and
therefore the learning rates are not directly comparable to those reported previously. The
results are also not directly comparable to those of Chen et al. (2020) because they used the
phenotypes learned in each round by the original study rather than learning the phenotypes
anew only from the data observed up to that round (thus taking advantage of information
from experiments that were not observed). Obviously, models with an active learning
strategy perform better than random models. Note that the curves of active learners with
the hybrid query strategy and entropy query strategy learn more rapidly compared to the
previous imputation method (Naik et al. (2016)) in our tests.

Figure 2: (A). Experiment workflow of the learning process on the protein sub-cellular
patterns screening dataset. (B). Performances of learners using our model and
that of Naik et al. (2013) are shown for the real image dataset.

4. Conclusion

We have introduced an improved imputation method suitable for learning the latent corre-
lations in a target-condition combination system; further, when used with active learning,
it shows superior performance over previous methods both on learning an accurate predic-
tive model while performing fewer experiments and on making more accurate predictions
with the same number of performed experiments. Active learning will play an increasingly
important role in drug development as the need to consider larger and larger experimen-
tal spaces eliminates the possibility of exhaustive experimentation. Effective methods for
imputation from limited experimental data are a key component of these efforts.

5. Reproducible Research Archive

The code, test data and results are available at http://murphylab.cbd.cmu.edu/software/
2020_categorical/.
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